
Figure 3. Map of stimulus effects. Cross-section of axonal tacts, representing axons
activated, inactivated, or blocked by electrical stimulation. Stimulus amplitude: 1 mA.

(28.5 mm2 at 0.5 mA to 182.9 mm2 at 10 mA). Compared to monophasic stimulation, 165

the biphasic stimulation recruited 76 % , 21 % and 3% more fibers respectively for 166

bipolar orthogonal, monopolar, and bipolar parallel configurations. The monopolar 167

monophasic configuration activated the smallest area from 1 mA to 1.5 mA whereas 168

from 2 mA to 10 mA, the bipolar monophasic configuration performed more poorly. 169

Influence of conductivity on the area stimulated 170

Comparison between isotropic and anisotropic case concerning maximal activation depth 171

and activation area are shown in Fig. 6 considering a biphasic pulse. Using isotropic 172

model overestimated the maximal activation depth and the activation area compared to 173

the anisotropic model. In averaged, activation area was 257 %, 391 % and 427 % more 174

important respectively for bipolar orthogonal, monopolar and bipolar parallel 175

configuration. The difference increased with current amplitude for the monopolar and 176

bipolar parallel configuration but decreased for the bipolar orthogonal configuration. 177

The maximal activation depth was 112 %, 134 % and 142 % more important 178
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Figure 4. Anisotropic model. (A): Maximal activation depth and (B): activation area
in function of the stimulus amplitude
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Figure 5. Isotropic model. (A): Maximal activation depth and (B): activation area in
function of the stimulus amplitude

respectively for bipolar orthogonal, monopolar and bipolar parallel configuration. 179

Discussion 180

In this study, we report the investigation of parameters used in surgical electrical 181

stimulation of white matter tracts using computational models. The results show that 182

different electrode parameters (bipolar parallel or orthogonal electrode, monopolar 183

electrode, biphasic or monophasic stimulus) drastically modify the area and depth of 184

tract activation. 185

Biphasic bipolar orthogonal stimulation is widely used in surgery [31] and activates a 186

larger total area than monopolar or bipolar parallel stimulation, however, axons lying 187

between bipolar electrodes remain inactive. These results are in agreement with a 188
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Isotropic and anisotropic, biphasic stimulus
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Figure 6. Comparison between isotropic and anisotropic model, using biphasic stimulus.
(A): Maximal activation depth and (B): activation area in function of the stimulus
amplitude.

previous study modelling white matter as a continuous bidomain medium [17]. 189

Specifically, activation areas symmetrically surround the two poles of the bipolar 190

biphasic orthogonal probe, rather than being located in between the two poles. This is 191

in line with the fact that it is the second spatial derivative of the potential that drives 192

the membrane depolarization (see the notion of ”activating function” [15,24]). Hence, 193

from a practical point of view, the effect of a biphasic bipolar orthogonal stimulation 194

can be approximated as a double biphasic monopolar stimulation. 195

Consistent with the recent report of Gomez et al. for isotropic tracts, monopolar, 196

monophasic stimulation caused a broader and deeper activation than monophasic 197

stimulation with bipolar electrodes orthogonal to axon tracts [8]). However, our results 198

show that monophasic stimulation with bipolar electrodes parallel to isotropic tract is 199

far more effective than either monopolar or bipolar orthogonal electrodes. Further, the 200

use of monophasic stimulation can induce potentially troublesome phenomena such as 201

virtual cathodic activation (under the anode) and blocking of AP under the cathode. 202

Notably, a non-symmetrical stimulation occurs below the contacts of the bipolar 203

orthogonal electrode such that the stimulation zone is less well controlled. 204

The spatial features of axon recruitment by the different configurations were 205

profoundly affected by anisotropy, both qualitatively and quantitatively. Assuming an 206

anisotropic axonal tract, we found that there was no difference in activation depth using 207

monopolar or bipolar configurations at low stimulus amplitude whereas the difference is 208

clearly visible in an isotropic tract. The maximal depth and total activation area were 209

far greater in isotropic compared to anisotropic models. The common result in both 210

anisotropic and isotropic models was that bipolar orthogonal biphasic stimulation 211

activates a larger total area than monopolar or bipolar parallel stimulation. Our 212

findings indicate that inhomogeneities of conductivity have a drastic effect on the area 213

recruited by the stimulation. It is thus important to precisely map the conductivities 214

experimentally in order to enable the design of precise models. By extension, possible 215

non-ohmic properties of the extracellular space [7] could also influence the area 216

stimulated. In future studies, realistic geometrical head models including realistic 217
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conductivities, fiber densities, and inhomogeneities of axon diameter should be 218

considered to construct patient- and tract-specific predictions. 219
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Appendix 226

Figure 7. Map of stimulus effects. Cross-section of axonal tacts, representing axons
activated, inactivated, or blocked by electrical stimulation. Stimulus amplitude: 10 mA.
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