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Abstract 
 

Type I interferonopathies are monogenic disorders 
characterized by enhanced Type I interferon (IFN-I) 
activity. Inherited ISG15 and USP18 deficiencies 
underlie type I interferonopathies by preventing the 
regulation of late responses to IFN-I. Specifically, 
ISG15/USP18 are induced by IFN-I and sterically 
hinder JAK1 from binding to the IFNAR2 subunit of 
IFN-I receptor. We report an infant who died of 
autoinflammation due to a homozygous missense 
mutation (R148Q) in STAT2.  The variant is gain-of-
function (GOF) for ISGF3-dependent induction of late 
but not early response to IFN-I. Surprisingly, the 
mutation does not enhance the intrinsic transcriptional 
activity of ISGF3. Rather, the STAT2 R148Q variant 
is GOF because it fails to appropriately interact with 
and traffic USP18 to IFNAR2, preventing USP18 from 
negatively regulating responses to IFN-I. Overall, a 
STAT2 missense mutation that fails to facilitate 
USP18-mediated signal termination in the 
homozygous state underlies a novel genetic etiology 
of type I interferonopathy.  
 
Introduction 
 

Human type I interferons (IFN-is) form a group of 19 
potent antiviral and proinflammatory cytokines 
(Borden et al., 2007). They are produced by almost 
any cell type in response to various stimuli, 
particularly viral intermediates and by-products 
(Kawai and Akira, 2008), although some IFN-I 
subtypes seem to be preferentially produced by 
certain cell types (Marks et al., 2019). Once produced, 
IFN-Is are secreted, and, in an autocrine and 
paracrine fashion, signal through the IFN-I receptor 
(IFNAR), which consists of two subunits, IFN-I 

receptor I (IFNAR1) and IFN-I receptor II (IFNAR2). 
Most, if not all, cells express the IFN receptor. Upon 
ligand binding, the IFN-I-IFNAR complex then initiates 
a signaling cascade via auto- and trans-
phosphorylation of JAK1 and TYK2, kinases that 
subsequently phosphorylate STAT1 and STAT2. In 
complex with IRF9, STAT1/2 form ISGF3 that 
translocates to the nucleus and initiates transcription 
of hundreds of IFN-I stimulated genes (ISGs) 
(Schindler et al., 2007; Stark and Darnell, 2012). 
While IFN-I cytokines don’t directly activate 
transcription of IFN-I genes, they potentiate their own 
production by increasing the sensors or transcription 
factors capable of inducing IFN-I genes, in particular 
via IRF7 (Levy et al., 2002). In contrast, two ISGs, 
ISG15 (Zhang et al., 2015) and USP18 (Meuwissen et 
al., 2016), form a complex which negatively regulates 
response to IFN-I. Namely USP18, which when bound 
by ISG15 is more stable, displaces JAK1 (Francois-
Newton et al., 2012) from IFNAR2, thereby 
terminating responses to and amplification of IFN-I.  
      Dysregulation of IFN-I activity has dire 
consequences for humans. Patients with autosomal 
recessive, complete IFNAR1 (Hernandez et al., 
2019), IFNAR2 (Duncan et al., 2015), JAK1 (Eletto et 
al., 2016), TYK2 (Kreins et al., 2015), STAT1 (Dupuis 
et al., 2003), STAT2 (Hambleton et al., 2013), and 
IRF9 (Hernandez et al., 2018) deficiencies suffer from 
severe infectious diseases. Patients with IFNAR1, 
IFNAR2, STAT2, and IRF9 deficiencies are 
exclusively prone to viral diseases (Duncan et al., 
2015; Hambleton et al., 2013; Hernandez et al., 2019; 
Hernandez et al., 2018), while patients with TYK2 and 
STAT1 deficiencies are also prone to mycobacterial 
disease (Del Bel et al., 2017; Kreins et al., 2015; Wu 
and Holland, 2015). In contrast, Type I 
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Interferonopathies are monogenic disorders that 
result from autoinflammation caused by excessive 
IFN-I activity (Rodero and Crow, 2016). The concept 
was established, and the term was coined by, Yanick 
Crow (Crow, 2011; Rodero and Crow, 2016). Known 
etiologies disrupt either of two distinct cellular 
mechanisms. The production of IFN-I can be 
excessive owing to bi-allelic loss-of-function (LOF) 
mutations in self-RNA and DNA digesting enzymes or 
mono-allelic gain-of-function (GOF) mutations in RNA 
and DNA cytoplasmic sensors (Rodero and Crow, 
2016). Alternatively, there can be hyperactive 
responses to IFN-I by bi-allelic LOF mutations in 
negative regulators of IFN-I, such as ISG15 (Zhang et 
al., 2015) and USP18 (Meuwissen et al., 2016), or by 
heterozygous GOF mutations in JAK1 (Del Bel et al., 
2017; Gruber et al., 2019) and STAT1 (Liu et al., 
2011). Herein, we studied a child who died of 
unexplained, severe, early-onset type I 
interferonopathy.  
 
Results 
 

Ex vivo phenotyping reveals type I 
interferonopathy  
We studied a patient (P1, II.9) born to 
consanguineous patients from Morocco who 
presented with an early-onset, severe 
autoinflammation evocative of severe type I 
interferonopathy. He presented with skin ulcerations, 
seizures, cerebral calcifications, and ultimately 
respiratory failure and death (please see material and 
methods for clinical details, Figure 1A). We first 
measured whole blood mRNA levels of four ISGs, 
including IFIT1, IFI27, RSAD2 and ISG15, all of which 
were elevated nearly 1000-fold as compared to the 
healthy donor or the heterozygous mother (Figure 
1B). Furthermore, using SiMoA, a digital ELISA that 
allows for attomolar sensitivity in IFN-α detection, we 
detected drastically high levels of IFN-α in patient 
plasma (1,000 fg/ml as compared to an average 50 
fg/ml in healthy controls) (Figure 1C). Given these 
classical features of type I interferonopathy in immune 
peripheral cells (Rodero and Crow, 2016), we then 
examined the composition of peripheral blood 
mononuclear cells (PBMCs). We detected an aberrant 
distribution of immune cell subtypes, with 
proportionally less myeloid and NK cells and more B 
and T cells, suggesting a severely dysregulated 
immunophenotype (Figure 1D-E, Supplementary 
Table I). Given the overt IFN-I signature, we took 

advantage of surface expression of SIGLEC1 
(CD169), an ISG, and determined that myeloid cells, 
in particular classical monocytes (CD14+CD16low), as 
well as dendritic cells, had significantly augmented 
expression of CD169 (Figure 1F). This perhaps 
suggested that the most affected were myeloid cells, 
and that they largely contribute to the ISG signature 
commonly monitored in whole blood. Combined, this 
ex vivo analyses confirmed the bona fide type I 
interferonopathy.  
 
Whole exome sequencing reveals a homozygous 
mutation in STAT2 
We performed whole-exome sequencing (WES) of P1 
and searched for candidate genetic variants, testing 
an autosomal recessive (AR) model, given the 
consanguinity and history of prior infant deaths in the 
family (Figure 2A). A homozygous variant was 
identified in exon 5 of the signal transducer and 
activator of transcription 2 (STAT2) at position 
c.443G>A, which results in the substitution of the 
arginine at position 148 by a glutamine, p.R148Q 
(Figure 2A-B). No other putative disease-causing 
alleles were detected in any of 19 known genes 
responsible of interferonopathies (Rodero and Crow, 
2016)(Supplementary Figure 1A). There were eight 
other homozygous rare non-synonymous variations, 
none of which was in a gene known to be related to 
IFN-I (Supplemental Table 3). Sanger sequencing of 
exon 5 of STAT2 confirmed the homozygous mutation 
of genomic DNA from whole blood and fibroblasts 
from P1 (Figure 2C). DNA from the mother was 
heterozygous for this variant, while the father’s DNA 
was unavailable. In silico analysis revealed that the 
variant was predicted to be protein-damaging by 
combined annotation-dependent depletion 
(CADD,score = 24.1), above the mutation significance 
cutoff (MSC) of 2.313 (Supplemental Figure 1B). The 
variant is located in the coiled-coil domain of STAT2 
at a residue (148) that is highly conserved across 
mammals, but not in rodents (Figure 2D). This variant 
is absent in our in-house database of over 6,000 WES 
and in public databases (the GME variome or in the 
gnomAD v2.1). There are only eight non-synonymous 
STAT2 variations found in homozygosity in public 
databases, none of which is predicted to be LOF. The 
homozygous mutations in STAT2 that were previously 
shown to be loss-of-expression and LOF in terms of 
ISGF3 activity in patients with severe viral disease 
were private (Hambleton et al., 2013; Moens et al., 
2017). Altogether, these findings suggested that the 
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c.443G>A allele may be disease-causing. As patients 
homozygous for loss-of-expression STAT2 mutations 
had impaired responses to IFN-I and viral diseases, 
our findings further suggested that P1 might be 

homozygous for a STAT2 mutation that is GOF for 
ISGF3 activity, or LOF for a function other than ISGF3 
activity, or both. 
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Figure 1. Peripheral blood signature indicates autosomal recessive type I interferonopathy.
(A) Clinical signs of immune pathology, clockwise from top: CT scan demonstrating calcifications of the frontal and parietal lobes,

fistulizing adenitis of the axillary and inguinal nodes, chest radiograph displaying bilateral opacities of the lungs. (B) mRNA expression

of interferon stimulated genes measured from whole blood RNA isolated from healthy donor, the patient’s mother and the patient. (C)

Quantification of circulating IFN-alpha by digital ELISA (Single Molecule Array) in plasma from three healthy controls (HD) and the

patient (PAT). (D) tSNE plots demonstrating the immunophenotyped of peripheral blood mononuclear cells (PBMCs) as determined by

mass cytometry. (E) Quantification of immune cells populations of 4 healthy donors and the patient expressed as percent of total

PBMCs. (F) Histograms of CD169 expression, an interferon stimulated gene, in classical monocytes and myeloid DCs.
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The R148Q STAT2 variant is GOF for ISGF3 
activity 
In order to characterize the allele in isolation of the 
patient’s genetic background, we took advantage of 
U6A cells, a fibrosarcoma human cell line that is 
STAT2 null. We transduced U6A cells with either 
Luciferase (negative control), wild type (WT) STAT2 
or R148Q STAT2. We first detected that transduction 
with either WT or R148Q STAT2 resulted in similar 
levels of STAT2 mRNA and STAT2 protein (Figure 3A 
and B). In addition, brief 4-hour stimulation with IFN-I 
resulted in similar mRNA levels of MX1 and IFI27 
(Supplementary Figure 1C).  In contrast, prolonged 
16-hour stimulation with IFN-I, resulted in increased 
mRNA levels of MX1, IFI27 and IFIT1 in U6A cells 
transduced with R148Q STAT2, when compared with 
WT STAT2 (Figure 3B). Prolonged stimulation with 
Type II IFN, which does not utilize STAT2, was normal 
(Figure Supplement 1D). We then hTert-immortalized 
and tested dermal fibroblasts derived from the patient. 
Expression of MX1, RSAD2 and IFIT1 mRNA was 

significantly elevated in patient hTert fibroblasts 
stimulated with IFNα2b when compared with cells 
from healthy controls at late time points (Figure 3D). 
We tested whether this phenotype requires 
homozygosity. We co-expressed WT and R148Q 
STAT2 in U6A cells. In this system, upon IFN-I 
stimulation, the presence of WT STAT2 rescued the 
heightened signaling afforded by R148Q STAT2 
(Figure 3D), whereas transduction with the negative 
control did not. Cells from heterozygous relatives of 
the patient were not available. They were, however, 
healthy and had no elevation of ISGs in peripheral 
blood (Figure 1B), suggesting that the GOF mutation 
likely has no impact in heterozygosity. Collectively, 
these experiments indicate that the STAT2 mutation 
is GOF in isolation and that the bi-allelic genotype also 
results in gain of ISGF3 activity.  
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LOF of STAT2-mediated regulation of USP18 
results in overall GOF phenotype in R148Q STAT2 
Two functions of STAT2 are known. As part of the 
ISGF3 transcription factor complex, STAT2 is 
essential for cellular responses to IFN-I and IFN-III 
downstream from their respective receptors. STAT2 
was also recently discovered to shuttle USP18 to 
IFNAR2, where USP18 exerts its negative regulatory 
function of IFN-I responses (Arimoto et al., 2017). 
STAT2 is therefore a positive regulator of IFN-I, while 
it also contributes to the negative regulation of IFN-I 
once USP18 is produced. Given that R148Q is 
located within the STAT2/USP18 interacting domain 
(Arimoto et al., 2017), we hypothesized that it retains 
positive ISGF3 activity but loses negative USP18-
related regulatory function. We first tested proximal 
signaling in healthy control and patient hTert 
fibroblasts by stimulating cells with 30 min 1000 IU 
IFNα2b pulse. Both STAT1 and STAT2 
phosphorylation were normal (Figure 4A), which was 

also the case in U6A cells (Supplemental Figure 1E-
F). Nuclear localization after stimulation (Figure 4B) 
and subsequent nuclear export (Supplemental Figure 
1G) were also normal for the mutant STAT2. We then 
tested STAT2 dephosphorylation in the immediate 
hours after IFN-I exposure, which appeared equal 
between WT and patient cells (Figure 4C). We also 
determined the ability of WT and R148Q STAT2 to 
immunoprecipitate with USP18. The mutant protein 
exhibited similar affinity towards USP18, indicating 
that although interaction was still possible, function 
was likely perturbed (Figure 4D). We then evaluated 
USP18 localization to IFNAR2, in presence of WT and 
R148Q STAT2. By immunoprecipitation of the 
receptor complex, we detected a reduced ability of 
R148Q STAT2 to recruit USP18 to IFNAR2 (Figure 
4E). To functionally access this improper STAT2-
USP18 homing, we tested the negative regulatory 
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function of USP18/STAT2 R148Q by its capacity to 
prevent continual signaling. In cells WT for STAT2, 
stimulation with IFN-I leads to induction of USP18, 
which then significantly attenuates secondary 
challenge with IFN-I. While this was indeed the case 
in WT hTert fibroblasts, patient fibroblasts were 

unable to attenuate proximal signaling upon IFN-I re-
stimulation, despite accumulating augmented levels 
of USP18 (Figure 4F). This effect was also observed 
in the U6A system (Supplemental Figure 1H). 
Collectively these results suggest a defect in USP18 
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trafficking to the receptor and explains both the GOF 
and recessive inheritance of STAT2 R148Q.  
 
Discussion 
 

Historically, the study of inborn errors of human 
immunity has provided invaluable insight into the 
intricate regulation of the immune system. To date, 
documented homozygous mutations affecting the 
IFN-I signaling cascade have exclusively been LOF 
and hypomorphic, while heterozygous mutations 
resulted in either dominant negative, haploinsufficient 
or GOF outcomes. In IFN-I signaling cascade, a 
homozygous GOF variant has never been reported 
until this discovery. To our knowledge, there are only 
two other documented homozygous GOF mutations 
described in genetics: in hypocalcemic 
hypoparathyroidism caused by homozygous 
mutations in CASR (Cavaco et al., 2018), and most 
recently in recurrent respiratory papillomatosis 
caused by homozygous mutations in NLRP1 
(Drutman et al., 2019). Identification of homozygous 
GOF mutation in STAT2 was surprising, given that 
STAT2 is a positive regulator of the IFN-I pathway by 
its essential role in the transcription factor complex 
that induces hundreds of ISGs. However, STAT2 has 
a secondary role. Via its DNA binding and coiled-coil 
domains it binds and recruits USP18, an IFN-I 
negative regulator, to IFNAR2 (Arimoto et al., 2017). 
Thus, for a homozygous GOF mutations in STAT2 to 
exist, mutations would affect USP18 but not ISGF3 
activity, as documented here with R148Q STAT2. For 
these reasons, homozygous GOF mutations in 
STAT2 will likely remain exquisitely rare, as the 
pathogenic mutations must perturb the negatively 
regulatory domains while sparing the principal 
functions. 
      The patient reported here suffered from severe 
early onset inflammation characteristic of Type I 
Interferonopathies. STAT2 deficiency, alongside 
ISG15 and USP18 deficiencies, now constitutes a 
third genetic etiology leading to inadequate control of 
response to IFN-I. Of note, this novel disease largely 
phenocopies USP18 deficiency in clinical 
presentation and molecular mechanism (Alsohime et 
al., In Press; Meuwissen et al., 2016). Clearly, tight 
control of IFN-I receptor is essential for viability. If 
diagnosed and treated rapidly, as was the case in a 
recent USP18-deficient child, perhaps JAK inhibitor 
therapy would have rescued the life of this unfortunate 
child and deceased siblings (Alsohime et al., In 

Press). This possibility is further substantiated by 
several recent studies that successfully introduced 
JAK inhibitors in a diverse range of genetic etiologies 
of type I Interferonopathies (Sanchez et al., 2018). In 
the future, genetic diagnosis of rare STAT2 mutations, 
especially in the USP18 interacting domain, should 
alert clinicians towards fast therapeutic interventions 
with current and new classes of JAK inhibitors, as they 
can indeed be lifesaving.  
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Methods 
 

Genomic DNA extraction and Whole Exome 
Sequencing (WES) 
Genomic DNA was isolated from the whole blood of 
patient, mother and healthy donors with the iPrep 
instruments from Thermo Fisher Scientific. Three 
micrograms of DNA were used for generation of WES 
from P1. The Agilent 50 Mb SureSelect exome kit was 
used in accordance with the manufacturer’s 
instructions. BWA aligner was used to align the reads 
with the human reference genome hg19, before 
recalibration and annotation with GATK, PICARD and 
ANNOVAR. Filters of variants was achieved with our 
in-house software. Mutation was verified by Sanger 
methods (PCR amplification conditions are available 
upon request). PCR products were analyzed by 
electrophoresis in 1% agarose gels, sequenced with 
V3.1 Big Dye terminator cycle sequencing kit  and 
analyzed on an ABI Prism 3700 machine (Applied 
Biosystems, Foster City, CA). 
 
Cell Culture 
HEK293T, U6A and hTert-immortalized dermal 
fibroblasts from the patient were cultured in DMEM 
(Gibco) supplemented with 10% fetal bovine serum 
(FBS) (Invitrogen), GlutaMAX (350 ng/ml; Gibco), and 
penicillin/streptomycin (Gibco). All cells were cultured 
at 37°C and 10% CO2. All cell lines were tested for 
mycoplasma contamination with the MycoAlert(tm) 
PLUS Mycoplasma Detection Kit (Lonza) according to 
the manufacturer’s instructions. U6A cells (STAT2-/-) 
were gifted by Dr. Sandra Pellegrini, Institut Pasteur.  
 
RNA Isolation and qPCR 
All cytokine stimulations were performed as indicated 
with Interferon-alpha 2b (Intron-A) or Interferon-
gamma (Biolegend, 570202) in complete DMEM. 
RNA was extracted from U6A cells, hTERT-
immortalized fibroblasts (Qiagen RNeasy) or whole 
blood (PAXgene Blood RNA Kit) and reverse-
transcribed (ABI High Capacity Reverse 
Transcriptase). The expression of ISGs (IFIT1, MX1, 

RSAD2, IFI27, ISG15), relative to the 18S 
housekeeper gene, was analyzed by Taqman 
quantitative real-time PCR (TaqMan Universal Master 
Mix II w/ UNG) on a Roche LightCycler 480 II. The 
relative levels of ISG expression were calculated by 
the ΔΔCT method, relative to the mean values for the 
mock-treated controls or healthy donor. 
 
Ectopic Expression 
HEK293T cells were transiently transfected with 
Lipofectamine 2000 (Thermoscientific) complexed 
with different constructs according to manufacturer’s 
instructions. The following genes-constructs were 
used for expression and co-immunoprecipitation: 
pTRIP-USP18-V5, PLX304-IFNAR2, pTRIP-STAT2 
(WT and R148Q). R148Q mutation was generated by 
site-directed mutagenesis on a WT STAT2 plasmid 
using QuickChange II PCR (Agilent).  Lentiviral 
particles were generated by co-transfection of STAT2, 
psPAX2 and pMD2 by CaCl2 transfection. 
Supernatants were collected 48 hours later, purified 
and transferred to target cells with polybrene. Cells 
were selected with puromycin (0.4 micrograms/mL). 
To compensate for equivalent levels of ectopic 
expression, transfection and transduction 
experiments were matched with an irrelevant gene 
(Luciferase) in the same plasmid construct.  
 
Protein assays 
Whole-cell extracts for immunoblotting were prepared 
by incubating cells for 10 min in RIPA lysis buffer 
(Thermo Fisher Scientific) with 50mM DTT and 
Protease/Phophatase inhibitor cocktail (Cell Signaling 
Technology). For co-immunoprecipitation assay, cells 
were lysed in 50 mM Tris pH 6.8, 0.5 % NP-40, 200 
mM NaCl, 10% glycerol, 1 mM EDTA and 1x 
Protease/Phophatase inhibitor cocktail (Cell Signaling 
Technology). Cell lysates were incubated with V5 
conjugated with protein G dynabeads for 2 hr at room 
temperature. Immunoprecipitates were subjected to 
western blotting. Immunoblotting was performed 
using the BioRad western blot workflow. Membranes 
were blocked in 5% BSA for primary antibodies or 5% 
nonfat dry milk for secondary antibodies. Antibodies 
used: STAT1 (Santa Cruz Biotechnology), STAT2 
(Millipore), phospho-Tyr 701 STAT1 (Cell Signaling 
Technology), phospho-Tyr 689 STAT2 (Millipore), 
USP18 (Cell Signaling Technology), β-actin 
(ABclonal), and GAPDH (Millipore). Signal was 
detected with enhanced chemiluminescence 
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detection reagent (SuperSignal West pico, 
Thermoscientific) by film development. 
 
Mass Cytometry 
Whole blood from the patient and healthy controls 
were subject to Ficoll gradient to collect the 
mononuclear cell layer (PBMC). PBMCs were stained 
and analyzed by mass cytometry (CyTOF) at the 
Human Immune Monitoring Center of the Icahn 
School of Medicine at Mt. Sinai. Samples were 
barcoded then stained together with antibodies 
against selected surface markers for 30 minutes on 
ice. Cells were then washed and fixed, resuspended 
in diH2O containing EQ Four Element Calibration 
Beads (Fluidigm) and acquired on a CyTOF2 Mass 
Cytometer (Fluidigm). Data files were normalized by 
using a bead-based normalization algorithm (CyTOF 
software, Fluidigm) and debarcoded using CD45 
gating. The gated populations were visualized in lower 
dimensions using viSNE in Cytobank 
(https://www.cytobank.org/) and manually gated 
based on the following traditionally-defined markers: 
CD45-Y89, CD57-In113, CD11c0In115, CD33-Pr141, 
CD19-Nd142, CD45RA-Nd143, CD141-Nd144, CD4-
Nd145, CD8-Nd146, CD20-Sm147, CD16-Nd148, 
CD127-Sm149, CD1c-Nd150, CD123-Eu151, 
CD66b-Sm152, PD1-Eu153, CD86-Sm154, CD27-
Gd155, CCR5-Gd16, CD117-Gd158, CD25-Tb159, 
CD15-Gd160, CD56-Dy161, CD169-Dy162, CRTH2-
Dy163, CD371-Dy164, CCR6-Ho165, CD25-Er166, 
CCR7-Er167, CD3-Er168, CX3CR1-Tm168, CD38-
Er170, CD161-Yb171, CD209-Yb172, CXCR3-
Yb173, HLADR-Yb174, CCR4-Yb176, CD11b-Bi209. 
 
Immunohistochemistry 
Fibroblasts were seeded in 8-well chamber slides 
(Ibidi 80826) and stimulated the following day with 
1000u/mL IFN-alpha for 30 minutes or 12hrs. The 
cells were fixed and permeabilized (BD 554714), then 
stained with DAPI and antibodies against STAT2 
(EMD 06-502, 1:200). The samples were evaluated 
on the Leica DMi8. 
 
Flow Cytometry 
Transduced U6A cells were stimulated for 15-minutes 
with IFNα2b then immediately fixed with 4% PFA for 
10 minutes. Cells were then fixed/permeabilized in 
90% ice-cold methanol and stained with anti-
phospho-STAT1 (Cell Signaling 9167), a fluorescent 
secondary antibody (Thermo Fisher) and a 
LIVE/DEAD viability dye (Thermo Fisher). Flow 

cytometry was acquired on a BDFACSCanto II and 
data was analyzed on FlowJo.  
 
SiMoA Digital ELISA 
Plasma samples from the patient and healthy donors 
were isolated from ficoll-gradient and subsequently 
clarified by centrifugation at high speeds. Interferon 
alpha levels were then quantified by digital ELISA 
using the IFNα Simoa Assay Kit (Quanterix, 100860) 
according to the manufacturer’s instructions on a 
Simoa HD1 Analyzer. 
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