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Abstract
Recent advances in single-cell techniques catalyze an emerging field of studying how cells
convert from one phenotype to another, in a step-by-step process. Two grand technical

challenges, however, impede further development of the field. Fixed cell-based approaches can
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provide genome-wide snapshots of cell status but have fundamental limits on revealing temporal
information, and fluorescence-based live cell imaging approaches provide temporal information
but are technically challenging for multiplex long- term imaging. We first developed a live-cell
imaging platform that tracks cellular status change through combining endogenous fluorescent
labeling that minimizes perturbation to cell physiology, and/or live cell imaging of high-
dimensional cell morphological and texture features. With our platform and an A549 VIM-RFP
EMT reporter line, live cell trajectories reveal parallel paths of epithelial-to-mesenchymal
transition missing from snapshot data due to cell-cell heterogeneity. Our results emphasize the
necessity of extracting dynamical information of phenotypic transitions from multiplex live cell

imaging.

MAIN TEXT

Introduction

Cells of a multicellular organism can assume different phenotypes that can have drastically
different morphological and gene expression patterns. A fundamental question in developmental
biology is how a single fertilized egg develops into different cell types in a spatial-temporally
controlled manner. Cell phenotypic transition (CPT) also takes place for differentiated cells under
physiological and pathological conditions. A well-studied example is the epithelial-to-
mesenchymal transition (EMT), central to many fundamental biological processes including
embryonic development and tissue regeneration, wound healing, and disease-like states such as
fibrosis and tumor invasiveness (/). One additional example is artificially reprogramming
differentiated cells, such as fibroblasts, into induced pluripotent stem cells and other differentiated
cell types such as neurons and cardiomyocytes (2). CPT is ubiquitous in biology, and a
mechanistic understanding of how a CPT proceeds, emerges as a focused research area with an

ultimate goal of achieving effective control of the phenotype of a cell.
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The CPT studies can also be placed in another large context of studying dynamical processes of
escaping from a metastable state or relaxing to a newly-established stationary state (3). Such
problem has been a focused and still active research topic in physics and chemistry for more than
a century. Formulating CPT as such a problem allows one to apply techniques such as modern
transition path sampling and transition path theory (4), and control theories of dynamical systems,
for mechanistic understanding of the transition bottlenecks, and manipulating the transitions such
as accelerating and directing reprogramming and differentiation processes, and slowing
down/preventing undesirable pathological processes. In return CPT studies can provide
unprecedented multi-dimensional information that is difficult to obtain for a molecular system,
and thus ideal for testing and advancing theoretical studies of non-equilibrium transition
processes. A framework of quantitative description of CPT processes is necessary to catalyze

such epochal convergence of traditionally separated fields.

Recent advances in snapshot single cell techniques, notably single cell RNA-seq and imaging-
based techniques, pose potential questions, such as how does a CPT process proceed, step-by-
step, along the continuous high-dimensional gene expression (e.g., transcriptome, proteome)
space. These destructive methods, however, are inherently unable to reveal the temporal dynamics
of how an individual cell evolves over time during a CPT. Approaches such as pseudo-time
trajectory analysis (J), ergodic rate analysis (6) and RNA velocities (7) have been developed to

retrieve partial dynamical information from snapshot data.

However, some fundamental limits exist in inferring dynamical information from snapshot data
(8). Figure 1 illustrates that inference from snapshot data unavoidably misses key dynamical
features. A bi-stable system is coupled to a hidden process, e.g., epigenetic modification for a
cellular system, which is slow compared to the transition process being studied (Fig. 1A).
Presence of the slow variable leads to observed heterogeneous dynamics (Fig. 1B, more details of

the simulation are in Fig. S1). Individual trajectories show characteristic stepping dynamics, but
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the transition positions vary among different trajectories due to the system assuming different
values for the hidden slow variable. Consequently, when only snapshot data is available,
information about the temporal correlation of individual cell trajectories is missing, and one

cannot deduce the stepping dynamics (Fig. 1C).

The necessity of live cell trajectories has been illustrated in a number of studies, such as the
information capacity of a signal transduction network (9), incoherent-feedforward loops to detect
only fold change but not the absolute change of an input signal (/0), and step-wise cellular
responses to drugs (/7). Two recent studies conclude a linear path for EMT from analyzing
single cell RNA-seq and proteomic data (/2, /3). This conclusion, however, is inconsistent with
theoretical predictions of parallel paths for a multi-stable system like EMT (74, 15), raising a
question of whether the linear path is an artifact from snapshot data. Live cell imaging is needed

to address such question.

Therefore, acquiring information from long-term CPT dynamics requires tracking individual cells
through live cell imaging, typically with time-lapse fluorescent imaging. However, identifying
appropriate species that faithfully reflect the process for labeling, and generating such labeling,
can be tedious and time-consuming. Additionally, multiplex and frequent fluorescent image
acquisition over a long period of time, e.g., days, is necessary for characterizing a CPT process,
but is severely limited by the number of available fluorescence channels and cytotoxicity

concerns.

In short, a technical dilemma exists: fixed cell-based techniques provide high-dimensional
expression profiles of individual cells but lack true dynamical information, while fluorescent-
labeling based live cell imaging techniques typically provide dynamical information for only a
small number of dynamical variables. To tackle the substantial challenges in CPT studies, here we
develop a framework for extracting cell dynamical information through quantitative analysis of

live cell trajectories in a combined high dimensional cell morphology and expression space. Our
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method resides on the observation that either the expression pattern or cell morphological features
can define a cell state. The latter broadly refers to collective cellular properties such as cell body
shape, organelle distribution, etc., which are convenient for live cell imaging, with and without
labeling. Hundreds of such morphological features have been routinely used in pathology, and in
a number of fixed and live cell studies for defining and studying cell phenotypes, and drug
responses (/7). Introduction of this framework allows one to study CPTs in the context of well-
established chemical reaction rate theories, specifically the transition path theory and transition

path sampling as mentioned above (4, 16).

We applied this framework to study TGF-f induced EMT in a human A549 cell line with
endogenous vimentin-RFP labeling. We represented cell states in a composite 309 dimensional
feature space of the cell body contour shape and distribution of vimentin, an intermediate filament
and a key mesenchymal marker. While the framework is for morphological features in general, in
this study we focus on the cell body shape, and use cell shape and morphology indistinctively.
Through quantifying time-lapse images, aided by a deep learning based image analysis algorithm,
we were able to define the epithelial and mesenchymal states and unravel two parallel pathways
that EMT proceeds through. We provide a Python package, Multiplex Trajectory Recording and
Analysis of Cellular Kinetics, or M-TRACK, for studying CPT in the morphology/expression
space. The framework will provide a foundation for quantitative experimental and theoretical

studies of CPT dynamics.
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Results
Human A549 cells with endogenous vimentin-RFP labeling were generated using the

CRISPR-Cas9 system

The A549 VIM-RFP cell line was created using CRISPR/Cas9 technology, in which the red
fluorescence protein (RFP) sequence was inserted just before the stop codon of the endogenous
vimentin gene (Fig 2A). The VIM-RFP knock-in allele was confirmed by co-localization
immuno-staining of vimentin and VIM-RFP (Fig. 2B), sequencing (Fig. S2A), and Western blot
(Fig. S2B). With continuous treatment of recombinant human TGF-B1 for two days, most cells
underwent apparent cell shape changes from round polygon shapes to elongated spear shapes. The
A549 VIM-RFP cells have basal vimentin expression, suggesting the cells have already
undergone partial EMT, as previously reported for the parental A549 cells (/3). With TGF-8
treatment, the A549 VIM-RFP cells show increased invasive capacity reflecting the functionality
of mesenchymal cells (Fig. 2C). The immuno-staining results showed that Snaill and N-cadherin

increased their expression (Fig. S2C), further confirming the occurrence of EMT.

A complete orthonormal basis set represents cell body contour shapes

To mathematically describe how a CPT (EMT here) proceeds, one needs to choose a
mathematical representation of cell status at a given time. For representing the cell shape, we
adopted the active shape model that has been widely used in computer based image analyses (17),
and particularly in cell biology studies (/8, 19), but here, we use it for the purpose of forming a
complete orthonormal basis set (Fig. 3). That is, we first segmented the images using our
modified deep convolutional neural network procedure (Fig. 3A, see Supplemental Text for
details) and tracked individual cell trajectories. Each cell shape was aligned to a reference shape
and was approximated by N (= 150) landmark points equally spaced along the cell contour (20)
(Fig. 3B). For two-dimensional images, a cell was specified by a point z = (X, X2, ..., XN; Y1, Y2,

..., yn) in the 2N dimensional shape space (Fig. 3C). By performing principal component analysis
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(PCA) on the data set of a collection of single cell trajectories, one constructs a complete

orthonormal basis set with the 2N — 4 eigenvectors {a}, or the principal modes, for the shape

space. Notice that alignment fixes four degrees of freedom (center and orientation). An attractive
feature of the principal modes is that they have clear physical meanings. For example, the two
leading principal modes of A549 VIM-RFP cells undergoing EMT reflect cell growth along the
long and short axes, respectively (Fig. 3D). Then any cell shape that is approximated by the

landmark point z’(t), which is generally time dependent in live cell imaging, can be expressed as a

2N-4
linear combination of these principal modes, z'(¢) = E c,(t)a, (Fig. 3E). Therefore, c(t) =

i=1

(ci(t),..., con-a(t)) forms a trajectory in the shape space expanded by the basis set {a}.

Figure 3F shows a typical trajectory projected to the first two leading principal component (PC)
modes in the shape space and their corresponding time courses of cell contour shape changes.
Over time this cell elongated along the major axis, (PC1) while shortened slightly along the minor
axis, resulting in a long rod shape with enlarged cell size. Two additional trajectories in Fig. S3
further reveal that single cell trajectories are heterogeneous with switch-like or continuous

transitions, while sharing similar elongation of PC1 over time.

Haralick features quantify texture feature change of cytosolic distribution of vimentin

during EMT

During a CPT, cell morphology changes are accompanied by global changes in gene expression
profiles (21). Specifically, in A549 VIM-RFP cells that have been treated with TGF-$ for two
days, vimentin was upregulated with a texture structure change from being condensed in certain
regions of the cell to be dispersed throughout the cytosol (Fig. 4A), consistent with previous

reports (22-24). These previous studies used fixed cells, and lack temporal information about the
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vimentin dynamics. Therefore, we recorded the change in vimentin within individual cells with

time-lapse imaging.

Texture features are widely used for image profiling in drug screening, phenotype discovery, and
classification(25-27). We hypothesized that the texture features of vimentin can be quantified as
an indicator of EMT progression. For quantification, we used Haralick features based on the co-
occurrence distribution of grey levels. After segmentation, we calculated the grey level co-
occurrence matrix (GLCM) in the mask of each cell, and 13 Haralick features based on the single
cell GLCM and averaged all four directions (Fig. 4A, see Method for details). Nearly every

Haralick feature shows a shift in distribution after TGF-p treatment (Fig. S4).

To capture the major variation in vimentin Haralick features during EMT, we performed linear
dimension reduction with PCA (more details are in Method). Figures 4B and 4C show a typical
single cell trajectory in the vimentin Haralick feature space, and corresponding segmented single
cell images at various time-points along this trajectory, respectively. The dynamics in the
vimentin space are again heterogeneous, as indicated here, and from two additional trajectories in

Fig. S5.

A label spreading function divides the combined morphological/texture space into three

regions.

Overall, we described a cell state in a 309 dimensional combined morphological/vimentin texture
space. The cells occupy distinct regions in the morphological and vimentin texture features at the
initial (0-2 hour) and final stages (46-48 hour) of 4 ng/ml TGF- treatment (Fig. 5SA). Physically,
upon TGF-B treatment, the cell population relaxes from an initial stationary distribution in the
morphological/vimentin space into a new one, and this study focuses on the dynamics of this

relaxation process.
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Close examination reveals major distribution shifts along four coordinates: morphology PCl1
(82.7% variance of morphology), vimentin Haralick PC1 (57.0% variance), PC3 (8.9% variance)
and PC4 (5.2% variance) (Fig. 5B, Fig. S6). This observation permits subsequent analyses

restricted to these collective coordinates.

In the transition path theory or transition path sampling (4, 16), one divides the configuration
space describing a reaction system into reactant, intermediate, and product regions. Specifically,
for the present system, we developed a computational procedure that combines Gaussian mixture
model (GMM) analysis of the cell distributions (Fig. S7TA & B) followed by fitting a label
spreading function (28) using the k-nearest-neighbor (KNN) method. The procedure divides the
four-dimensional space into epithelial (£, or more precisely partial E for A549 VIM-RFP),
intermediate (/), and mesenchymal (M) regions (Fig. 5C). Figure 5D shows a trajectory that starts

within the E region, then progresses to the /, then the M regions.

Single cell EMT trajectories follow distinct paths

According to the transition path theory, all the single cell trajectories similar to the one in Fig 5D
(and Fig. S7C) that leave the E region, and end in the M region before returning to £, formed an
ensemble of reactive trajectories. Overall, we recorded Ny (= 196) acceptable continuous
trajectories (see Methods), among them Ny (= 139) are reactive trajectories (Movie S1 and Movie

S2).

Single cell trajectories in the feature space show clear heterogeneous transition dynamics. In one
representative trajectory (Fig. 6A, Fig. S8A left), the cell transits from the E to the M region
following a series of transitions first along the vimentin Haralick PC1, then the morphology PCI.
In contrary, in another trajectory (Fig. 6B, Figure S8A right) the cell proceeds with concerted

morphological and vimentin Haralick feature changes.
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To systematically study the two types of distinct behaviors, we used soft-dynamic time warping
(DTW)(29) to calculate the distance between different trajectories, and t-SNE to project the
trajectory distance matrix to 2D space(30). We found that these trajectories form two
communities (Fig. 6C). A k-means clustering on these trajectories separated them into two groups,
consistent with the two communities in the t-SNE space. The two groups of trajectories reveal
different dynamical characteristics. In one group (Class 1), vimentin Haralick PC1 varies firstly,
followed by dramatic change of morphology PCI1. In the other group (Class II), for most
trajectories the morphology PC1 and vimentin Haralick PC1 change concertedly, while for only a
small percentage the morphology PC1 change earlier than that of vimentin Haralick PC1 (Fig.
S8B). Distinction between the two groups of trajectories is apparent from the scattered plot in the
morphology PCl/vimentin Haralick PC1 plane (Fig. S8C), and the non-overlapping mean
trajectories obtained using soft-dynamic time warping (DTW) barycenter(29, 37) (Fig. 6D and

S8D).

To rule out the possibility that the existence of two classes of trajectories is an artifact of DTW,
we analyzed cross correlation between morphology PC1 and vimentin Haralick PC1 of individual
reactive trajectories. Cross-correlation analysis calculates the time delay at which the correlation

between morphology PC1 and vimentin PC1 reaches a maximum value (32). The time delay

shows a stretched distribution (Fig. S8E). A large portion of trajectories have vimentin Haralick
PC1 change prior to morphology PC1 change, while another main group of trajectories have the
time delay between morphology PC1 and vimentin Haralick PC1 close to zero. After separating
the trajectories into two groups based on the sign of time delay, the mean trajectories of the two

groups (Fig. S8E) are similar to what was obtained with k-means clustering on the DTW distance.

Therefore, a main conclusion of this study is that the live cell platform revealed two types of
paths for the TGF-B induced EMT in A549 VIM-RFP cells. Figure 6E shows a plausible

mechanistic model summarizing the existing literature. TGF-B activates morphological change
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and vimentin to induce EMT, while morphological change and vimentin expression can induce
each other and themselves. More details of the model are in Materials and Methods. Computer
simulations with the model followed by k-means clustering on DTW distance reproduce the two
parallel EMT paths (Fig. 6F, Fig. S9C and Fig. S9D). The cross correlation analysis also showed
results similar to what was observed experimentally (Fig. S9E). That is, the live-cell imaging

platform presented here can provide mechanistic insight for further analyses.

Discussion

Compared to the recent advances of fixed cell based single cell techniques, live cell imaging
remains under-developed especially in studying CPTs due to some technical challenges.
Generally speaking, the degrees of freedom specifying cell coordinates should be experimentally
feasible for live cell measurement, and faithfully represent cell states. However, individual gene
products typically only reflect partial dynamical information of a CPT process, and simultaneous
fluorescence labeling of multiple genes is challenging. Recently, tracking cell morphological
features through live cell imaging, emerges as a means of extracting temporal information about
cellular processes in conjunction with expression-based cell state characterization(//, 33-36).
Cellular and subcellular morphology reflects collective gene expression pattern and cell
phenotype (37, 38). Furthermore, hundreds of or more morphology features such as cell size and
shape can be conveniently extracted from bright field images without necessity of additional
fluorescence labeling. Here, we further developed a quantitative framework for recording and
analyzing single cell trajectories in a combined morphological/expression space, and a

computational package for related image analyses.

Our application to the TGF-P induced A549 VIM-RFP EMT process demonstrates the importance
of extracting dynamical information from live cell data. A cell has a large number of molecular

species that form an intricately connected network, and it interacts with a fluctuating extracellular
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environment, including cell-cell interactions. Consequently, even iso-genetic cells show cell-to-
cell heterogeneity, which further manifest as large trajectory-to-trajectory heterogeneity in single
cell CPT dynamics, and some dynamical features characteristic to a particular process might be
unavoidably concealed from snapshot data. Notably, our live cell data revealed information on the
two distinct types of paths of EMT with distinct vimentin dynamics, in agreement with
predictions from a mechanistic model based on previous reports that vimentin is a regulator as

well as a marker of EMT.

For further mechanistic understanding beyond the phenomenological observation of the parallel
paths, one needs to see how the cell expression pattern changes along the paths. One can use the
paths identified from live-cell imaging data, rather than currently used pseudo-trajectory
approaches based on a perceived expression-similarity criterion, to time-order snapshot single cell
data, thus resolving the dilemma experienced in single cell studies. For this purpose, one needs to
establish a mapping system between the morphological/texture space and the expression space. A
better resolution of cell status in the morphological/texture space, such as the cell cycle stage of a
cell, can reduce the observed cell-cell heterogeneity, and increase the fidelity of the mapping.
Furthermore, within the present framework a better resolution of cell states in the
morphological/texture space can be achieved by including additional features such as organelle

texture and distributions in three-dimensions.

In summary, in this work we demonstrate that live cell imaging is necessary to reveal certain
dynamical features of a CPT process concealed in snapshot data due to cell-cell heterogeneity.
Meanwhile we present a framework that facilitates recent emerging efforts of using live-cell
imaging to investigate how a CPT process proceeds along continuous paths at multiplex, albeit
lower dimensional space, complementing to fixed-cell based approaches that can provide
snapshots of genome-wide expression profiles of individual cells. We expect that the framework

be generally applied since dramatic morphological changes typically accompany a CPT process.
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Materials and Methods

Cell Culture and Treatment

The human non-small cell lung carcinoma line, A549 (ATCC CCL-185) and A549 VIM-RFP
(ATCC CCL-185EMT) were from American Type Culture Collection (ATCC). Cells were
cultured in F-12K medium (Corning) with 10% Fetal Bovine Serum (FBS) in Mattec glass bottom
culture dishes (P35G-0-10-C) in a humidified atmosphere at 37°C and 5% CO,. Culture medium
was changed every 3-5 days. During imaging, Antibiotic-Antimycotic (100X) (Thermo Fisher

15240062) and 10 mM HEPES (Thermo Fisher 15630080) was added to the culture medium.

sgRNA design and cloning into the gRNA-expression vector

The CHOPCHOP website (https://chopchop.rc.fas.harvard.edu/) was used to design high-

performance sgRNAs to target the sequence near the stop codon of the human vimentin gene. The
cleavage activities of the gRNAs were validated using the T7E1 assay according to the
manufacturer’s instructions (NEB, #E3321). The sgRNA  VIM-AS3 (5°-
CTAAATTATCCTATATATCA-3’) was chosen in this study. To generate the sgRNA expressing
vector, VIM-AS-3 gRNA oligos were designed, phosphorylated, annealed, and cloned into the
PX458 (Addgene catalog no. 48138) vector, using BbslI ligation. Multiple colonies were chosen
for Sanger sequencing to identify the correct clones using the primer U6 Fwd: 5’-

AAGTAATAATTTCTTGGGTAGTTTGCAG-3’

Construction of VIM-RFP knock-in donor

The VIM-RFP knock-in donor was designed and constructed to contain approximately 800 bp left
and right homology arms, a Cayenne RFP gene (Atum #FPB-55-609), preceded by a 22 amino
acids linker, and followed by a bovine growth hormone polyadenylation signal sequence. To

assist in drug-based selection of gene edited cell clones, an EF1a-blasticidin selection cassette,
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flanked by Loxp sites, was also cloned into the vector, and positioned upstream of the right

homology arm.
Generation of A549 VIM-RFP reporter cell clones

CRIPSR/Cas9 technology was utilized to incorporate the RFP reporter into the 3’ terminal end of
the vimentin gene. Briefly, A549 cells were plated at a density of 2 x 10° cells/well in a 6-well
plate. After 24 hours, cells were transfected with 4.0 ug PX458 VIM-AS3 plasmid, 4.0 ug VIM-
RFP knock-in donor plasmid, and 24 ul transfeX (ATCC ACS-4005). Blasticidin selection (10
ug/ml) was applied 24 hours post-transfection. RFP positive cells were single cell sorted and

expanded for molecular characterization.
VIM-RFP knock-in clone identification and confirmation

RFP positive A549 VIM-RFP cells were harvested and DNA was extracted using QuickExtract
(Epicentre, QE09050). Primers were designed for left homology arm and right homology arm

junction PCR

(left junction Fwd: 5’-TAGAAACTAATCTGGATTCACTCCCTCTG-3’,
left junction Rev: 5>~ ATGAAGGAGGTAGCCAGGATGTCG-3’;

right homology Fwd: 5’-ATTGCTGCCCTCTGGTTATGTGTG-3’,

right homology Rev: 5~ ATTACACCTACAGTTAGCACCATGCG-3’);

Junction PCR was performed using Phire Hot Start [ DNA Polymerase (Thermo Scientific), and
the PCR amplicons were subjected to Sanger sequencing for identification of clones that

contained the expected junction sequences at both left and right homology junctions.
Immunostaining

A549 VIM-RFP cells were washed with PBS, fixed with 4% formaldehyde, and blocked with 5%

normal goat serum /0.1% Triton X-100 in PBS for 30 mins. Afterwards, the primary antibodies
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were added to the blocking buffer and cells were incubated for 1 hour at room temperature. Cells
were subsequently washed and incubated with the secondary antibodies for 1 hour, wrapped in
aluminum foil. After washing, cells were covered by 50% glycerol and images were taken with a
Nikon Ti-E microscope (Hamamatsu Flash 4.0 V2). The primary antibodies were mouse anti-N-
Cadherin (13A9) (Cell Signaling Technologies, Cat#14215) (1:100 dilution) and mouse anti-Snail
(L70G2) (Cell Signaling Technologies, Cat#3895) (1:300 dilution). For secondary antibodies,
goat anti-mouse Alexa Fluor 647 (Thermo Scientific, Cat #A-21235) was used at a 1:1000

dilution.
EMT Induction

A549 VIM-RFP cells were plated at a density of 1x10* cells/cm® and maintained in F-12K
medium (ATCC 30-2004) supplemented with 10% FBS (ATCC 30-2020). After 24-48 hours,
culture medium was replaced with fresh medium supplemented with 4.0 ng/ml TGF-B (R&D

Systems 240-B) for 1-3 days to induce EMT. Non-treated cells were used as a control.
Matrigel invasion assay

Control and EMT induced A549 VIM-RFP cells were seeded into inserts of Boyden chambers
(BD Biosciences, San Jose, CA) that were pre-coated with Matrigel (1mg/ml), at 5x10* cells per
insert in culture medium without FBS, and then inserts were transferred to wells with culture
medium containing 10% fetal bovine serum as a nutritional attractor. After 24 hours incubation,
invading cells on the bottom side of the insert membrane were fixed with 4% paraformaldehyde
for 2 min, permeabilized with 100% methanol for 20 min, and stained with 0.05% crystal violet
for 15 min at 37°C. Non-invading cells on the top side of the membrane were removed by cotton
swab. Photographs were taken from five random fields per insert. Cells in the five random fields

were counted.

Western blot analyses
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AS549 parental and VIM-RFP cells were harvested and lysed in ice-cold RIPA buffer containing
protease inhibitors, followed by sonication and centrifugation. Supernatant was taken for protein
quantification using the Pierce BCA protein assay kit (Thermo Fisher, cat# 23227). 10ug of
protein was loaded onto a 4-20% Bio-Rad SDS mini-protean TGX gel, which was run at 130V for
approximately 1 hour. The protein was then transferred to a PVDF membrane using the Bio-Rad
wet transfer system at 30V for 2 hours. The membrane was blocked for 1 hour with 5% milk in
TBS-T, then incubated with anti-vimentin antibody (clone D21H3, Cell Signaling Technologies,
(1:500 dilution in 5% milk/TBS-T) and with anti-GAPDH antibody (Abcam, AB37168, 1pug/mL
in 5% milk/TBS-T) overnight at 4°C. The blots were then washed 3 x 15 minutes in TBS-T
followed by secondary antibody incubation using goat anti-rabbit poly clonal horse radish
peroxidase (HRP) conjugated secondary antibody (1:10,000 dilution in 5% milk/TBS-T) for 1
hour at room temperature. The blots were then washed again 3 x15 minutes and treated with Bio-
Rad Clarity ECL for 5 minutes. The blots were developed using a BioRad Gel Doc XR+ imaging

system (BioRad 1708195).

Off Target analysis

The top 10 potential off-target sites against VIM-AS3 gRNA identified by the CHOPCHOP

website (https://chopchop.rc.fas.harvard.edu/) were used to evaluate the off-target cleavage in

A549 VIM-RFP cells. PCR primers were designed to span each of the 10 mis-match off-target
sequences. PCR amplicons were sequenced and mis-match sequences were analyzed for DNA

cleavage.
Imaging

Time-lapse images were taken with a Nikon Ti-E microscope (Hamamatsu Flash 4.0 V2) with
differential interference contrast (DIC) and Tritc channels (Excitation wavelength is 555 nm and
Emission wavelength is 587) (20 x objective, N.A. = 0.75). The cell culture condition was

maintained with Tokai Hit Microscope Stage Top Incubator. Cells were imaged every 5 min with
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the DIC channel and every 10 min with the Tritc channel. The exposure time for DIC was 100 ms
and the exposure time for the Tritc channel was 30 ms. That is, each full (two-day long) single

cell trajectory contains 577 DIC images and 289 fluorescent images.

Single cell segmentation and tracking

We segmented single cells using a previously developed method combining deep convolution
neural networks (DCNN) and watershed(39). To quantify cell morphology, we adopted the active
shape model method(/7, 20). After single cell segmentation, the cell outline was extracted and
resampled into 150 points. All the single cell outlines were aligned to a reference outline
(calculated based on the average of several hundred cells). The 150 points (x and y coordinates)

are the 300 features of cell morphology.

For single cell tracking, we used the TrackObjects module in CellProfiler on the segmented
images using a linear assignment algorithm (40, 41). In long-term imaging, the accurate tracking
of cells can be lost for several reasons, such as cells moving in or out of the field of view, or
inaccurate segmentation. We kept trajectories that were continuously tracked with the starting
point no later than 12 hours and the end point no earlier than 30 hours after adding TGF-3. These
196 trajectories were used for subsequent principal component analysis. Among them, 139 were

identified as reactive trajectories.

Vimentin image analysis

Haralick features have been widely used for classifying normal and tumor cells in the lungs (42),
and the subcellular features or patterns such as protein subcellular locations (43, 44). After cell
segmentation, each cell was extracted and its Haralick features were calculated using mahotas
(45). Haralick features describe the texture as coarse or smooth, and complexity of images(13
features)(43). Haralick feature calculation was based on the grey level co-occurrence matrices

(GLCM) (46). The GLCM’s size was determined by the number of grey levels in the cell image.
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Due to cell heterogeneity, the numbers of grey levels varied in different cells. Because the GLCM
has four directions (0,45, 90 and 135 degrees), the Haralick features were averaged on all four

directions to keep rotation invariance.
Scaling of single cell trajectories

Due to cell heterogeneity, it is more informative to examine the temporal change of an individual
cell relative to its initial state, such as the basal level of gene expression in signal transduction
studies(/0, 47, 48). For the present system, it is the initial position in the combined
morphology/texture space. We used a stay point searching algorithm(49) to find the initial stay
point of each cell in the space of morphology and vimentin Haralick features. For each trajectory,
we scaled all the landmark points by the square root of the area of the initial stay point. Physically,
the latter is a characteristic length of the cell, and the scaling reflects the observation that the cell
size does not affect EMT(50). All the vimentin Haralick features were reset so that the values at
the initial stay point assume zero. The principal components were calculated after scaling. The

scaling allows one to examine the relative temporal variation of single cells.

Principal component analysis (PCA) was performed on all N7 trajectories, i.e., a total of N, (49689
cells) with 300 morphology features (N, x 300 matrix) for linear dimensionality reduction(57).
The first seven components explained more than 98% of the variance. Specifically, the first and
second components explained 82.7% and 10.5% of the variance, respectively. After calculation of
Haralick features for each cell, PCA was calculated on the N.x 13 matrix for linear dimension

reduction.
Procedure of defining regions in the morphology/texture feature space

We fitted the distribution on each of the four morphology/texture coordinates with a two-

component (¢, ,c,) Gaussian mixture model (GMM) separately (Fig. S7TA)(57), and used the four

GMMs to define the E, 1, and M states (Fig. S7B).
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For each single cell in the space of morphology PCI1, vimentin Haralick PC1, PC3 and PC4

X (xi li=1,2, 3,4), the label of each coordinate L, is defined using the GMM with the following

equations:
L ({xl. | p(xi | cl.,o) > 0.5} U{xi < f“c,-,o}) =0

L ({xl. | p(xl. | cl.’l) > 0.9} U{ x>, }) =2

Where p(xi |c[’_"> is the posterior probability of certain component of x,, . and u  are the
mean values of the two components of i —th GMM. The label of complementary set is defined as

1.

With the labels defined on all four coordinates, we first defined the £ state as
S({L, =o}n{L, =0}n{L, =0}n{L,=0})=E,
the M state as
S({L, =2}n{L, =2}n{L, =2}n{L, =2}) =M,

and the / state otherwise. However, this definition suffers from one weakness in that it assigns the
same weight to vimentin Haralick PC1, PC3 and PC4, although vimentin Haralick PC3 and PC4
count for less variance than the PC1 does. Because of this equal weight distribution, small

fluctuations in vimentin Haralick PC3 and PC4 could lead to unstable assignment of cell states.

To solve this problem, we use the above definition as an initial estimate of cell state to fit to a
label spreading function(28, 57). When fitting the label spreading function, we adopted the k-
nearest-neighbor (KNN) method (50 neighbors) and use a high clamping factor (0.5) to assure the
global and local consistency. The KNN algorithm in the label spreading function allows one to

take the different scales of vimentin Haralick PC1, PC3, and PC4, and community structure into
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consideration (Fig. 5C). Since PC1 is more important in defining the range of neighbors, the
weight of PC1 in the definition was automatically increased. This change in definition avoids the
situation that cells belonging to a common community and close to each other in the

morphological/feature space, get assigned to different cell states.
Cross correlation analysis

The cross correlation was used to calculate the time delay between different signals. We observed
different transition time of morphology PC1 and vimentin Haralick PC1. The cross correlation of
the two time series (of morphology PC1 and vimentin Haralick PC1) were calculated(52). The
time lag between the two signals was set for when the value of cross correlation reaches the
maximum(32). We separated all the trajectories by the sign of time delay between morphology

PC1 and vimentin Haralick PCI.
Stochastic simulation on double well potential (Fig. 1)

While a cellular system is far from thermodynamic equilibrium, for simplicity we illustrated the
effect of cell-cell heterogeneity due to hidden slow variables with the following model system

(and the computer code is included as a supplemental file),

2
The potential function is U = ((0 -2h )2 - 2) +3h*, where o is the observable and / is the hidden
slow variable (Fig. 1A).

The simulations were performed using the following procedures:
(1) Generate initial condition (oo,ho) in the left well of this potential of multiple trajectories
(4581) (Fig. STA) with the Metropolis-Hastings algorithm(53).

(2) For each initial condition, with fixed hidden slow variable 4, , propagate the observable o

with Langevin simulations along the 1D potential and with a Gaussian white noise (7 (t)).
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o(t + dt) =0 (t) +dt (8(0 -2h, ) - 4(0 -2h, )3 ) ++/3.24dtn (t) , where dt is 0.01(Figure

S2B shows an example 1D potential with ;= 0.2).

(3) Propagate each trajectory to t = 10.
Network model of EMT (Fig. 6E)

We built the network model by summarizing the existing literature. The EMT morphology
variation is mainly contributed by generation of filament actin and E-cadherin down-regulation,
which can activate the YAP/TAZ pathway (54). YAP/TAZ pathway can induce translocation of
Smad2, which play important roles in EMT(55, 56). Thus, morphology variation can activate both
vimentin and itself. Vimentin can induce the EMT morphological change through regulating p1-
intergrin and E-cadherin(57). Vimentin can be activated upon TGF-8 induction through Slug and
it also activate Slug through dephosphorylation of ERK, which forms a self-activation loop (58).
Vimentin is required for the mediation of Slug and Axl (57, 59-61), and it can induce variation of
cell morphology, motility and adhesion (67). Vimentin fibers regulate cytoskeleton architecture

(57), and more vimentin fibers are assembled in A549 cells during EMT (22).

Next we formulated a mathematical model corresponding to the network:

dM y? Mm*
—=a, +, +V +c -0 M
dt nt b '"V2+Kfm "M*+K}
v M 4

-0V
dt I 7 AE Y. G AR G

Where o, (= 0.1) and o, (= 0.12) are the basal generate rates of morphology variable and
vimentin separately, B and g, are the generate rates of morphology change and vimentin
activated by TGF-B, respectively, v, (= 2.0) and m (= 1.0) are the activation coefficients of

vimentin and morphology to each other, ¢, (= 3.8) and ¢, (= 4.0) are the self-activation
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coefficients of morphology and vimentin, respectively, and K, (= 8.0) , K, (= 8.0) , K,
(=2.4) and K, (=2.4) are the half maximal effective concentrations of the Hill function. §

(1.0) and &, (=1.0) are degradation rates of morphology and vimentin, respectively.

The Langevin simulations were performed as follows:

(1) Set g, and B, as 0 for simulating the control condition (i.e., without TGF-§ treatment).
Initialize a trajectory with random point (A, V) sampled from a uniform distribution within a

range of [0,5). Run simulations with the following equation:

2 4
M(t+dl)=M(t)+dt(am +8, +v, Vzl:szm +c, M‘{ViK; —5mM)+\/E77(t)

2 4
M2+ K2 +c, V‘K—K“ —5VV)+\/E77(I) where dtf was set to

m,

V(t+dt)= V(t)+dt(av +p +m,

be 0.01, and 77(1) was normal Gaussian white noise. The duration of simulation was set to 100.
At the end of the simulation, the cell state relaxed to the basin of the epithelial state (Fig. S9A,
which was then set as the initial condition under TGF-3 treatment.

(2) After generating multiple initial conditions from the first step, increase the values of £ (to
0.6) and B, (to 1.0) to simulate the condition of TGF-B treatment. If the cell gets into the range
that its distance to the attractor of the mesenchymal state (Fig. 6F and Fig. S9B) is less than one,
this trajectory was considered as a trajectory of EMT.

(3) After getting N, (= 185) reactive EMT trajectories, we performed analysis with the

simulated trajectories similar to we did with the experimental trajectories.
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We obtained the steady state probability distribution P_ by solving the diffusion equation (using

oP(M.,V ,t
Matlab 2018a PDEtool), %=-V(P(M,V,t)F(M,V))+%Vzp(M,V,r), where
t
dM dVv . e . . 1
F (M ,V)= o and Dis the diffusion coefficient. With the steady state probability

distribution, we obtained the quasi-potential of EMT defined as U « —ln(R“)(62, 63). Without

TGF-B, there exists a deep basin as epithelial state and a shallow basin as mesenchymal state in
the quasi-potential landscape (Fig. S9A). After TGF- treatment, the landscape is changed, on
which the mesenchymal basin becomes deep, and a valley is formed where the vimentin level is

high (Fig. S9 B and Fig. 6E).
Computer package M-TRACK

The M-track program is written in Python 3 and provided with a graphical user interface (GUI). It
provides tools for analyses of cell morphology with the active shape model, distribution and
texture features of protein or gene florescence in single cell, and single cell trajectories in the PC
domain. The input files include the original grey-level images, segmented cell mask and database
file of tracking results from Cellprofiler. The computer package can be downloaded from GitHub

(https://github.com/opnumten/M-TRACK). Part of the source code is adapted from Celltool(20).

Statistical Analysis
Statistical analyses were performed mainly with Python package including Scipy and Scikit-
learn(517, 52). Student ‘s t-test was used to calculate the statistical difference between different

groups of samples. The samples for imaging were randomly selected to avoid bias.
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Supplementary Materials

. Additional details for the potential system simulations.

Confirmation and characterization of the knock-in for the A549 vimentin-RFP cell line.
Additional examples of single cell trajectories in the morphology PC domain.
Distributions of Haralick features of cells with and without TGF-f3 treatment.
Additional examples of single cell trajectories.

Distributions of various cellular features of cells.

Additional results for defining cell states.

Additional results for EMT path analysis.

Additional results of simulation of EMT network model.

Movie S1: A recorded example live cell EMT trajectory.

Movie S2: Movie of morphology outlines of the EMT trajectory in Movie S1.
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Fig. 1. Hidden slow variables can conceal some dynamical features from snapshot data. (A)
A double well potential with one observable coupled to a hidden variable with dynamics much
slower than that of the process under study. (B) Superimposed trajectories from stochastic
simulation, with two typical trajectories highlighted under different values of hidden slow
variable. Color represents time. (C) Histogram of the observable at various time points, reflecting
the snapshot data. The snapshot data does not follow a bimodal distribution characteristic of the
stepping dynamics due to cell-cell heterogeneity from the coupling between hidden slow variable

and observable.
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scale bar equals 20 um. (C) Matrigel invasion assay of A549 vimentin-RFP cells. After TGF-3

induction, cells show increased invasive capacity, scale bar equals 100um.


https://doi.org/10.1101/2019.12.12.874248
http://creativecommons.org/licenses/by-nc-nd/4.0/

'49

'50

'51

'52

'53

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.12.874248; this version posted January 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
D
0.8 = Mean +1  — ] 0.8 m— Mean — mm= ] s -]
0.4
Y oo
-0.4
-0.8 -0.8
-10 -05 00 05 10 -10 -05 00 05 1.0
X
E
0.6 0.6
0.3 0.3
2N-4
' |
o 203 e(0a = e
-0.3 i=1 -0.3
-0.6 —0.61
—08 -04 00 04 08 -08 -04 00 04 08
F
1.0
lx. 2
0.5 :.' 20
£
0.0 g 3
~ 1
Y -05 % e . 30
s M k o ‘
S-10] " g ¥ 4
2 4 Y Y o
S-15 ..
5 X
il g )
¥y
25 o ¥ *
* we
'
-3.0 . -21, . . . ; ; -
50 25 00 25 50 75 100 125 180 -3 -2 -1 0 1 2 3
Morphology PC1 X

Fig. 3. Single cell trajectories are quantitative represented in the morphology space. (A)
Segmentation of single cells with the DCNN/watershed method. (B) Extraction of cell outline,
alignment to a mean cell shape, and resampling using the active shape model. (C) Representation

of single cell shapes as a point in the 2N - 4 dimensional morphology space. (D) Principal modes
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of variation of morphology. Left: First principal mode; Right: Second principal mode. +1
represents the corresponding morphology’s coordinate value on the axis of PC1 or PC2 is 1. -1
represents the corresponding morphology’s coordinate value on the axis of PC1 or PC2 is -1. The
principal modes reflects the characteristics of cell morphology variation along the axis of PCs. (E)
Reconstruction of cell shapes with principal modes. (F) A typical single cell trajectory in the
leading morphology PC domain (left) and its corresponding contours (triangle dots marked by
arrows in the left that have the same color as the contours) at various time points (right). Color bar

represent time (unit in hour).
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Fig. 4. Haralick features quantify vimentin texture structures. (A) Flowchart of quantification.
Left: typical vimentin fluorescence images of single cell before (top) and after treatment of 4
ng/ml TGF-B for two days (bottom, scale bar is 50 um). Middle: Segmented single cell image
with only pixels inside the cell mark kept for Haralick feature calculations. Right: Framework of
calculating the single cell Haralick features. (B) Typical single cell trajectory on the plane of
vimentin Haralick features PC1 and PC2 (left), and on the plane of PC3 and PC4 (right). Color
bar represents time (units in hours). (C) Segmented single cell images of vimentin at various time

points corresponding to the trajectory in panel B (labeled with large, triangular dots).
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Fig. 5. Single cell EMT states are defined in the morphology/vimentin feature space. (A)
Kernel density plots in the plane of morphology PC1 and vimentin Haralick features PCI
estimated from measured single cell states (represented by dots), at 0 — 2 h (top) and 46 — 48 h
after addition of TGF-B (bottom). (B) Distributions of cells at 0 — 2 h and 46 - 48 h cells after
adding TGF-p in various features. The diagonal axes are plots of kernel density estimation of the
1D distribution of the corresponding features. (C) Scatter plot of 0-2 h data (left) and 46-48 h data
(right) on plane of morphology PC1 and vimentin Haralick features PC1. Color represents cell
state predicted by the fitted label spreading function. E: epithelial state, I: intermediate state, M:

mesenchymal state. (D) A single cell trajectory with its state predicted by the label spreading
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'83  function on the domain of morphology PC1, and vimentin Haralick features PC1 and PC3 (with

'84  states represented by different colors).
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Fig. 6. Single cell trajectory analyses reveal parallel paths of EMT. (A) A typical single cell
trajectory in which the major change along the vimentin Haralick PC1 precedes the major change
along the morphology PC1 (Class I). (B) A typical single cell trajectory in which the morphology
PC1 and vimentin Haralick PC1 show concerted variation (Class II). (C) Projection of reactive
trajectories on 2D t-SNE space using the DTW distances. Color represents labels of k-means

clustering on the DTW distances. (D) Mean trajectories of Class I and II trajectories, respectively.
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They were calculated using the soft-DTW barycenter method. (E) Plausible mechanistic model.
In this network, both morphology and vimentin changes are induced by TGF-p and they both
activate each other and themselves. (F) Transition paths simulated with the model in panel E. The

transition paths show dynamical characteristics similar to those observed experimentally.
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02 Figure S1 Additional details for the potential system simulations. (A) Metropolis-Hastings
103 sampling of the initial conditions of the left well (blue dots). Also shown is the contour plot of the
104  potential system. (B) A 1D potential slice with the hidden slow variable set to be 0.2. All the
105 simulations of single trajectories start from the left well and jump between two wells for a fixed

106  duration. Single trajectory can end in either well.
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Figure S2 Confirmation and characterization of the knock-in for the A549 vimentin-RFP
cell line. (A) Sequencing result of the knock-in for the A549 vimentin-RFP cell line. (B) Western
blot of the knock-in for the A549 vimentin-RFP cell line. (C) Immuno-staining images of Snail
and N-cadherin together with cell shape and vimentin variation after TGF-f induction. After
TGF-B induction, the expression level of snail and N-cadherin increased along with variation of

morphology and vimentin. Scale bar is 50 pm.
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.16  Figure S3 Additional examples of single cell trajectories in the morphology PC domain.
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Figure S4 Distributions of Haralick features of cells with and without TGF-p treatment.

Blue and red color represent cells 0-2 hours and 46-48 hours after adding TGF-p, respectively.
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23 Figure S5 Additional examples of single cell trajectories. The trajectories are plotted in the

24 plane of vimentin Haralick PC1- PC2 (left) and vimentin Haralick PC3-PC4 (right), respectively.
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Figure S6 Distributions of various cellular features of cells. Purple and blue represent results
at 0 — 2 hours and 46 - 48 hours after adding TGF-f3, respectively. The diagonal axes are plots of

kernel density estimation of the 1D distribution of corresponding features.
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Figure S7 Additional results for defining cell states. (A) Log likelihood plots of fitted GMMs
for cell feature distributions of cells 0-2 hours and 46-46 hours after adding TGF-B. (B) Scatter
plots of initial estimate of states of cells at 0-2 hours (top) and 46-48 hours (bottom) on the plane
of morphology PC1 and vimentin Haralick features PC1 defined by GMMs, which were fitted on
morphology PC1, vimentin Haralick features PC1, PC3, and PC4 separately (color represents cell
state). (C) The single cell trajectory in Fig. 5D (top, color represents time in hours) and its state,
predicted by the label spreading function in various representations (bottom, color represents

state).
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40

41 Figure S8 Additional results for EMT path analysis. (A) The single EMT trajectory shown in
42 Fig. 6A in the plane of vimentin Haralick PC3 and PC4 (left) and the single EMT trajectory in
143 Fig.6B on the plane of vimentin Haralick PC3 and PC4 (right). Color represents time in hour. (B)
44 A single EMT trajectory in which morphology PC1 varies much earlier than vimentin Haralick
45 PCI. Color represents time (unit in hour). (C) Scatter plot of all reactive Class I trajectories and
146 the corresponding mean trajectory (top) and scatter plot of all reactive Class I trajectories and the
147 corresponding mean trajectory (bottom). (D) Comparison between the mean trajectories of the
148 two classes in the 3D domain of morphology PC1, vimentin Haralick PC1 and PC3 (top), and in
149 the 3D domain of vimentin Haralick PC1, PC3 and PC4 (bottom). (E) Distribution of reactive
150 trajectories of time delay with maximum cross correlation between morphology PC1 and

51 vimentin Haralick PC1 (top). Mean trajectories (using the soft-DTW barycenter method) of two
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152 groups of trajectories classified by the time delay with maximum cross correlation between

53 morphology PCI1 and vimentin Haralick PC1 (bottom).

54
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Figure S9 Additional results of simulation of EMT network model. (A) Quasi-potential
landscape (left) and vector field (right) of EMT network model without TGF-f treatment. (B)
Quasi-potential landscape of EMT network model with TGF-B treatment. (C) Projection of
simulated reactive trajectories on 2D t-SNE space by using the DTW distances. Color represents
labels of k-means clustering on the DTW distances. (D) Scattered plot of all simulated Class I
trajectories and the corresponding mean trajectory (left), and scattered plot of all simulated Class
IT trajectories and the corresponding mean trajectory (right). (E) Distribution of simulated
trajectories of time delay with maximum cross correlation between morphology and vimentin
(left), and corresponding mean trajectories of two groups of trajectories classified by the time
delay with maximum cross correlation between morphology and vimentin (using the soft-DTW

barycenter method, right).
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Movie S1: A recorded example live cell EMT trajectory. Each frame is a segmented cell mask

cropped from the original recorded vimentin fluorescence image.

Movie S2: Movie of morphology outlines of the EMT trajectory in Movie S1. (top) and its

trajectory in the plane of morphology PC1 and vimentin Haralick PC1 (bottom).
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