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Abstract

Glycolysis is a conserved central pathway in energy metabolism that converts glucose to pyruvate
with net production of two ATP molecules. Because ATP is produced only in the lower part of
glycolysis (LG), preceded by an initial investment of ATP in the upper glycolysis (UG), achieving
robust start-up of the pathway upon activation presents a challenge: a sudden increase in glucose
concentration can throw a cell into a self-sustaining imbalanced state in which UG outpaces LG, gly-
colytic intermediates accumulate and the cell is unable to maintain high ATP concentration needed
to support cellular functions. Such metabolic imbalance can result in “substrate-accelerated death”, a
phenomenon observed in prokaryotes and eukaryotes when cells are exposed to an excess of substrate
that previously limited growth. Here, we address why evolution has apparently not eliminated such
a costly vulnerability and propose that it is a manifestation of an evolutionary trade-off, whereby
the glycolysis pathway is adapted to quickly secure scarce or fluctuating resource at the expense of
vulnerability in an environment with ample resource. To corroborate this idea, we perform evolution-
ary simulations of a simplified yeast glycolysis pathway consisting of UG, LG, phosphate transport
between a vacuole and a cytosol, and a general ATP demand reaction. The pathway is evolved in con-
stant or fluctuating resource environments by allowing mutations that affect the (maximum) reaction
rate constants, reflecting changing expression levels of different glycolytic enzymes. We demonstrate
that under limited constant resource, the population evolves to a genotype that is balanced but ex-
hibits strongly imbalanced dynamics under ample resource conditions. Furthermore, when resource
availability is fluctuating, the imbalanced phenotype enjoys a fitness advantage over balanced dynam-
ics: when glucose is abundant, imbalanced pathways can quickly accumulate glycolytic intermediate
FBP as intracellular storage that is used during periods of starvation to maintain high ATP concen-
tration needed for growth. Our model further predicts that in environments with fluctuating resource,
competition for glucose can result in stable coexistence of balanced and imbalanced cells, as well as
repeated cycles of population crashes and recoveries that depend on such polymorphism. Overall, we
demonstrate the importance of ecological and evolutionary arguments for understanding seemingly
maladaptive aspects of cellular metabolism.

Introduction
In many organisms, glycolysis is an essential pathway in energy metabolism that converts glucose to
pyruvate with net production of two ATP molecules per glucose molecule1. Net formation of ATP occurs
in the lower part of glycolysis (LG) which is preceded by initial investment of ATP in the upper part
of glycolysis (UG). Such a “turbo design” of the pathway carries an inherent risk: a sudden increase
in glucose levels can push the pathway into a self-sustaining imbalanced state, where UG outpaces LG,
glycolytic intermediates accumulate and the cell is unable to maintain high ATP concentration needed
to support cellular functions2,3. In yeast, such a phenotype is usually associated with mutants of the
trehalose metabolism2,4,5. However, wild-type (WT) yeast cells are vulnerable as well: a switch of growth
substrate from galactose to glucose renders 7% of cells non-viable3. This is an example of substrate-
accelerated death, a wider phenomenon observed in prokaryotes and eukaryotes when cells are unable to
grow when exposed to excess substrate that previously limited growth6–8.

The co-occurrence of a balanced and an imbalanced state in yeast glycolysis is well captured by a gen-
eralized core glycolysis model (Figure 1) developed previously by van Heerden et al.3 The model predicts
two stable states, one yielding a steady-state concentration of the intermediate metabolite fructose-1,6-
bisphosphate (FBP) and a high ATP concentration (balanced state), and the other characterized by
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steady accumulation of FBP and depletion of ATP and intracellular inorganic phosphate pools (imbal-
anced state). The key factor determining the fate of the system is the dynamics of inorganic phosphate
(Pi) during the start-up of glycolysis. According to the model, the transition to excess glucose proceeds as
follows3. Upon sudden glucose exposure, the rate of UG initially exceeds that of LG (vup > vlo), causing
FBP to increase. For a balanced steady state, vlo has to accelerate and catch up with vup. This challenge
is more difficult if UG activity (vup) is higher, e.g. due to a higher expression level of UG enzymes or
higher glucose concentration. Accumulation of FBP binds Pi and will cause a drop in its concentration
in the cytosol. Because FBP and Pi are both substrates for LG, the increase in FBP will tend to speed
up vlo, whereas the associated decrease in Pi will tend to slow it down. Which of these two effects is
dominant determines the trajectory of the system. If Pi concentration remains sufficiently high, vlo will
increase to become equal with vup, and a balanced steady state will be established. Otherwise, Pi will
become a limiting factor for LG and vlo will not accelerate fast enough to catch up with vup, causing the
system to collapse into the imbalanced state. Once caught in the imbalanced state, cells are trapped,
because Pi mobilized from the vacuole maintains the imbalance: at low concentrations of Pi and ATP,
an imported Pi molecule enhances vlo, but the concomitant production of 2 ATP molecules increases vup
twice as much as vlo. Given that imbalanced cells exist in an alternative stable metabolic state, random
initial variation in enzyme and metabolite concentrations can be enough to drive a subpopulation of cells
into the imbalanced state. This explains why both balanced and imbalanced cells can be present in an
isogenic population upon transition to excess glucose after starvation3.

van Heerden et al. suggests that vulnerability of glycolysis to imbalance arises from the fundamental
design of the pathway and cannot be fully prevented by regulatory mechanisms3. However, the analysis of
the full kinetic glycolysis model shows that quicker liberation of Pi by enhancing ATPase activity, activa-
tion of the glycerol formation branch, futile trehalose cycling, or quicker import of Pi into the cytosol from
the vacuole can all markedly decrease the probability of reaching the imbalanced state3. Furthermore,
the presence of trehalose cycling combined with experimentally observed trehalose-6-phosphate mediated
inhibition of hexokinase9 can remove the existence of metabolic imbalance in the model altogether. It
is therefore puzzling that 7% of WT yeast cells fall into the imbalanced state upon a sudden increase in
glucose availability. Why have WT cells not evolved such mechanisms to completely eliminate the risk of
imbalance? One possible evolutionary explanation is that although imbalanced vup and vlo are dangerous
to the cell, regulatory mechanisms to keep them tightly balanced, or constitutive higher expression of LG
enzymes are just too costly relative to the fitness benefit of avoiding substrate-accelerated death. Yet,
given the potential of a 7% increase in survival, these costs must be assumed to be substantial. An alter-
native hypothesis that we propose here is that imbalanced vup and vlo are not always detrimental to the
cell, but may, in fact, be adaptive under a range of natural conditions. In particular, allocating a larger
fraction of enzymatic capacity to UG at the expense of LG would allow cells to acquire glucose from the
environment faster, increasing their competitive advantage under conditions of low resource availability.
Moreover, in variable environments, glucose may normally run out before metabolic imbalance becomes
irreversible, so that periods of starvation would restore normal levels of glycolytic intermediates and cells
would be protected from substrate-accelerated death. From this perspective, the vulnerability of cells
to fall into the imbalanced state in rich and constant environments (e.g., typical lab conditions) can be
interpreted as the result of an evolutionary trade-off: adaptations of the glycolysis pathway that improve
its performance under conditions of low or varying glucose make it vulnerable to imbalance at constant
high glucose concentrations. In other words, we suggest that imbalanced dynamics in WT yeast cells
are observed because cells are adapted to a different glucose availability regime than the one used in the
experiments3.

To investigate this idea, we performed evolutionary simulations of a population of yeast cells with the
simplified yeast glycolysis pathway shown in Figure 1, subject to different glucose availability regimes.
Variation in the population was introduced by mutating (maximum) reaction rate constants of the path-
way, reflecting changing expression levels of the glycolytic enzymes. Cells contributed to future genera-
tions in proportion to their growth rate, so that natural selection acted on the simulated populations to
improve the functionality of the pathway in the current environment. We then quantified the likelihood
of cells with the evolved pathways to fall into the imbalanced state upon transitioning to excess glu-
cose. Our results demonstrate that the regime of glucose availability that cells have previously adapted
to has a marked effect on their measure of balancedness. The model also predicts a range of environ-
mental conditions where balanced and imbalanced cells can stably coexist in the population, and where
such polymorphism drives periodic crashes and recoveries of the population. We discuss these results
in relation to the tragedy of the commons and evolutionary suicide to illustrate how eco-evolutionary
mechanisms can shed new light on seemingly maladaptive aspects of cellular metabolism.
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Figure 1. A generalized core model of glycolysis3 considers the intracellular concentrations of the glycolytic
intermediate fructose-1,6-bisphosphate (FBP), ATP and inorganic phosphate (Pi), and four reactions (arrows):
(i) a lumped upper glycolysis reaction that produces FBP from extracellular glucose with rate vup, (ii) a lumped
lower glycolysis reaction that generates ATP and the waste product ethanol (EtOH) at rate vlo, (iii) ATPase
reaction reflecting general ATP demand in the cell at rate vatp, and (iv) reversible phosphate transport between
the cytosol and the vacuole at rate vp.

Model and methods
Model description

We model a population of yeast cells that metabolize glucose in a chemostat. To model glycolysis, we
employ a generalized core model3 comprising four reactions (Figure 1), with the addition of explicit
glucose dynamics and phosphate depletion from the yeast vacuole:

(i) Upper glycolysis is modeled to exhibit irreversible two-substrate Michaelis-Menten kinetics. Phos-
phofructokinase, an enzyme of upper glycolysis, is allosterically inhibited by ATP1,10,11, hence the
reaction rate of upper glycolysis vup contains an inhibition term with the inhibitor constant Ki,atp
for ATP:

vup =
vmax,up[Glc][ATP](

KM,glc + [Glc]
) (
KM,atp + [ATP]

(
1 + [ATP]

Ki,atp

)) , (1)

where vmax,up is maximal upper glycolysis rate, KM,glc and KM,atp are the Michaelis constants for
glucose and ATP, respectively (similar notations are used below for corresponding parameters in
other reactions).

(ii) Lower glycolysis is assumed to follow irreversible three-substrate Michaelis-Menten kinetics. Its rate,
vlo, is given by

vlo =
vmax,lo[FBP][ADP][Pi]

(KM,fbp + [FBP])(KM,adp + [ADP])(KM,p + [Pi])
, (2)

where [ADP] is found from a conserved quantity atot = [ATP] + [ADP].

(iii) ATP consumption by all kinds of cellular processes (ATP demand) is modeled by a general ATPase
reaction that follows first-order reaction kinetics with rate

vatp = katp[ATP] (3)

and reaction rate constant katp.

(iv) Phosphate is transported between the vacuole and the cytosol at rate

vp = kp([Pi]vac − [Pi]) , (4)

where [Pi] and [Pi]vac are the phosphate concentration in the cytosol and the vacuole, respectively.
When [Pi] < [Pi]vac, phosphate is transported from the vacuole into the cytosol (vp > 0), and in the
opposite direction when [Pi] > [Pi]vac (vp < 0). It has been observed that glycolytic intermediates
accumulate in cells that undergo imbalanced dynamics until all phosphate from the vacuole is
depleted3,4,9. We model the depletion of phosphate from the vacuole by assuming that [Pi]vac drops
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as the total concentration of phosphate imported into the cytosol [Ptot] = [Pi] + 2[FBP] + [ATP]
increases:

[Pi]vac =
[Pi]vac,max

1 +
(

[Ptot]
Kvac

)m , (5)

where [Pi]vac,max is the phosphate concentration in the vacuole when no phosphate in the cytosol is
present, Kvac is the total concentration of phosphate in the cytosol that reduces [Pi]vac to one half
of [Pi]vac,max, and m > 0 determines whether phosphate depletion sets in gradually (small m) or
suddenly (large m).

Metabolite concentrations in the cell are affected not only by glycolysis reactions, but also by dilution
due to the increase in volume V of a growing cell. The decrease in metabolite concentration c due to
dilution can be found from the conservation of the amount of metabolite cV in the cell as its volume
increases:

(cV )′ = c′V + cV ′ = 0 =⇒ c′ = −cV
′

V
, (6)

where the derivatives (denoted by the prime symbol) are with respect to time.
The dynamics of metabolites that participate in glycolysis reactions in a growing cell are thus governed

by the following ordinary differential equations:

[FBP]′ = vup − vlo − [FBP]V
′

V
,

[ATP]′ = −2vup + 4vlo − vatp − [ATP]V
′

V
,

[Pi]
′ = −2vlo + vatp − [Pi]

V ′

V
.

(7)

vmax,up, vmax,lo, katp and kp, the parameters of the metabolic pathway, reflect the expression levels of
respective enzymes and define the genotype of the model cell. Since we aim to study evolutionary adap-
tation of this metabolic network, we must next specify its connection to growth and survival, the two
key components of cellular fitness. In our model, glycolysis is coupled to fitness by the general ATPase
reaction. We assume that the flux through this reaction (vatp) is first allocated to cover cellular main-
tenance costs (vatp,c) and that any remaining flux (vatp,g) is invested in cell growth, i.e. the production
of new cell biomass, leading to an increase in cell volume V . The maintenance costs are further decom-
posed into vatp,e, the ATP demand required for expressing the glycolytic enzymes, which therefore may
vary between cell genotypes, and the ATP required by other transcription and general cell maintenance
processes (vatp,m), which is assumed to be equal between genotypes. Hence,

vatp = vatp,c + vatp,g = (vatp,e + vatp,m) + vatp,g . (8)

Because the cell maintenance flux vatp,c is an obligatory component of the energy budget, cells are
faced with an energy deficit when vatp < vatp,c (or, equivalently, when vatp,g < 0). This occurs at low
intracellular ATP concentration during periods of starvation or glycolytic imbalance. We assume that
cells can buffer short periods of negative energy balance by drawing on internal reserves, but that they
eventually die when starvation or imbalance persists. To model the deteriorating condition of a starving
cell, we introduce a variable H that reflects cell health. Cell health decreases when ATP production
falls short of meeting the energy demands for maintenance (i.e., when vatp,g < 0). A cell dies when H
decreases to Hmin = 0, but, if starvation ends before this point is reached, the cell can recover. In fact,
when vatp,g becomes positive after a period of starvation, it is first invested into replenishing the internal
reserves (modeled as an increase in H). When a cell is at its maximum health Hmax, and vatp,g > 0,
the cell will increase in volume. We assume that the amount of ATP needed to produce a unit of new
cell volume is constant and independent of cell volume or genotype. In other words, the increase in cell
volume is proportional to the total amount of ATP converted by the flux vatp,g in the cell,

V ′ ∝ vatp,gV =⇒ V ′

V
∝ vatp,g , (9)

i.e. the rate of increase in the fractional cell volume is proportional to vatp,g. This will yield an exponential
increase in cell volume at constant vatp,g, which is consistent with experimental measurements of yeast
cell growth12.

To find the proportionality constant, we assume that a cell with balanced glycolysis in an environment
with constant 2 mM glucose and the reference genotype reported by Heerden et al.3 (vr

max,up, vr
max,lo,
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kr
atp and kr

p) will double its volume in time τg. Since under these conditions the ATP demand of the
core glycolysis pathway is vb

atp, the expression cost of the reference genotype vr
atp,e is chosen to yield a

positive reference growth flux vb
atp,g = vb

atp − (vr
atp,e + vatp,m) (Table 1). The dynamics of cell growth in

our model is therefore
V ′

V
=
{
ug · vatp,g if H = Hmax and vatp,g > 0 ,
0 otherwise ,

(10)

where
ug = ln 2

τg · v
b
atp,g

.

Cell health dynamics is similarly scaled by assuming that a cell with the reference genotype in an
imbalanced state will die in time τd. Under these conditions, a cell has a small ATPase flux vi

atp and thus
a negative reference growth flux vi

atp,g = vi
atp − (vr

atp,e + vatp,m). Cell health dynamics is therefore

H ′ =


−ud · vatp,g if vatp,g ≤ 0 ,
ug · vatp,g if vatp,g > 0 and H < Hmax ,

0 if vatp,g > 0 and H = Hmax ,

(11)

where
ud = 1

τd · v
i
atp,g

.

Given that parameters vmax,up, vmax,lo, katp and kp, which constitute the genotype of the cell, are
proportional to the expression levels of glycolytic enzymes, we utilize these parameters to quantify the
cost of expression, vatp,e. Because the expression costs of enzymes is difficult to estimate or measure
experimentally13, we chose to investigate two cost functions,

vatp,e = ke
[(
wupvmax,up

)n +
(
wlovmax,lo

)n +
(
watpcukatp

)n +
(
wpcukp

)n]
, (12)

vatp,e = ke
[(
wupvmax,up + wlovmax,lo + watpcukatp + wpcukp

)n]
, (13)

where cu = 1 mM is the unit concentration, introduced for dimensional consistency, wup, wlo, watp,
wp are weights of respective parameters on the total cost and ke is a normalizing factor that assigns
expression cost vr

atp,e to the reference genotype. Unless indicated otherwise, Equation 12 is used with
wup = wlo = watp = wp = 1 and n = 4, and Equation 13 is referred to as the alternative cost function. The
rationale to consider similar weights for multi-step, multi-enzyme pathways of UG and LG, and single-
protein ATP demand and phosphate transport reactions stems from the fact that a multi-step pathway can
be sped up by increasing the rate of one rate-limiting reaction (e.g., hexokinase or phosphofructokinase in
UG, or pyruvate kinase in LG1,14). The nonlinearity in the cost function ensures that glucose flux through
the pathway, and therefore ATP production, cannot be increased infinitely by the cell by increasing the
total level of glycolytic enzyme expression.

Once the cell volume has increased to twice the standard cell volume Vc, the cell divides. To prevent
clonal subpopulations from dividing or dying synchronously, we introduce individual variability in the
initial cell volume and the parameterHmax . At the beginning of a simulation and after a cell division, each
new (daughter) cell is assigned an individual uniformly distributed random value Hmax ∼ U(0.9, 1.1); a
new (daughter) cell always starts with H = Hmax. Similarly, each new cell at the beginning of a simulation
starts with initial uniformly distributed V ∼ U(0.5Vc, 1.5Vc), whereas after cell division, only one of the
daughter cells is assigned such a random volume, while the other daughter cell is left with the volume
complementary to 2Vc, i.e., the volume of the parent cell is divided between the two daughter cells.
Daughter cells may be exposed to mutations of the genotype, which implies changing expression levels of
corresponding glycolytic enzymes. Upon cell division, each parameter in the genotype of a daughter cell
is modified with probability µ, or otherwise inherited from the mother cell. The modified value is drawn
from a log-normal distribution

xm = xpe
X , (14)

where xp is the parental value, xm is the mutated value in the daughter genotype and X ∼ N(0, σ2) is a
normally distributed random number with zero mean and standard deviation σ.

The final component of the model concerns the interaction between cells and the environment. A
straightforward approach is to assume that the population of cells take up glucose, grow and divide in
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a chemostat chamber15. The glucose concentration in the chamber then changes due to uptake by cells,
inflow and outflow of the medium, such that

[Glc]′ = −
∑

i

vup,i

Vi

Vch
+D[Glc]0 −D[Glc] , (15)

where the sum is over all cells in the population, vup,i is the upper glycolysis rate of cell i, Vi is the
volume of cell i, Vch is volume of the chemostat chamber, [Glc]0 is the glucose concentration in the inflow
medium and D is the dilution rate of the chemostat which is equal to F/Vch, where F is the medium flow
rate. Cells are washed out from the chamber at a rate N ′out proportional to cell population size N ,

N ′out = DN . (16)

A chemostat is suitable to study a population of cells that compete for nutrient, because cells take
up the nutrient and thus affect its concentration in the growth chamber. A mathematical analysis of the
chemostat model shows that the nutrient concentration and the population size at steady-state depend
on the maximum reproduction rate of cells15. Cells that reproduce faster, take up the nutrient faster, and
thus, at steady-state, have a larger population size and leave less nutrient in the growth chamber. As nu-
trient uptake and reproduction rates of cells are evolving during evolutionary simulations, the steady-state
nutrient concentration will also shift, making it difficult to determine the optimal evolutionary response
of the metabolic network to a particular glucose availability regime. Therefore, we also considered an
alternative model, where cell density is assumed to be so low that the consumption of glucose by cells has
no noticeable effect on the glucose concentration in the chamber. In this version of the model, cells do not
compete for glucose, but are limited by another resource, e.g., space in a biofilm that is attached to the
wall of the chamber16. We refer to such conditions as the NCG (No Competition for Glucose) scenario.
The NCG conditions can arise as a limiting case of the chemostat model where cells are attached to the
substratum in a large chamber with a high flow rate, i.e. where Vch →∞ and F →∞, while D = F/Vch
remains finite. The glucose uptake term in Equation 15 then vanishes and cells no longer affect glucose
concentration in the chamber, i.e. [Glc] = [Glc]0. However, glucose concentration in the chamber is still
affected by the medium inflow and outflow, allowing us to impose a particular glucose dynamics regime
by adjusting D and [Glc]0. In this alternative model, cell loss rate from the attached biofilm in the
chamber is

N ′out = dN2 , (17)
where d is the removal rate constant.

Simulation procedure

The system of differential equations defined by Equations 7, 10 and 11 for each cell, and by Equation 15
for the glucose dynamics in the chemostat chamber, is solved in intervals of ∆tp to obtain [FBP], [ATP],
[Pi], V and H dynamics for each cell and [Glc] dynamics in the chemostat chamber. Integration was
carried out with the Dormand-Prince fifth-order Runge-Kutta method17 modified with non-negativity
constraint for metabolite concentrations, i.e., if at the end of the integration step metabolite concentration
c satisfied −(atolc + |c|rtolc) < c < 0, it was projected to zero. If after this any other c < 0 remained,
the integration step was rejected and retried with a smaller step size. Between the integration intervals
∆tp, new cells are added to the population due to cell division, and cells are removed due to cell death
and outflow from the chemostat.

A simulation is started with a population of N0 cells. To ensure that initial cell genotypes are
sufficiently fit to survive and reproduce in a given glucose regime, initial values of the evolving parameters
of each cell are drawn from a uniform distribution U(0.1P, 10P ), where P is vr

max,up, vr
max,lo, kr

atp or kr
p

respectively.
Simulation time was divided into three segments: (i) from simulation start time ts to mutation start

time tms the mutation process was disabled, allowing the establishment of a viable steady-state population
from the genetic variation created at the start of the run; this was necessary because many initial random
genotypes were not viable under a given glucose availability regime; (ii) from tms to mutation end time
tme cells were exposed to mutations enabling a gradual evolution of the metabolic network, (iii) from tme
to simulation end time te the mutation process was disabled once again to allow only the fittest genotypes
to remain in the population. As the speed of evolution is expected to depend on the population size, we
sought to normalize the equilibrium population size at the beginning of segment (ii) to be approximately
N∗ across all simulations. To achieve that, we first performed a pre-simulation without mutation of
the same duration as segment (i) with provisional values that regulate population size, i.e. Vch,0 for the
standard chemostat model or d0 for the NCG scenario. After determining the steady-state size population
size Np, full simulations with adjusted parameters Vch = Vch,0

N
∗

Np
or d = d0

Np
N

∗ were run.
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Data analysis

Throughout the simulation, we tracked and saved the metabolite, volume and health dynamics of a
random subpopulation of Ntr cells at time intervals of ∆ts. From this data, we find the fractional
volume increase rate of tracked cells, V ′/V , which is equivalent to cell reproduction rate r in population
dynamics models. We also define an indicator to quantify the balancedness of the dynamics of the
model core glycolysis pathway in a fluctuating environment. In a balanced cell, high external glucose
coincides with high intracellular ATP, whereas in an imbalanced cell, high external glucose coincides with
low intracellular ATP. The phenotypic balancedness of a cell, Bp,cov is therefore defined as covariance
between the external glucose concentration and intracellular ATP concentration during an integral number
of cycles in a periodic environment

Bp,cov = cov([Glc], [ATP]) . (18)

Bp,cov will have positive values if the dynamics of glycolysis is balanced and negative values if it is
imbalanced. This measure is appropriate if glucose and ATP values oscillate regularly around their
means; it is more difficult to interpret when the dynamics is irregular, as in the case of catastrophic
dynamics (see Section Evolution of increased imbalancedness... below).

Under the NCG scenario studied here, the external glucose concentration in the chamber changes
abruptly between a high value during the ON phase and a low value during the OFF phase because of
a high D value. Therefore, a simpler and more easily interpretable measure of phenotypic balancedness,
Bp,phs, can be used by comparing the average ATP concentrations in the cell during ON and OFF phases:

Bp,phs = [ATP]on − [ATP]off . (19)

Also here, positive values indicate balanced dynamics (more ATP is produced and a cell grows faster
during the ON phase), whereas negative values indicate imbalanced dynamics (more ATP is produced
and a cell grows faster during the OFF phase).

Balanced and imbalanced glycolysis can exist as alternative steady-states for the same genotype.
Therefore, we define the balancedness of a genotype (Bg) as its propensity to exhibit balanced dynamics.
Genotypic balancedness is determined by the following procedure, in part similar to the one described by
van Heerden at al.3 For each genotype, we generate 100 random initial metabolite concentrations, apply a
particular glucose concentration and simulate the metabolite dynamics for 300 min. The initial metabo-
lite concentrations are normally distributed with either realistic constant means for all cells, [FBP]0 ,
[ATP]0 , [Pi]0 (Bg,1) or, in case of constant external glucose in NCG scenario, also the actual metabolite
concentrations in evolved cells (Bg,2), and realistic variation, CV = 6 %. We repeat the procedure for a
range of glucose values, 2.00 mM, 1.95 mM, . . . , 0.05 mM. Bg is then the largest concentration of glucose
that results in a balanced metabolism for all 100 random initial metabolite concentrations, or 0 mM oth-
erwise. Thus, higher Bg indicates a more balanced genotype. To determine whether the metabolism is
balanced or not in each of these simulations, we apply the following criterion. In a balanced phenotype
under constant [Glc], [FBP] reaches a steady-state value. Equation 7 shows that at this steady-state

vup = vlo + [FBP]V
′

V
. (20)

Taking into account that the cell needs time to reach metabolic steady state, the phenotype is considered
balanced if Equation 20 holds true within 0.1% relative error for more than 10% of the simulation time.

Table 1. Parameter values used in the simulations.

Parameter Value Notes

Extended core glycolysis model

v
r
max,up 10 mM ·min−1 Ref. 3

KM,glc 0.1 mM Chosen to be approximately equal
to KM,glc of hexokinase11

KM,atp 0.1 mM Ref. 3

Ki,atp 3 mM Ref. 3

atot 5 mM Ref. 3

v
r
max,lo 10 mM ·min−1 Ref. 3

KM,fbp 1 mM Ref. 3
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Parameter Value Notes

KM,adp 0.1 mM Ref. 3

KM,p 2 mM Ref. 3

k
r
atp 10 min−1 Ref. 3

k
r
p 0.3 min−1 Ref. 3

[Pi]vac,max 10 mM Ref. 3

Kvac 250 mM

m 4

[FBP]0 2 mM Ref. 3

[ATP]0 1 mM Ref. 3

[Pi]0
10.4 mM Ref. 3, used in all simulations

except to determine Bg

10 mM Value used to determine Bg

Cell

σ 0.1

µ 10−2

Vc 3.35 fL
Cytosol volume of a spherical cell

of diameter 2 µm with 20% volume
of organelles18

τg 90 min Ref. 19

τd 420 min Estimated from Ref. 3

v
b
atp 12.7 mM ·min−1 Estimated from Ref. 3

v
i
atp 0.46 mM ·min−1 Estimated from Ref. 3

v
r
atp,e 5 mM ·min−1

vatp,m 0 mM ·min−1

Simulation

N0

50 000 Chemostat
10 000 NCG scenario
12 000 Two-genotype coexistence

N
∗ 10 000

Ntr 100

Vch,0 10 nL

d0 1× 10−6 min−1

D 5 min−1 NCG scenario

ts 0 min

tms 10 000 min

tme 500 000 min

te 800 000 min

∆tp 5 min

∆ts 1 min

ODE solver

atolc 1× 10−5 mM Absolute tolerance for metabolite
concentration

rtolc 10−5 Relative tolerance for metabolite
concentration

atolv 0.01 fL Absolute tolerance for cell volume
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Parameter Value Notes
rtolv 0 Relative tolerance for cell volume

atolh 10−2 Absolute tolerance for cell health

rtolh 0 Relative tolerance for cell health

Table 2. Genotypes used in no-mutation coexistence simulations. Also indicated are the expression costs of the
genotypes.

BC IC

vmax,up 9.909 555 300 918 92 mM ·min−1 10.922 112 309 525 593 mM ·min−1

vmax,lo 6.973 883 285 185 177 mM ·min−1 5.651 433 873 885 383 mM ·min−1

katp 6.141 047 310 170 09 min−1 4.820 030 108 655 457 min−1

kp 1.273 568 969 078 258 1 min−1 2.070 991 048 312 316 6 min−1

vatp,e 2.24 mM ·min−1 2.63 mM ·min−1

Results
We first investigate the evolution of the core glycolysis pathway in an environment with a constant
concentration of glucose (NCG scenario, see Model and methods). In each of these simulations, the
pathway evolves to optimize its performance in the particular glucose availability regime that is imposed
externally. Next, we consider the evolution of the pathway in populations subject to competition for
glucose in a chemostat, where adaptation of the pathway alters the ecological conditions experienced by
the population. Due to this eco-evolutionary feedback, no single strategy may be optimal in a given
environment, creating the possibility of more complex eco-evolutionary dynamics.

Pathway adapted to scarce glucose exhibits imbalanced dynamics under ample
glucose
Under NCG conditions, the core glycolysis pathway adapts to different constant levels of glucose avail-
ability by optimizing the expression levels of glycolytic enzymes (Figure 2A). The evolved expression
pattern optimizes the balance between three selective forces. One component of selection favors an in-
crease in vmax,up, vmax,lo and katp, because the increasing flux of glucose through the pathway enhances
ATP production and cell growth rate. Next, there is a pressure to lower the genotype parameter values
vmax,up, vmax,lo and katp in order to reduce the cost of expression of the corresponding glycolytic enzymes.
Finally, selection acts against vmax,up becoming too large compared to vmax,lo to avoid the loss of fitness
due to cells falling into the imbalanced state.

When comparing optimal expression patterns between environments, we observe that pathways evolve
to increase the difference vmax,up − vmax,lo as glucose concentration decreases (Figure 2A). Because the
risk for a cell to become imbalanced is low at low glucose concentration, and the costs of UG and LG
are comparable (wup = wlo = 1), cells evolve higher vmax,up at the expense of vmax,lo to increase glucose
uptake and thus gain a competitive advantage. As a consequence, these cells become more vulnerable to
imbalanced dynamics at high glucose concentration (Figure 2A, Bg,1 and Bg,2). Throughout, we observe
low values of kp and a relatively high level of variation in this parameter, indicating that kp is under
weak selection. Since cells at constant glucose must show a balanced phenotype to survive, and phosphate
transport is of little importance for balanced cells, kp likely evolves to low values solely in response to
weak selection for a reduction in the cost of enzyme expression.

Results are qualitatively similar when the cost of LG is much larger than that of UG (wup = 0.1,
wlo = 1). In this case, high expression of UG enzymes can evolve to enhance glucose uptake at low
glucose without major costs to the cell, while the expression of LG enzymes cannot be increased to the
same level without the cell incurring prohibitive costs. By contrast, when the cost of LG is much lower
than that of UG (wup = 1, wlo = 0.1), LG evolves high expression levels matched with the rate of UG,
so that the evolved cells are balanced under any glucose concentration (Figure S2).
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Figure 2. Optimization of the core glycolysis pathway in the absence of competition for glucose under NCG
conditions with (A) a constant glucose supply concentration [Glc]0, or (B) an alternating glucose availability
consisting of ON ([Glc]0 = 2 mM) and OFF ([Glc]0 = 0.01 mM) phases of equal duration with period T = Ton+Toff .
Each dot represents the average of an evolving genotype parameter (vmax,up, vmax,lo, katp and kp) or a measure of
balancedness at the end of an evolutionary simulation (te). Genotype parameter averages were computed over the
entire population of cells; balancedness values Bg,1, Bg,2 were averaged over a randomly selected subpopulation
of cells that were tracked individually, and Bp,phs was calculated for the subset of tracked cells that survived
through at least one ON and one OFF phase. Results of 5 replicate simulations are shown for each of the studied
[Glc] and T value.
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Imbalanced dynamics shows fitness advantage over balanced dynamics at quickly
varying glucose
Next, we studied the adaptation of the pathway to a fluctuating NCG environment with alternating
[Glc]0 = 2 mM ON and [Glc]0 = 0.01 mM OFF phases of equal duration. Interestingly, cells of various
balancedness coexisted in the population to form a continuum of strategies of similar fitness, from strongly
balanced to strongly imbalanced (Figure 3 and Figure 4 at time tme, and Videos S1-S3). The two extremes
of this balancedness continuum illustrates two radically different strategies of survival under varying
glucose: upon sudden glucose availability during the ON phase, balanced cells (BCs) immediately start
maintaining high ATP levels and grow, and continue to do so until the ON phase is over (Figure 3A),
whereas imbalanced, ”greedy” cells (ICs) do not immediately elevate ATP level, but channel all produced
ATP to accumulate FBP as intracellular storage that is used up during the OFF phase to maintain a
high level of ATP needed for growth (Figure 3C). The polymorphism in the population was only observed
during the mutation-on segment of the simulation (i.e. between times tms and tme), indicating that it
was caused by mutation-selection balance, a dynamic steady-state in which inferior mutants are created
at the same rate as they are purged from the population by selection20. After mutations were stopped,
only one strategy with the highest fitness survived at the final time point (Figure 4, time te).

The optimal strategy depended on the glucose pulse period T : ICs survived at quickly varying glucose
(Figure 4, T = 40 min and Video S1), whereas BCs were favored when the period of the environmental
fluctuations was long (Figure 4, T = 200 min and Video S3). Periods of intermediate lengths resulted
in strategies that were neither strongly balanced nor imbalanced (Figure 4, T = 120 min, Figure 3B
and Video S2). This dependency is reflected in the evolved genotypes: the difference vmax,up − vmax,lo
is large for short T , and small for long T , a feature of imbalanced and balanced genotypes respectively
(Figure 2B). Evolved kp values have smaller variation than at constant glucose and are largest at T values
with the most strongly imbalanced cells (Figure 2B). This is consistent with a selective pressure to keep
phosphate transport at an optimal level, because it plays a crucial role for FBP accumulation in ICs.

Why does the optimal strategy in a periodically fluctuating environment depend on the cycle length T?
With fluctuating glucose availability, ICs would be expected to have higher fitness than BCs irrespective
of T , because they could sustain larger vmax,up at the expense of vmax,lo, and thus would be able to
take up glucose faster than BCs. Consistent with this idea, ICs that evolved at small T indeed take up
glucose faster than BCs that evolved at long T , and therefore have higher vatp flux (Figure S4). One
obvious candidate mechanism that may explain the success of BCs at large T is phosphate depletion:
when the glucose pulse period is long, FBP accumulates to high concentrations in the cytosol, depleting
phosphate reserves from the vacuole. As a result, subsequent accumulation of FBP during the ON phase
becomes less efficient, limiting the potential of growth of ICs. FBP accumulation does indeed slow down
with increasing FBP in the cytosol (see e.g. Figure 7C), but further analysis shows that this effect
is not solely responsible for the fact that BCs outcompete ICs in slowly fluctuating environments. In
particular, if we allow the network to evolve without phosphate depletion in the vacuole (Kvac →∞), we
still observe the evolution of BCs in slowly varying environments. The effect also remains if we reduce
the cost of phosphate transport by an order of magnitude (wp = 0.1), if cell health does not deteriorate
(td → ∞) or if a different expression cost function is used (Equation 13). Instead, the observed robust
advantage of BCs at large T derives from a difference in the timing of cell growth between BCs and
ICs, allowing BCs to process more glucose during the cycle even with smaller glucose flux through the
UG reaction (amount of glucose per time per volume). This asymmetry arises because the total amount
of glucose converted by a cell, and therefore its fitness, is proportional to cell volume; larger cells can
process more glucose per unit time. Since BCs take up glucose during the ON phase while simultaneously
increasing in volume, the amount of glucose a cell can convert per unit time also increases as the ON
phase progresses. Conversely, ICs take up glucose during the ON phase at constant volume; as a result,
the amount of glucose a cell converts per unit time remains constant with increasing length of the ON
phase. As a result, BCs ultimately do better when the period of the environmental fluctuations is large
(Supplementary Text). This effect can be seen in Figure 4, where at T = 40 min, growth rate of ICs is
higher than that of BCs, but the situation is opposite at T = 200 min.

Interestingly, cell balancedness also slightly increases in rapidly fluctuating environment (very small
T , Figure 2B). This suggests that another selective pressure on ICs plays a role: although increase in
vmax,up at the expense of vmax,lo will enhance glucose uptake rate and give a competitive advantage to
cells, vmax,lo still has to be fast enough for all FBP accumulated during the ON phase to be fully used
up during the OFF phase. This challenge becomes more difficult as T becomes smaller. Indeed, the T
value below which cell balancedness slightly increases (≈ 60 min) corresponds to the point where the FBP
usage time during the OFF phase approaches the length of the OFF phase (Figure S4).

One potential complication in interpreting our results is possible phenotype switching in cells with
similar genotypes. In the absence of mutation, cell division does not perturb metabolite equilibria in
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Figure 3. Metabolite and growth dynamics of individual cells under NCG conditions with an alternating high
and low supply of glucose. Dynamics of (A) a balanced cell, Bp,phs = 1.45 mM, (B) a cell that is neither strongly
balanced nor strongly imbalanced, Bp,phs = −0.03 mM, and (C) an imbalanced cell, Bp,phs = −2.13 mM. Regions
with white and gray background indicate alternating glucose supply ON phase ([Glc]0 = 2 mM) and OFF phase
([Glc]0 = 0.01 mM), respectively. In the vup, vlo plot, vup is shown in blue and vlo in orange. Time is shown
relative to the beginning of a ON-OFF cycle. Note the different scales of FBP dynamics in (A), (B) and (C). In
(A), a sudden drop in V/Vc indicates a cell division.

daughter cells (Equation 7). However, a mutation upon cell division can trigger the switch of metabolic
balancedness to a different state in the daughter cell, even though its genotypic balancedness is similar to
that of the parent cell. To check for this problem, we compared the phenotypic and genotypic balancedness
in our simulations and found that Bg,1 and Bp,phs are well correlated (Figure 2B). This indicates that
phenotype is largely determined by the genotype in the range of studied T values and that phenotypic
variation of cells with similar genotypes is minimal.

Competition for glucose can give rise to stable coexistence of balanced and
imbalanced cells
After characterizing the optimization of the glycolytic pathway in response to different externally imposed
glucose availability regimes (NCG conditions), we next considered the evolution of the reaction rates
under chemostat conditions where cells compete for glucose and its availability changes in response to
the evolving utilization strategy of the population. As a result of this feedback between evolutionary and
ecological factors, selection may no longer lead to a single optimal genotype21.

The simulated input into the chemostat was a pulse train of glucose, consisting of a short Ton = 1 min
ON phase of [Glc0] = 300 mM that resulted in a sharp increase in glucose in the chamber up to a few mM,
followed by a longer OFF phase (either of constant or variable length) with a minimal glucose supply
[Glc0] = 0.01 mM, during which the glucose concentration in the chamber decreased due to outflow
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Figure 4. Average reproduction rate r of tracked cells during an environmental cycle (ON and OFF phase),
plotted against their phenotypic balancedness Bp,phs at different times (tms, tme and te, columns) in the NCG
scenario with alternating glucose supply for different glucose pulse period T (rows). Points right of vertical dashed
line (Bp,phs > 0) indicate balanced cells, whereas points left of the line (Bp,phs < 0) indicate imbalanced cells.
The mutation-on segment of the simulation starts at time tms with surviving genotypes sampled from random
standing genetic variation introduced at the beginning of the simulation. Mutations with small phenotypic effects
then allow for a gradual evolution of the reaction rates between times tms and tme. Mutation is switched off again
during the final segment of the simulation (between tme and te) so as to allow suboptimal genotypes to be purged
from the population. Points with higher r values reflect higher cell growth rates; cells with the highest r values at
time tms are the ones to survive at the end of the simulation (time te). Therefore, r appears to be a good proxy
for cell fitness (i.e., reproduction rate r minus death/removal rate), indicating that cells of different strategies do
not differ markedly in removal and death rate. Videos S1-S3 show the dynamics of these plots during the whole
length of simulation.
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and uptake by cells. As in our earlier simulations, we observed that short and long periods of the
environmental fluctuation favored ICs and BCs respectively (Figures S5 and S7). However, intermediate
values of the environmental period T and dilution rate D often resulted in stable coexistence of BCs and
ICs in the population (Figure 5 and Figures S6 and S8). Contrary to what was observed in the NCG
simulations, the dimorphism in the chemostat conditions did not rely on a continuous generation of new
mutants, i.e., was stable at the end of the mutation-off segment of the simulation, indicating that it was
not supported merely by mutation-selection balance. Instead, polymorphism was maintained by negative
frequency-dependent selection, whereby two strategies can stably coexist if the fitness of each is greater
when rare, a phenomenon known as protected polymorphism20.

Negative frequency dependence occurs when each strategy competes more strongly with cells of the
same type than with the ones utilizing the other strategy. To demonstrate that this phenomenon is
responsible for the observed coexistence, we randomly picked two genotypes from BC and IC subpopula-
tions at the end of the simulation (shown in Figure 5, time te, Table 2), constructed mixed populations
with a range of initial fractions of BCs, fb, and ICs, 1 − fb, and then simulated their joint population
dynamics in the absence of mutation. For all initial fb values, populations restored the same equilibrium
frequency of BCs (Figure 6A), except in a few cases where a high fraction of ICs (low fb) caused catas-
trophic dynamics and ICs were wiped out, seen as a sudden jump in fb value to 1 (see Section Evolution
of increased imbalancedness... below). Consistent with this evidence, the reproduction rates of ICs and
BCs were observed to decrease as their fractions in the population increased (Figure 6B). Reproduction
rate is a good proxy for cell fitness in our simulations, because cells rarely die and are removed from
the chemostat only by outflow with constant removal rate per cell D that is independent of cell strategy
(Equation 16).

Frequency dependence in the chemostat arises because a population dominated by BCs (BCP) affects
the profile of glucose concentration dynamics in the chemostat chamber in a different way than a popula-
tion dominated by ICs (ICP) (Figure 6D(i)). As a result, glucose uptake, ATP production and the growth
dynamics of the two types of cells are differentially affected in the two types of populations, such that each
strategy enjoys an advantage of being rare (Figure 6D(ii) and (iii)). The fitness advantage of rarity can be
quantified by comparing glucose consumption over an environmental cycle by a cell of a particular type
when it is rare in the population relative to when it is dominant. This difference in glucose consumption,
∆[Glc], is proportional to the differential ATP production by the strategy and thus translates directly
into a difference in reproduction rate and fitness. In Figure 6E, we show ∆[Glc] over four phases of the
environmental cycle that differ in the availability of glucose between BCPs and ICPs. We observe that
whenever one of the two cell types profits from being rare, the other suffers a disadvantage of rarity, and
thus, overall, BCs are the superior competitor during the P3 interval of the environmental cycle, whereas
ICs are the superior competitor during intervals P1, P2 and P4. The positive fitness effects of rarity, how-
ever, outweigh the negative effects for both cell types when averaged over the entire environmental cycle,
creating the necessary conditions for stable coexistence by negative frequency dependence. It should be
noted that the glucose consumption differentials and the resulting frequency-dependent fitness effects are
rather subtle for each of the two cell types, ≈ 3 %. However, fitness differentials of such magnitude can
have substantial effects over evolutionary time. For example, a strategy with a competitive advantage
of 3 % is expected to spread to fixation on a time scale of 4/(3 %) ≈ 133 generations. This estimate
corresponds well with the time scale for convergence to equilibrium in Figure 6A: for a reproduction rate
observed in the simulations (Figure 4), 133 generations/4.5× 10−3 generations ·min−1 ≈ 0.3× 105 min.

In the remaining part of this section, we provide a detailed account of the mechanisms responsible
for generating negative frequency dependence, intended for interested specialist readers. Others may
skip this text and proceed to the next section. At the root of the observed frequency dependence is a
feature of the core glycolysis pathway whereby the rate of UG is inhibited by high concentrations of ATP,
so that vup reaches a maximum value at an intermediate ATP concentration (Equation 1, Figure 6C).
As a result, cells face a trade-off between high ATP concentration, and thus high growth rate, and fast
glucose uptake. Further, it should be noted that because ICs evolved a higher expression level of UG
enzymes than BCs in our simulations (Table 2, also see Figure S4), the UG rate of the IC lies above
that of the BC for all ATP concentrations (Figure 6C). An additional difference between the cell types
reveals itself when we compare the actual ATP concentrations that occur in BCs and ICs during an
environmental cycle (blue and orange histograms; Figure 6C): where BCs operate under a regime of
intermediate ATP concentrations that appears to reflect a compromise between maintaining high ATP
and achieving a high rate of UG, ICs can be clearly seen to switch between two different modes of
operation, one maximizing vup, the other yielding a high ATP concentration. The first mode, which
is characteristic of the imbalanced state, gives an extra boost to the competitive advantage of ICs at
the start of the environmental cycle, when glucose is available at high concentration. However, when
glucose becomes scarce at the gradual onset of starvation, ICs switch to their second mode of operation,
producing high intracellular ATP concentrations from accumulated FBP. As a result, the flux through
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Figure 5. Evolution of a dimorphic population. Each dot represents the reproduction rate r of a tracked cell
averaged over an environmental cycle plotted against its phenotypic balancedness Bp,cov. Data are shown for
three time points during a simulation in a chemostat with a variable OFF phase, T = 100 min, Ton = 1 min,
T off = 99 min, CV(Toff) = 5 %, and D = 4× 10−3 min−1. The initial balanced population (left, time tms)
accumulates variation created by mutation (middle, time tme). At the end of the simulation (te), subpopulations
of BCs and ICs coexist at a stable equilibrium frequency. Videos S4 shows the dynamics of this plot during the
whole length of simulation.

upper glycolysis shuts down abruptly in ICs, leaving most of the remaining glucose to be consumed by
BCs. Since the two types of cell are more efficient in glucose uptake at different times, each type will
compete more with the same than with another type, which leads to negative frequency dependence of
fitness.

Figure 6D explains how this phenomenon in turn leads to the advantage of rarity for ICs and BCs
during intervals P2 and P3 respectively. Let us first focus on why ICs (orange lines in D(ii) and (iii)) do
relatively better in a BCP (dashed orange) than in a population dominated by their own type (ICP; solid
orange) during interval P2. It should be first noted that glucose dynamics in the chemostat chamber is
determined by the glucose uptake rate of the dominant cell type, as well as the size of its population. Since
ICs during interval P2 are in the low ATP, efficient glucose uptake mode, BCP consumes the available
glucose somewhat slower than ICP in the first half of P2 (Figure 6D(i), P2), allowing ICs to maintain
the imbalanced metabolic state for a slightly longer period of time (≈ 5 min, Figure 6D(ii), dotted lines).
As a result, the decrease of vup at the onset of starvation is delayed (Figure 6D(ii)), and low ATP
concentration (characteristic of metabolic imbalance) persists for a longer period of time, so that the cell
can accumulate more FBP and ultimately produce more ATP during the OFF phase (Figure 6D(iii)).
(Note that glucose consumption of ICP ultimately slows down in the second half of P2, because it also
depends on the ICP size, which decreases during P2, as ICs do not divide and are only removed from
the population by outflow (Figure 6D(i), orange dotted line); glucose concentration therefore equalizes
between BCP and ICP at the end of P2). After the switch of ICs to high ATP, slow glucose uptake
mode (interval P3) as glucose concentration decreases, BCs become more efficient in glucose uptake, and
therefore BCP reduces the glucose concentration faster than ICP. As a result, BCs (blue lines in D(ii)
and (iii)) do better when they are rare in a population dominated by ICs (dashed lines), as the remaining
glucose is only very slowly consumed by ICs, but mostly is taken up by BCs. By contrast, in a BCP
(solid lines), BCs compete for glucose with other cells of the same type right until little glucose is left.

The advantage of rarity of ICs during intervals P1 and P4 manifests itself through a different mecha-
nism. At the end of the cycle (during P4), glucose concentration in the environment is very low, and ICs
have already used up all their FBP. As a result, ATP concentration in both cell types is very low. Because
ICs in this state take up the remaining scraps of glucose a little faster than BCs (vup is higher for ICs
close to the point [ATP] = 0, Figure 6D), ICs in BCP enjoy a slightly larger glucose concentration, and
therefore a slightly larger ATP concentration, leading to the advantage of rarity. Due to the autocatalytic
nature of the glycolytic pathway (i.e., the pathway needs ATP investment to generate more ATP), this
will allow ICs in BCP to restart glucose uptake slightly faster upon glucose availability at the beginning
of the next cycle (P1), giving them a fitness advantage.

Evolution of increased imbalancedness renders populations vulnerable to catas-
trophic collapse
In the intermediate range of studied D and T values where the fittest strategy transitions from balanced
to imbalanced (Figures S5 to S8), populations were often observed to exhibit catastrophic events whereby
population size collapsed and then recovered (Figure 7A and B, also Figure 6A). Interestingly, during
a catastrophe, the fraction of ICs in the population drops and BCs become dominant, but in between
two adjacent catastrophic events the fraction of ICs increases as they are more competitive than BCs
(Figure 7B and Figure S11). These eco-evolutionary cycles result from a vulnerability of ICPs: stochastic
decrease in the population size can temporarily elevate the concentration of glucose in the chemostat (see
Model and methods), forcing ICs to spend more time in the imbalanced state accumulating FBP and less
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Figure 6. Negative frequency-dependence maintaining coexistence between BCs and ICs. (A) The joint popula-
tion dynamics of two genotypes (Table 2), picked from the BC and IC subpopulations of the dimorphic population
shown in Figure 5, was simulated under chemostat conditions as in Figure 5, but without mutation. Trajectories
show the fraction of BCs (fb) in the population over time, for multiple different initial values of fb, indicated by
color. In B, C, D(ii), D(iii) and E, data for BCs and ICs are shown in blue and orange, respectively. (B) Re-
production rate of BCs and ICs as a function of their fractions in the population. Error bars indicate confidence
intervals (α = 0.05) of the mean of reproduction rate estimates across simulation replicas. (C) Rate of UG, vup
(lines, left axis), as a function of intracellular ATP concentration (Equation 1) for BCs and ICs at [Glc] = 2 mM.
Histograms (right axis) show the relative frequency distribution of intracellular [ATP] values in BCs and ICs
during an environmental cycle (shown in D(iii)). (D) Average glucose, vup and ATP dynamics during an en-
vironmental cycle (horizontal axis measures the time since the start of the glucose pulse) for a cell in a BCP
(fb = 0.99) or ICP (fb = 0.01). (i) Average glucose concentration profile (left axis) during an environmental cycle
in a BCP (solid line) and an ICP (dashed line). Gray background indicates phases P1-P4 during which the glucose
concentration in BCP and ICP differ significantly (α = 0.05, Bonferroni adjusted). Blue and orange dotted lines
indicate average population sizes of BCP and ICP respectively (right axis). Due to the difference in the timing of
reproduction of BCs and ICs, BCP and ICP show different size dynamics: BCP increases in size during the first
half of the cycle, when BCs reproduce, and decreases in size when reproduction stops and cells are only removed
from the chemostat by the outflow. Conversely, ICP increases in size in the second half of the cycle, when ICs
reproduce. (ii) Average vup and (iii) ATP dynamics during an environmental cycle, when the focal cell type is the
dominant type (solid line) or the rare type (dashed line) in the population. Because the expression cost of an IC
is higher than that of a BC (Table 2), an IC has to take up more glucose than a BC to maintain the same growth
rate (i.e. the area under vup curve of an IC is larger than that of a BC). Blue (resp., orange) background indicates
phases where the averages shown by blue (resp., orange) curves differ significantly; gray background highlights
phases where both differ within each pair. Dotted lines in (ii) indicate time points when vup of BCs and ICs in
the population (when they one of them is dominant or rare) becomes equal as glucose is taken up. (E) Advantage
of rarity measured as the differential glucose uptake per unit cell volume, ∆[Glc], compared between populations
where the focal cell type is rare versus dominant. Data are shown integrated over the entire environmental cycle
(Tot), as well as separately for the phases P1-P4 (here, these include both shaded areas in D(i) and half of the
adjacent white space between them). Due to demographic stochasticity, estimates in (B) and (D) were obtained
by averaging over many environmental cycles after [Glc] in the chemostat had reached equilibrium and where fb
has not deviated markedly from the considered value.
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time processing FBP to maintain high ATP needed for reproduction. As a result, FBP increasingly accu-
mulates in ICs over many environmental cycles because it cannot be fully processed, and the reproduction
rate of ICs decreases (Figure 7B), leading to a further decrease in the population size and elevation of the
glucose level. In ICPs with strongly ICs that are particularly prone to accumulate more FBP than they
can handle, this positive feedback can easily escalate into a catastrophic collapse of the population, where
most of the ICs are lost. When such a catastrophe occurs, the population can survive if it still contains
a small subpopulation of BCs that survived the competition with ICs. BCs profit from the increased
glucose concentration by reproducing faster, causing the population size and the glucose concentration
to be restored to their normal levels. The surviving population is dominated by BCs, which, however,
create ideal conditions for more competitive imbalanced strategies to evolve. ICs, either the ones that
survived the catastrophe, or newly generated mutants, will therefore increase in frequency and evolve to
become more imbalanced (i.e. competitive) over time, causing the cycle to repeat. Catastrophic dynamics
thus depends on the polymorphism in the population: ICs cause the collapse of the population, but only
BCs can restore it. Vice-versa, catastrophes also appear to be a mechanism by which polymorphism is
maintained, as they are crucial to prevent ICs from completely overtaking the population.

Interestingly, after mutations are stopped, populations were always observed to undergo only one
catastrophe at most (Figure 7A), suggesting that de novo mutation might be needed to reintroduce ICs
in the population after a catastrophe for continued population cycles. An additional role of mutation
could be that it fuels the gradual replacement of weakly ICs by stronger imbalanced, more competitive
ones, which increase the vulnerability of the population to collapse. Moreover, newly generated mutants
could introduce additional randomness to the system, thus weakening the stabilizing force of negative
frequency-dependence and increasing the probability of a catastrophe. Both hypotheses are supported
by the observation that reducing the mutation rate decreases the frequency of catastrophes (Figure S10A
and B). The role of randomness is further emphasized by the fact that the frequency of catastrophes is
also reduced in the environment with consistent glucose availability (constant Toff , Figure S10C). Another
possibility is that continuously generated mutants affect glucose profile in the chemostat in such a way
as to add a slight fitness advantage to ICs. According to this scenario, during the mutation-on segment
of the simulation the fraction of ICs would tend to increase, periodically causing catastrophes, but the
absence of mutants would make fitness of ICs and BCs more equal, and protected polymorphism would
not allow the fraction of ICs to deviate too much from equilibrium to cause a catastrophe. This possibility
is supported by the finding that the genotypes with fitness advantage during the mutation-on segment
are different from the ones during the mutation-off segment (Figure S11).

Discussion
Upon transition to high glucose, 7 % of WT yeast cells enter a non-viable state of imbalanced glycol-
ysis, whereby UG outpaces LG and glycolytic intermediates accumulate at low ATP3. Computational
modeling studies suggested that the two states, balanced and imbalanced, are an inherent feature of
glycolysis: the pathway can be pushed towards either one of the alternative states by spontaneous het-
erogeneity in metabolite concentrations or enzyme levels among isogenic cells3. Furthermore, it has also
been shown that the propensity of the simulated yeast glycolysis pathway to enter the imbalanced state
can be modified by slowing down UG, speeding up LG or phosphate transport from the vacuole. In this
study we address the question why yeast cells do not employ available mechanisms, such as increasing the
constitutive expression of LG or phosphate transport enzymes, to minimize or entirely eliminate the risk
of developing metabolic imbalance. Although it is conceivable that the cost of these mechanisms to the
population do not weigh up against the substantial benefit of rescuing 7% of cells, we propose an alter-
native hypothesis, whereby WT yeast are prone to imbalanced glycolysis because they are evolutionarily
optimized for scarce or varying glucose. Our simulations support this hypothesis: since the likelihood of
entering the imbalanced state decreases with decreasing glucose concentration, model cells that evolve
under scarce glucose exhibit higher expression of UG enzymes at the expense of LG enzymes to enhance
glucose uptake and thus gain a competitive advantage without the risk of becoming imbalanced. However,
the adaptation to scarce resource makes them more vulnerable to imbalanced dynamics when glucose is
available abundantly.

Furthermore, in variable environments with rapidly fluctuating glucose levels, the seemingly maladap-
tive imbalanced state provided a clear fitness advantage over balanced metabolism: during the period of
glucose abundance, ICs quickly accumulated FBP as intracellular storage that was then consumed during
the period of scarcity to maintain high ATP and reproduce. Note that this benefit can only materialize
if the imbalanced state is reversible: experimental observations of yeast cells trapped in the imbalanced
state show that they are viable for around 7 h and can resume growth on galactose when glucose is re-
moved3. Our model indicates that imbalanced metabolism can be favored by selection because ICs can
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Figure 7. Catastrophic dynamics of the population showed in Figure 5. (A) Population size during the whole
length of the simulation. Yellow background indicates the mutation-off segment of the simulation. (B) (i) Pop-
ulation size between two catastrophic events and (ii) corresponding fraction of BCs of tracked cells, fb, where
BC is defined as having a positive Bp,cov. An apparently decreasing population size between catastrophic events
shown in (A) and (B)(i) is due to the difference in the timing of reproduction of BCs and ICs (Figure 6D(i)).
Just after the catastrophe, the population is dominated by BCs and therefore population reaches larger sizes
than immediately before the catastrophic event, when the population is dominated by ICs. (C) A close-up of
a catastrophe: (i) population size, (ii) glucose dynamics and (iii) FBP dynamics of two example cells, strongly
imbalanced (Bg,1 = 0.15 mM, light orange) and weakly imbalanced (Bg,1 = 0.55 mM, dark orange). The strongly
imbalanced cell begins accumulating large amounts of FBP earlier than the weakly imbalanced cell. One cell
is removed by outflow in the middle of the catastrophic event, whereas the other survives the catastrophe and
recovers.
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evolve higher levels of UG enzymes at the expense of LG enzymes to secure the resource faster than BCs
without compromising the overall performance of the glycolysis pathway. However, in environments with
long periods of resource scarcity, ICs lost their fitness advantage over BCs. Since glucose uptake and cell
growth are separated in time in ICs, and because the amount of glucose taken up by a cell depends on its
volume, ICs do not increase their total capacity for processing glucose as they are securing resources from
the environment. BCs, on the other hand, show a clear accelerating growth pattern: because BCs grow
at the same time as they take up glucose, increase in cell volume immediately translates into an increase
in the total metabolic capacity of the cell. As a consequence, ICs grow less efficiently than BCs when
the environmental fluctuations are slow. One way to experimentally test the predictions of our model
is to evolve yeast under different glucose availability regimes and determine the fraction of evolved cells
that become imbalanced upon a transition to high glucose3. In addition, the expression levels of UG and
LG enzymes in evolved strains could be quantified and compared against the patterns predicted by our
model.

As mentioned above, stochastic phenotype determination, triggered by random fluctuations in metabolic
state, provides a mechanism that explains the co-occurrence of balanced and imbalanced WT cells in an
isogenic population upon the transition to excess glucose3. Our model suggests two other mechanisms
that can also support a phenotypic polymorphism of BCs and ICs, which may be particularly important
under natural conditions in a genetically variable population. First, our simulations show that both
balanced and imbalanced dynamics represent viable strategies in an environment where the availability
of glucose varies over time. Although, in any particular environment, one of the two strategies typi-
cally enjoys a competitive advantage over the other, the fitness differences between them are often small,
such that substantial variation can be maintained under mutation-selection balance, whereby the rate at
which less fit mutants are eliminated equals to the rate of their creation by mutation20. In our simulated
populations, one type of cell is easily produced from another type by mutation, and since the evolvable
parameters represent expression levels of enzymes, it is feasible that similar conversions could easily occur
in natural populations.

The second mechanism that allows for phenotypic variation is negatively frequency-dependent selec-
tion, which can support the emergence and stable coexistence of discrete clusters of genetically differen-
tiated BC and IC types. This protected polymorphism arises in a chemostat regime where cells compete
for glucose, and their utilization strategy influences the resource concentration in the chemostat chamber.
This establishes an ecological feedback: by consuming glucose in different ways, BCs and ICs induce a
different dynamic of the glucose concentration, which, in turn, affects the two competing strategies in
different ways. In fact, BCs create conditions favorable for the growth of ICs, and vice versa, such that
each type enjoys the advantage of rarity, and thus diversity is maintained. Negative frequency-dependent
selection has been previously experimentally demonstrated in yeast populations in multi-resource envi-
ronments22,23. Our simulations, however, point to the possibility of protected polymorphism in a single
resource chemostat environment. One way to experimentally demonstrate this could be to establish un-
der what conditions already evolved BCs and ICs can stably coexist in a chemostat. Such experiments
are lacking because laboratory studies generally work with well-characterized genetically monomorphic
populations.

A further unanticipated phenomenon highlighted by our model is that a population of coexisting
BCs and ICs under varying glucose can exhibit catastrophic collapses, often followed by a recovery. A
prerequisite to a catastrophe is an increase in the fraction of strongly ICs in the population due to their
competitiveness. However, ICs in such a population become vulnerable to falling into a self-sustaining
state of accumulating more FBP than they can use to produce ATP, which reduces their efficiency of
growth, causes a drop in the population size with a concomitant increase in glucose concentration in
the environment that pushes even more ICs into persistent imbalance. The recovery of the population
depends on the presence of BCs, either surviving ones or newly generated mutants, that benefit from
the increased glucose concentration in the environment. By restoring the normal glucose level, however,
BCs create ecological conditions in which ICs are competitively superior, setting the stage for the cycle
to repeat itself. Therefore, the recurrent catastrophic collapse and recovery of the population requires a
polymorphism of balanced and imbalanced cells, but also helps to maintain their dynamic coexistence.
Although in our simulations the recurrent catastrophes require mutational pressure, it is feasible that,
under some conditions, they could occur without mutational pressure and be the only mechanism to
maintain polymorphism. Such a process would be akin to protected polymorphism with the difference
that the decrease of fitness of dominant ICs would be delayed and dependent on chance, i.e. would only
happen when a catastrophe is triggered by stochastic increase of glucose concentration due fluctuations
in the population size.

The catastrophic eco-evolutionary dynamics observed in our simulations bears similarity to the phe-
nomena of the tragedy of the commons and evolutionary suicide, particularly in cases when the population
does not recover after a collapse. The tragedy of the commons occurs when individual-level adaptations
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driven by natural selection maximizes fitness relative to other individuals at the expense of a public
good, which can result in decrease of mean population fitness (or a proxy thereof, such as overall off-
spring production)24. The resulting decrease in size can make the population vulnerable to extinction due
demographic or environmental stochasticity, or, alternatively, if the disturbance pushes the population
into a different stable state associated with a different regime of selection (e.g. past a bifurcation point),
the population may undergo evolutionary suicide, i.e. can be driven towards extinction deterministically
by natural selection25,26. In the context of the current model, high resilience of the population to fluc-
tuations in glucose concentration, and thus to catastrophes, can be considered as public good for ICs.
Yet, their individual-level adaptations, driven by the selective pressure to increase competitiveness by
becoming more imbalanced, undermines this common good, pushing the population ever closer towards
the brink of collapse.

Overall, our study demonstrates that a highly simplified metabolic network, without even consider-
ing its genetic regulation, is sufficiently flexible to encapsulate a dynamic feedback between metabolic
adaptation and resource availability and that their interplay, in turn, gives rise to population level phe-
nomena, such as the maintenance of alternative strategies or population cycles that shape selection on
the metabolic network. Here, we have shown how considering this eco-evolutionary perspective sheds
new light on the prevalence of substrate-accelerated death in yeast. We expect that it will do similarly
well for explaining other seemingly maladaptive aspects of cellular metabolism.
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