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Abstract 22 

Recent advances in single-cell techniques catalyze an emerging field of studying how cells 23 

convert from one phenotype to another, in a step-by-step process. Two grand technical 24 

challenges, however, impede further development of the field. Fixed cell-based approaches can 25 
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provide genome-wide snapshots of cell status but have fundamental limits on revealing temporal 26 

information, and fluorescence-based live cell imaging approaches provide temporal information 27 

but are technically challenging for multiplex long- term imaging. We first developed a live-cell 28 

imaging platform that tracks cellular status change through combining endogenous fluorescent 29 

labeling that minimizes perturbation to cell physiology, and/or live cell imaging of high-30 

dimensional cell morphological and texture features. With our platform and an A549 VIM-RFP 31 

EMT reporter line, live cell trajectories reveal parallel paths of epithelial-to-mesenchymal 32 

transition missing from snapshot data due to cell-cell heterogeneity. Our results emphasize the 33 

necessity of extracting dynamical information of phenotypic transitions from multiplex live cell 34 

imaging. 35 

 36 

MAIN TEXT 37 

Introduction 38 

Cells of a multicellular organism can assume different phenotypes that can have drastically 39 

different morphological and gene expression patterns. A fundamental question in developmental 40 

biology is how a single fertilized egg develops into different cell types in a spatial-temporally 41 

controlled manner. Cell phenotypic transition (CPT) also takes place for differentiated cells under 42 

physiological and pathological conditions. A well-studied example is the epithelial-to-43 

mesenchymal transition (EMT), central to many fundamental biological processes including 44 

embryonic development and tissue regeneration, wound healing, and disease-like states such as 45 

fibrosis and tumor invasiveness (1). One additional example is artificially reprogramming 46 

differentiated cells, such as fibroblasts, into induced pluripotent stem cells and other differentiated 47 

cell types such as neurons and cardiomyocytes (2). CPT is ubiquitous in biology, and a 48 

mechanistic understanding of how a CPT proceeds, emerges as a focused research area with an 49 

ultimate goal of achieving effective control of the phenotype of a cell. 50 
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The CPT studies can also be placed in another large context of studying dynamical processes of 51 

escaping from a metastable state or relaxing to a newly-established stationary state (3). Such 52 

problem has been a focused and still active research topic in physics and chemistry for more than 53 

a century. Formulating CPT as such a problem allows one to apply techniques such as modern 54 

transition path sampling and transition path theory (4), and control theories of dynamical systems, 55 

for mechanistic understanding of the transition bottlenecks, and manipulating the transitions such 56 

as accelerating and directing reprogramming and differentiation processes, and slowing 57 

down/preventing undesirable pathological processes. In return CPT studies can provide 58 

unprecedented multi-dimensional information that is difficult to obtain for a molecular system, 59 

and thus ideal for testing and advancing theoretical studies of non-equilibrium transition 60 

processes. A framework of quantitative description of CPT processes is necessary to catalyze 61 

such epochal convergence of traditionally separated fields. 62 

Recent advances in snapshot single cell techniques, notably single cell RNA-seq and imaging-63 

based techniques, pose potential questions, such as how does a CPT process proceed, step-by-64 

step, along the continuous high-dimensional gene expression (e.g., transcriptome, proteome) 65 

space. These destructive methods, however, are inherently unable to reveal the temporal dynamics 66 

of how an individual cell evolves over time during a CPT. Approaches such as pseudo-time 67 

trajectory analysis (5), ergodic rate analysis (6) and RNA velocities (7) have been developed to 68 

retrieve partial dynamical information from snapshot data. 69 

However, some fundamental limits exist in inferring dynamical information from snapshot data 70 

(8). Figure 1 illustrates that inference from snapshot data unavoidably misses key dynamical 71 

features. A bi-stable system is coupled to a hidden process, e.g., epigenetic modification for a 72 

cellular system, which is slow compared to the transition process being studied (Fig. 1A). 73 

Presence of the slow variable leads to observed heterogeneous dynamics (Fig. 1B, more details of 74 

the simulation are in Fig. S1). Individual trajectories show characteristic stepping dynamics, but 75 
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the transition positions vary among different trajectories due to the system assuming different 76 

values for the hidden slow variable. Consequently, when only snapshot data is available, 77 

information about the temporal correlation of individual cell trajectories is missing, and one 78 

cannot deduce the stepping dynamics (Fig. 1C).  79 

The necessity of live cell trajectories has been illustrated in a number of studies, such as the 80 

information capacity of a signal transduction network (9), incoherent-feedforward loops to detect 81 

only fold change but not the absolute change of an input signal (10), and step-wise cellular 82 

responses to drugs (11).  Two recent studies conclude a linear path for EMT from analyzing 83 

single cell RNA-seq and proteomic data (12, 13). This conclusion, however, is inconsistent with 84 

theoretical predictions of parallel paths for a multi-stable system like EMT (14, 15), raising a 85 

question of whether the linear path is an artifact from snapshot data. Live cell imaging is needed 86 

to address such question. 87 

Therefore, acquiring information from long-term CPT dynamics requires tracking individual cells 88 

through live cell imaging, typically with time-lapse fluorescent imaging. However, identifying 89 

appropriate species that faithfully reflect the process for labeling, and generating such labeling, 90 

can be tedious and time-consuming. Additionally, multiplex and frequent fluorescent image 91 

acquisition over a long period of time, e.g., days, is necessary for characterizing a CPT process, 92 

but is severely limited by the number of available fluorescence channels and cytotoxicity 93 

concerns.  94 

In short, a technical dilemma exists: fixed cell-based techniques provide high-dimensional 95 

expression profiles of individual cells but lack true dynamical information, while fluorescent-96 

labeling based live cell imaging techniques typically provide dynamical information for only a 97 

small number of dynamical variables. To tackle the substantial challenges in CPT studies, here we 98 

develop a framework for extracting cell dynamical information through quantitative analysis of 99 

live cell trajectories in a combined high dimensional cell morphology and expression space. Our 100 
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method resides on the observation that either the expression pattern or cell morphological features 101 

can define a cell state. The latter broadly refers to collective cellular properties such as cell body 102 

shape, organelle distribution, etc., which are convenient for live cell imaging, with and without 103 

labeling. Hundreds of such morphological features have been routinely used in pathology, and in 104 

a number of fixed and live cell studies for defining and studying cell phenotypes, and drug 105 

responses (11). Introduction of this framework allows one to study CPTs in the context of well-106 

established chemical reaction rate theories, specifically the transition path theory and transition 107 

path sampling as mentioned above (4, 16).   108 

We applied this framework to study TGF-β induced EMT in a human A549 cell line with 109 

endogenous vimentin-RFP labeling. We represented cell states in a composite 309 dimensional 110 

feature space of the cell body contour shape and distribution of vimentin, an intermediate filament 111 

and a key mesenchymal marker. While the framework is for morphological features in general, in 112 

this study we focus on the cell body shape, and use cell shape and morphology indistinctively. 113 

Through quantifying time-lapse images, aided by a deep learning based image analysis algorithm, 114 

we were able to define the epithelial and mesenchymal states and unravel two parallel pathways 115 

that EMT proceeds through. We provide a Python package, Multiplex Trajectory Recording and 116 

Analysis of Cellular Kinetics, or M-TRACK, for studying CPT in the morphology/expression 117 

space. The framework will provide a foundation for quantitative experimental and theoretical 118 

studies of CPT dynamics. 119 
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Results  120 

Human A549 cells with endogenous vimentin-RFP labeling were generated using the 121 

CRISPR-Cas9 system 122 

The A549 VIM-RFP cell line was created using CRISPR/Cas9 technology, in which the red 123 

fluorescence protein (RFP) sequence was inserted just before the stop codon of the endogenous 124 

vimentin gene (Fig 2A). The VIM-RFP knock-in allele was confirmed by co-localization 125 

immuno-staining of vimentin and VIM-RFP (Fig. 2B), sequencing (Fig. S2A), and Western blot 126 

(Fig. S2B). With continuous treatment of recombinant human TGF-β1 for two days, most cells 127 

underwent apparent cell shape changes from round polygon shapes to elongated spear shapes. The 128 

A549 VIM-RFP cells have basal vimentin expression, suggesting the cells have already 129 

undergone partial EMT, as previously reported for the parental A549 cells (13). With TGF-β 130 

treatment, the A549 VIM-RFP cells show increased invasive capacity reflecting the functionality 131 

of mesenchymal cells (Fig. 2C). The immuno-staining results showed that Snail1 and N-cadherin 132 

increased their expression (Fig. S2C), further confirming the occurrence of EMT. 133 

A complete orthonormal basis set represents cell body contour shapes  134 

To mathematically describe how a CPT (EMT here) proceeds, one needs to choose a 135 

mathematical representation of cell status at a given time. For representing the cell shape, we 136 

adopted the active shape model that has been widely used in computer based image analyses (17), 137 

and particularly in cell biology studies (18, 19), but here, we use it for the purpose of forming a 138 

complete orthonormal basis set (Fig. 3). That is, we first segmented the images using our 139 

modified deep convolutional neural network procedure (Fig. 3A, see Supplemental Text for 140 

details) and tracked individual cell trajectories. Each cell shape was aligned to a reference shape 141 

and was approximated by N (= 150) landmark points equally spaced along the cell contour (20) 142 

(Fig. 3B). For two-dimensional images, a cell was specified by a point z = (x1, x2, …, xN; y1, y2, 143 

…, yN) in the 2N dimensional shape space (Fig. 3C). By performing principal component analysis 144 
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(PCA) on the data set of a collection of single cell trajectories, one constructs a complete 145 

orthonormal basis set with the 2N − 4 eigenvectors , or the principal modes, for the shape 146 

space. Notice that alignment fixes four degrees of freedom (center and orientation). An attractive 147 

feature of the principal modes is that they have clear physical meanings. For example, the two 148 

leading principal modes of A549 VIM-RFP cells undergoing EMT reflect cell growth along the 149 

long and short axes, respectively (Fig. 3D). Then any cell shape that is approximated by the 150 

landmark point z’(t), which is generally time dependent in live cell imaging, can be expressed as a 151 

linear combination of these principal modes, (Fig. 3E). Therefore, c(t) = 152 

(c1(t),…, c2N-4(t)) forms a trajectory in the shape space expanded by the basis set .  153 

Figure 3F shows a typical trajectory projected to the first two leading principal component (PC) 154 

modes in the shape space and their corresponding time courses of cell contour shape changes. 155 

Over time this cell elongated along the major axis, (PC1) while shortened slightly along the minor 156 

axis, resulting in a long rod shape with enlarged cell size. Two additional trajectories in Fig. S3 157 

further reveal that single cell trajectories are heterogeneous with switch-like or continuous 158 

transitions, while sharing similar elongation of PC1 over time.  159 

Haralick features quantify texture feature change of cytosolic distribution of vimentin 160 

during EMT 161 

During a CPT, cell morphology changes are accompanied by global changes in gene expression 162 

profiles (21). Specifically, in A549 VIM-RFP cells that have been treated with TGF-β for two 163 

days, vimentin was upregulated with a texture structure change from being condensed in certain 164 

regions of the cell to be dispersed throughout the cytosol (Fig. 4A), consistent with previous 165 

reports (22-24). These previous studies used fixed cells, and lack temporal information about the 166 

{ }a

z '(t) = ci (t)ai
i=1

2N−4

∑

{ }a
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vimentin dynamics. Therefore, we recorded the change in vimentin within individual cells with 167 

time-lapse imaging.  168 

Texture features are widely used for image profiling in drug screening, phenotype discovery, and 169 

classification(25-27). We hypothesized that the texture features of vimentin can be quantified as 170 

an indicator of EMT progression. For quantification, we used Haralick features based on the co-171 

occurrence distribution of grey levels. After segmentation, we calculated the grey level co-172 

occurrence matrix (GLCM) in the mask of each cell, and 13 Haralick features based on the single 173 

cell GLCM and averaged all four directions (Fig. 4A, see Method for details). Nearly every 174 

Haralick feature shows a shift in distribution after TGF-β treatment (Fig. S4).  175 

To capture the major variation in vimentin Haralick features during EMT, we performed linear 176 

dimension reduction with PCA (more details are in Method). Figures 4B and 4C show a typical 177 

single cell trajectory in the vimentin Haralick feature space, and corresponding segmented single 178 

cell images at various time-points along this trajectory, respectively. The dynamics in the 179 

vimentin space are again heterogeneous, as indicated here, and from two additional trajectories in 180 

Fig. S5.  181 

A label spreading function divides the combined morphological/texture space into three 182 

regions. 183 

Overall, we described a cell state in a 309 dimensional combined morphological/vimentin texture 184 

space. The cells occupy distinct regions in the morphological and vimentin texture features at the 185 

initial (0-2 hour) and final stages (46-48 hour) of 4 ng/ml TGF-β treatment (Fig. 5A). Physically, 186 

upon TGF-β treatment, the cell population relaxes from an initial stationary distribution in the 187 

morphological/vimentin space into a new one, and this study focuses on the dynamics of this 188 

relaxation process.  189 

 190 
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Close examination reveals major distribution shifts along four coordinates: morphology PC1 191 

(82.7% variance of morphology), vimentin Haralick PC1 (57.0% variance), PC3 (8.9% variance) 192 

and PC4 (5.2% variance) (Fig. 5B, Fig. S6). This observation permits subsequent analyses 193 

restricted to these collective coordinates.  194 

In the transition path theory or transition path sampling (4, 16), one divides the configuration 195 

space describing a reaction system into reactant, intermediate, and product regions. Specifically, 196 

for the present system, we developed a computational procedure that combines Gaussian mixture 197 

model (GMM) analysis of the cell distributions (Fig. S7A & B) followed by fitting a label 198 

spreading function (28) using the k-nearest-neighbor (KNN) method. The procedure divides the 199 

four-dimensional space into epithelial (E, or more precisely partial E for A549 VIM-RFP), 200 

intermediate (I), and mesenchymal (M) regions (Fig. 5C). Figure 5D shows a trajectory that starts 201 

within the E region, then progresses to the I, then the M regions.   202 

Single cell EMT trajectories follow distinct paths  203 

According to the transition path theory, all the single cell trajectories similar to the one in Fig 5D 204 

(and Fig. S7C) that leave the E region, and end in the M region before returning to E, formed an 205 

ensemble of reactive trajectories. Overall, we recorded NT (= 196) acceptable continuous 206 

trajectories (see Methods), among them NR (= 139) are reactive trajectories (Movie S1 and Movie 207 

S2).  208 

Single cell trajectories in the feature space show clear heterogeneous transition dynamics. In one 209 

representative trajectory (Fig. 6A, Fig. S8A left), the cell transits from the E to the M region 210 

following a series of transitions first along the vimentin Haralick PC1, then the morphology PC1. 211 

In contrary, in another trajectory (Fig. 6B, Figure S8A right) the cell proceeds with concerted 212 

morphological and vimentin Haralick feature changes.  213 

 214 
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To systematically study the two types of distinct behaviors, we used soft-dynamic time warping 215 

(DTW)(29) to calculate the distance between different trajectories, and t-SNE to project the 216 

trajectory distance matrix to 2D space(30). We found that these trajectories form two 217 

communities (Fig. 6C). A k-means clustering on these trajectories separated them into two groups, 218 

consistent with the two communities in the t-SNE space. The two groups of trajectories reveal 219 

different dynamical characteristics. In one group (Class I), vimentin Haralick PC1 varies firstly, 220 

followed by dramatic change of morphology PC1. In the other group (Class II), for most 221 

trajectories the morphology PC1 and vimentin Haralick PC1 change concertedly, while for only a 222 

small percentage the morphology PC1 change earlier than that of vimentin Haralick PC1 (Fig. 223 

S8B). Distinction between the two groups of trajectories is apparent from the scattered plot in the 224 

morphology PC1/vimentin Haralick PC1 plane (Fig. S8C), and the non-overlapping mean 225 

trajectories obtained using soft-dynamic time warping (DTW) barycenter(29, 31) (Fig. 6D and 226 

S8D).  227 

To rule out the possibility that the existence of two classes of trajectories is an artifact of DTW, 228 

we analyzed cross correlation between morphology PC1 and vimentin Haralick PC1 of individual 229 

reactive trajectories. Cross-correlation analysis calculates the time delay at which the correlation 230 

between morphology PC1 and vimentin PC1 reaches a maximum value (32). The time delay 231 

shows a stretched distribution (Fig. S8E). A large portion of trajectories have vimentin Haralick 232 

PC1 change prior to morphology PC1 change, while another main group of trajectories have the 233 

time delay between morphology PC1 and vimentin Haralick PC1 close to zero. After separating 234 

the trajectories into two groups based on the sign of time delay, the mean trajectories of the two 235 

groups (Fig. S8E) are similar to what was obtained with k-means clustering on the DTW distance.  236 

Therefore, a main conclusion of this study is that the live cell platform revealed two types of 237 

paths for the TGF-β induced EMT in A549 VIM-RFP cells. Figure 6E shows a plausible 238 

mechanistic model summarizing the existing literature. TGF-β activates morphological change 239 
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and vimentin to induce EMT, while morphological change and vimentin expression can induce 240 

each other and themselves. More details of the model are in Materials and Methods. Computer 241 

simulations with the model followed by k-means clustering on DTW distance reproduce the two 242 

parallel EMT paths (Fig. 6F, Fig. S9C and Fig. S9D). The cross correlation analysis also showed 243 

results similar to what was observed experimentally (Fig. S9E). That is, the live-cell imaging 244 

platform presented here can provide mechanistic insight for further analyses. 245 

 246 

Discussion  247 

Compared to the recent advances of fixed cell based single cell techniques, live cell imaging 248 

remains under-developed especially in studying CPTs due to some technical challenges. 249 

Generally speaking, the degrees of freedom specifying cell coordinates should be experimentally 250 

feasible for live cell measurement, and faithfully represent cell states. However, individual gene 251 

products typically only reflect partial dynamical information of a CPT process, and simultaneous 252 

fluorescence labeling of multiple genes is challenging. Recently, tracking cell morphological 253 

features through live cell imaging, emerges as a means of extracting temporal information about 254 

cellular processes in conjunction with expression-based cell state characterization(11, 33-36). 255 

Cellular and subcellular morphology reflects collective gene expression pattern and cell 256 

phenotype (37, 38). Furthermore, hundreds of or more morphology features such as cell size and 257 

shape can be conveniently extracted from bright field images without necessity of additional 258 

fluorescence labeling. Here, we further developed a quantitative framework for recording and 259 

analyzing single cell trajectories in a combined morphological/expression space, and a 260 

computational package for related image analyses.  261 

Our application to the TGF-β induced A549 VIM-RFP EMT process demonstrates the importance 262 

of extracting dynamical information from live cell data. A cell has a large number of molecular 263 

species that form an intricately connected network, and it interacts with a fluctuating extracellular 264 
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environment, including cell-cell interactions. Consequently, even iso-genetic cells show cell-to-265 

cell heterogeneity, which further manifest as large trajectory-to-trajectory heterogeneity in single 266 

cell CPT dynamics, and some dynamical features characteristic to a particular process might be 267 

unavoidably concealed from snapshot data. Notably, our live cell data revealed information on the 268 

two distinct types of paths of EMT with distinct vimentin dynamics, in agreement with 269 

predictions from a mechanistic model based on previous reports that vimentin is a regulator as 270 

well as a marker of EMT.  271 

For further mechanistic understanding beyond the phenomenological observation of the parallel 272 

paths, one needs to see how the cell expression pattern changes along the paths. One can use the 273 

paths identified from live-cell imaging data, rather than currently used pseudo-trajectory 274 

approaches based on a perceived expression-similarity criterion, to time-order snapshot single cell 275 

data, thus resolving the dilemma experienced in single cell studies. For this purpose, one needs to 276 

establish a mapping system between the morphological/texture space and the expression space. A 277 

better resolution of cell status in the morphological/texture space, such as the cell cycle stage of a 278 

cell, can reduce the observed cell-cell heterogeneity, and increase the fidelity of the mapping. 279 

Furthermore, within the present framework a better resolution of cell states in the 280 

morphological/texture space can be achieved by including additional features such as organelle 281 

texture and distributions in three-dimensions.  282 

In summary, in this work we demonstrate that live cell imaging is necessary to reveal certain 283 

dynamical features of a CPT process concealed in snapshot data due to cell-cell heterogeneity.  284 

Meanwhile we present a framework that facilitates recent emerging efforts of using live-cell 285 

imaging to investigate how a CPT process proceeds along continuous paths at multiplex, albeit 286 

lower dimensional space, complementing to fixed-cell based approaches that can provide 287 

snapshots of genome-wide expression profiles of individual cells. We expect that the framework 288 

be generally applied since dramatic morphological changes typically accompany a CPT process. 289 
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 290 

Materials and Methods 291 

Cell Culture and Treatment 292 

The human non-small cell lung carcinoma line, A549 (ATCC CCL-185) and A549 VIM-RFP 293 

(ATCC CCL-185EMT) were from American Type Culture Collection (ATCC).  Cells were 294 

cultured in F-12K medium (Corning) with 10% Fetal Bovine Serum (FBS) in Mattec glass bottom 295 

culture dishes (P35G-0-10-C) in a humidified atmosphere at 37°C and 5% CO2. Culture medium 296 

was changed every 3-5 days. During imaging, Antibiotic-Antimycotic (100X) (Thermo Fisher 297 

15240062) and 10 mM HEPES (Thermo Fisher 15630080) was added to the culture medium. 298 

sgRNA design and cloning into the gRNA-expression vector 299 

The CHOPCHOP website (https://chopchop.rc.fas.harvard.edu/) was used to design high-300 

performance sgRNAs to target the sequence near the stop codon of the human vimentin gene. The 301 

cleavage activities of the gRNAs were validated using the T7E1 assay according to the 302 

manufacturer’s instructions (NEB, #E3321). The sgRNA VIM-AS3 (5’-303 

CTAAATTATCCTATATATCA-3’) was chosen in this study. To generate the sgRNA expressing 304 

vector, VIM-AS-3 gRNA oligos were designed, phosphorylated, annealed, and cloned into the 305 

PX458 (Addgene catalog no. 48138) vector, using BbsI ligation. Multiple colonies were chosen 306 

for Sanger sequencing to identify the correct clones using the primer U6 Fwd: 5’-307 

AAGTAATAATTTCTTGGGTAGTTTGCAG-3’ 308 

Construction of VIM-RFP knock-in donor 309 

The VIM-RFP knock-in donor was designed and constructed to contain approximately 800 bp left 310 

and right homology arms, a Cayenne RFP gene (Atum #FPB-55-609), preceded by a 22 amino 311 

acids linker, and followed by a bovine growth hormone polyadenylation signal sequence. To 312 

assist in drug-based selection of gene edited cell clones, an EF1α-blasticidin selection cassette, 313 
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flanked by Loxp sites, was also cloned into the vector, and positioned upstream of the right 314 

homology arm.   315 

Generation of A549 VIM-RFP reporter cell clones 316 

CRIPSR/Cas9 technology was utilized to incorporate the RFP reporter into the 3’ terminal end of 317 

the vimentin gene. Briefly, A549 cells were plated at a density of 2 x 105 cells/well in a 6-well 318 

plate. After 24 hours, cells were transfected with 4.0 ug PX458_VIM-AS3 plasmid, 4.0 ug VIM-319 

RFP knock-in donor plasmid, and 24 ul transfeX (ATCC ACS-4005). Blasticidin selection (10 320 

ug/ml) was applied 24 hours post-transfection. RFP positive cells were single cell sorted and 321 

expanded for molecular characterization. 322 

VIM-RFP knock-in clone identification and confirmation 323 

RFP positive A549 VIM-RFP cells were harvested and DNA was extracted using QuickExtract 324 

(Epicentre, QE09050). Primers were designed for left homology arm and right homology arm 325 

junction PCR  326 

(left junction Fwd: 5’-TAGAAACTAATCTGGATTCACTCCCTCTG-3’,  327 

left junction Rev: 5’-ATGAAGGAGGTAGCCAGGATGTCG-3’;  328 

right homology Fwd: 5’-ATTGCTGCCCTCTGGTTATGTGTG-3’,  329 

right homology Rev: 5’-ATTACACCTACAGTTAGCACCATGCG-3’);  330 

Junction PCR was performed using Phire Hot Start II DNA Polymerase (Thermo Scientific), and 331 

the PCR amplicons were subjected to Sanger sequencing for identification of clones that 332 

contained the expected junction sequences at both left and right homology junctions.  333 

Immunostaining 334 

A549 VIM-RFP cells were washed with PBS, fixed with 4% formaldehyde, and blocked with 5% 335 

normal goat serum /0.1% Triton X-100 in PBS for 30 mins. Afterwards, the primary antibodies 336 
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were added to the blocking buffer and cells were incubated for 1 hour at room temperature. Cells 337 

were subsequently washed and incubated with the secondary antibodies for 1 hour, wrapped in 338 

aluminum foil. After washing, cells were covered by 50% glycerol and images were taken with a 339 

Nikon Ti-E microscope (Hamamatsu Flash 4.0 V2). The primary antibodies were mouse anti-N-340 

Cadherin (13A9) (Cell Signaling Technologies, Cat#14215) (1:100 dilution) and mouse anti-Snail 341 

(L70G2) (Cell Signaling Technologies, Cat#3895) (1:300 dilution). For secondary antibodies, 342 

goat anti-mouse Alexa Fluor 647 (Thermo Scientific, Cat #A-21235) was used at a 1:1000 343 

dilution. 344 

EMT Induction 345 

A549 VIM-RFP cells were plated at a density of 1x104 cells/cm2 and maintained in F-12K 346 

medium (ATCC 30-2004) supplemented with 10% FBS (ATCC 30-2020). After 24-48 hours, 347 

culture medium was replaced with fresh medium supplemented with 4.0 ng/ml TGF-β (R&D 348 

Systems 240-B) for 1-3 days to induce EMT. Non-treated cells were used as a control.  349 

Matrigel invasion assay  350 

Control and EMT induced A549 VIM-RFP cells were seeded into inserts of Boyden chambers 351 

(BD Biosciences, San Jose, CA) that were pre-coated with Matrigel (1mg/ml), at 5x104 cells per 352 

insert in culture medium without FBS, and then inserts were transferred to wells with culture 353 

medium containing 10% fetal bovine serum as a nutritional attractor. After 24 hours incubation, 354 

invading cells on the bottom side of the insert membrane were fixed with 4% paraformaldehyde 355 

for 2 min, permeabilized with 100% methanol for 20 min, and stained with 0.05% crystal violet 356 

for 15 min at 37°C. Non-invading cells on the top side of the membrane were removed by cotton 357 

swab. Photographs were taken from five random fields per insert. Cells in the five random fields 358 

were counted. 359 

Western blot analyses 360 
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A549 parental and VIM-RFP cells were harvested and lysed in ice-cold RIPA buffer containing 361 

protease inhibitors, followed by sonication and centrifugation. Supernatant was taken for protein 362 

quantification using the Pierce BCA protein assay kit (Thermo Fisher, cat# 23227). 10µg of 363 

protein was loaded onto a 4-20% Bio-Rad SDS mini-protean TGX gel, which was run at 130V for 364 

approximately 1 hour. The protein was then transferred to a PVDF membrane using the Bio-Rad 365 

wet transfer system at 30V for 2 hours. The membrane was blocked for 1 hour with 5% milk in 366 

TBS-T, then incubated with anti-vimentin antibody (clone D21H3, Cell Signaling Technologies, 367 

(1:500 dilution in 5% milk/TBS-T) and with anti-GAPDH antibody (Abcam, AB37168, 1µg/mL 368 

in 5% milk/TBS-T) overnight at 4°C. The blots were then washed 3 x 15 minutes in TBS-T 369 

followed by secondary antibody incubation using goat anti-rabbit poly clonal horse radish 370 

peroxidase (HRP) conjugated secondary antibody (1:10,000 dilution in 5% milk/TBS-T) for 1 371 

hour at room temperature. The blots were then washed again 3 x15 minutes and treated with Bio-372 

Rad Clarity ECL for 5 minutes. The blots were developed using a BioRad Gel Doc XR+ imaging 373 

system (BioRad 1708195). 374 

Off Target analysis 375 

The top 10 potential off-target sites against VIM-AS3 gRNA identified by the CHOPCHOP 376 

website (https://chopchop.rc.fas.harvard.edu/) were used to evaluate the off-target cleavage in 377 

A549 VIM-RFP cells. PCR primers were designed to span each of the 10 mis-match off-target 378 

sequences. PCR amplicons were sequenced and mis-match sequences were analyzed for DNA 379 

cleavage. 380 

Imaging  381 

Time-lapse images were taken with a Nikon Ti-E microscope (Hamamatsu Flash 4.0 V2) with 382 

differential interference contrast (DIC) and Tritc channels (Excitation wavelength is 555 nm and 383 

Emission wavelength is 587) (20 × objective, N.A. = 0.75). The cell culture condition was 384 

maintained with Tokai Hit Microscope Stage Top Incubator. Cells were imaged every 5 min with 385 
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the DIC channel and every 10 min with the Tritc channel. The exposure time for DIC was 100 ms 386 

and the exposure time for the Tritc channel was 30 ms. That is, each full (two-day long) single 387 

cell trajectory contains 577 DIC images and 289 fluorescent images. 388 

Single cell segmentation and tracking 389 

We segmented single cells using a previously developed method combining deep convolution 390 

neural networks (DCNN) and watershed(39). To quantify cell morphology, we adopted the active 391 

shape model method(17, 20). After single cell segmentation, the cell outline was extracted and 392 

resampled into 150 points. All the single cell outlines were aligned to a reference outline 393 

(calculated based on the average of several hundred cells). The 150 points (x and y coordinates) 394 

are the 300 features of cell morphology.  395 

For single cell tracking, we used the TrackObjects module in CellProfiler on the segmented 396 

images using a linear assignment algorithm (40, 41). In long-term imaging, the accurate tracking 397 

of cells can be lost for several reasons, such as cells moving in or out of the field of view, or 398 

inaccurate segmentation. We kept trajectories that were continuously tracked with the starting 399 

point no later than 12 hours and the end point no earlier than 30 hours after adding TGF-β. These 400 

196 trajectories were used for subsequent principal component analysis. Among them, 139 were 401 

identified as reactive trajectories. 402 

Vimentin image analysis  403 

Haralick features have been widely used for classifying normal and tumor cells in the lungs (42), 404 

and the subcellular features or patterns such as protein subcellular locations (43, 44). After cell 405 

segmentation, each cell was extracted and its Haralick features were calculated using mahotas 406 

(45). Haralick features describe the texture as coarse or smooth, and complexity of images(13 407 

features)(43). Haralick feature calculation was based on the grey level co-occurrence matrices 408 

(GLCM) (46). The GLCM’s size was determined by the number of grey levels in the cell image. 409 
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Due to cell heterogeneity, the numbers of grey levels varied in different cells. Because the GLCM 410 

has four directions (0,45, 90 and 135 degrees), the Haralick features were averaged on all four 411 

directions to keep rotation invariance.  412 

Scaling of single cell trajectories 413 

Due to cell heterogeneity, it is more informative to examine the temporal change of an individual 414 

cell relative to its initial state, such as the basal level of gene expression in signal transduction 415 

studies(10, 47, 48). For the present system, it is the initial position in the combined 416 

morphology/texture space. We used a stay point searching algorithm(49) to find the initial stay 417 

point of each cell in the space of morphology and vimentin Haralick features. For each trajectory, 418 

we scaled all the landmark points by the square root of the area of the initial stay point. Physically, 419 

the latter is a characteristic length of the cell, and the scaling reflects the observation that the cell 420 

size does not affect EMT(50). All the vimentin Haralick features were reset so that the values at 421 

the initial stay point assume zero. The principal components were calculated after scaling. The 422 

scaling allows one to examine the relative temporal variation of single cells.  423 

Principal component analysis (PCA) was performed on all NT trajectories, i.e., a total of Nc (49689 424 

cells) with 300 morphology features (Nc × 300 matrix) for linear dimensionality reduction(51). 425 

The first seven components explained more than 98% of the variance. Specifically, the first and 426 

second components explained 82.7% and 10.5% of the variance, respectively. After calculation of 427 

Haralick features for each cell, PCA was calculated on the Nc× 13 matrix for linear dimension 428 

reduction. 429 

Procedure of defining regions in the morphology/texture feature space 430 

We fitted the distribution on each of the four morphology/texture coordinates with a two-431 

component ( , ) Gaussian mixture model (GMM) separately (Fig. S7A)(51), and used the four 432 

GMMs to define the E, I, and M states (Fig. S7B).  433 

1c 2c
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For each single cell in the space of morphology PC1, vimentin Haralick PC1, PC3 and PC4 434 

, the label of each coordinate  is defined using the GMM with the following 435 

equations: 436 

  437 

  438 

Where  is the posterior probability of certain component of ,  and  are the 439 

mean values of the two components of GMM. The label of complementary set is defined as 440 

1. 441 

With the labels defined on all four coordinates, we first defined the E state as 442 

, 443 

the M state as  444 

, 445 

and the I state otherwise. However, this definition suffers from one weakness in that it assigns the 446 

same weight to vimentin Haralick PC1, PC3 and PC4, although vimentin Haralick PC3 and PC4 447 

count for less variance than the PC1 does. Because of this equal weight distribution, small 448 

fluctuations in vimentin Haralick PC3 and PC4 could lead to unstable assignment of cell states.  449 

To solve this problem, we use the above definition as an initial estimate of cell state to fit to a 450 

label spreading function(28, 51). When fitting the label spreading function, we adopted the k-451 

nearest-neighbor (KNN) method (50 neighbors) and use a high clamping factor (0.5) to assure the 452 

global and local consistency. The KNN algorithm in the label spreading function allows one to 453 

take the different scales of vimentin Haralick PC1, PC3, and PC4, and community structure into 454 

( )| 1,2,3,4iX x i = iL

( ){ } { }( ),0,0| | 0.5 0
ii i i i i cL x p x c x µ> ∪ < =

( ){ } { }( ),1,1| | 0.9  2
ii i i i cL x p x c x µ> ∪ > =

( ),...|i ip x c ix ,0ic
µ

,1ic
µ

i − th

{ } { } { } { }( )1 2 3 40 0 0 0S L L L L E= ∩ = ∩ = ∩ = =

{ } { } { } { }( )1 2 3 42 2 2 2S L L L L M= ∩ = ∩ = ∩ = =
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consideration (Fig. 5C). Since PC1 is more important in defining the range of neighbors, the 455 

weight of PC1 in the definition was automatically increased. This change in definition avoids the 456 

situation that cells belonging to a common community and close to each other in the 457 

morphological/feature space, get assigned to different cell states. 458 

Cross correlation analysis 459 

The cross correlation was used to calculate the time delay between different signals. We observed 460 

different transition time of morphology PC1 and vimentin Haralick PC1. The cross correlation of 461 

the two time series (of morphology PC1 and vimentin Haralick PC1) were calculated(52). The 462 

time lag between the two signals was set for when the value of cross correlation reaches the 463 

maximum(32). We separated all the trajectories by the sign of time delay between morphology 464 

PC1 and vimentin Haralick PC1.  465 

Stochastic simulation on double well potential (Fig. 1) 466 

While a cellular system is far from thermodynamic equilibrium, for simplicity we illustrated the 467 

effect of cell-cell heterogeneity due to hidden slow variables with the following model system 468 

(and the computer code is included as a supplemental file), 469 

The potential function is , where o is the observable and h is the hidden 470 

slow variable (Fig. 1A).  471 

The simulations were performed using the following procedures: 472 

(1) Generate initial condition  in the left well of this potential of multiple trajectories 473 

(4581) (Fig. S1A) with the Metropolis-Hastings algorithm(53). 474 

(2) For each initial condition, with fixed hidden slow variable , propagate the observable  475 

with Langevin simulations along the 1D potential and with a Gaussian white noise ( ( )tη ).476 

( )( )
22 42 2 3U o h h= − − +

( )0 0,o h

0h o
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( ) ( ) ( ) ( )( ) ( )3
0 08 2 4 2 3.24o t dt o t dt o h o h dt tη+ = + − − − + , where  is 0.01(Figure 477 

S2B shows an example 1D potential with = 0.2).  478 

(3) Propagate each trajectory to t = 10. 479 

Network model of EMT (Fig. 6E) 480 

We built the network model by summarizing the existing literature. The EMT morphology 481 

variation is mainly contributed by generation of filament actin and E-cadherin down-regulation, 482 

which can activate the YAP/TAZ pathway (54). YAP/TAZ pathway can induce translocation of 483 

Smad2, which play important roles in EMT(55, 56). Thus, morphology variation can activate both 484 

vimentin and itself. Vimentin can induce the EMT morphological change through regulating β1-485 

intergrin and E-cadherin(57). Vimentin can be activated upon TGF-β induction through Slug and 486 

it also activate Slug through dephosphorylation of ERK, which forms a self-activation loop (58). 487 

Vimentin is required for the mediation of Slug and Axl (57, 59-61), and it can induce variation of 488 

cell morphology, motility and adhesion (61). Vimentin fibers regulate cytoskeleton architecture 489 

(57), and more vimentin fibers are assembled in A549 cells during EMT (22). 490 

Next we formulated a mathematical model corresponding to the network: 491 

2 4

2 2 4 4
m

m m m m m
v m

dM V Mv c M
dt V K M K

α β δ= + + + −
+ +

 492 

2 4

2 2 4 4
v

v v v v v
m v

dV M Vm c V
dt M K V K

α β δ= + + + −
+ +

 493 

Where mα (= 0.1) and vα (= 0.12) are the basal generate rates of morphology variable and 494 

vimentin separately, mβ  and vβ  are the generate rates of morphology change and vimentin 495 

activated by TGF-β, respectively, mv (= 2.0) and vm (= 1.0) are the activation coefficients of 496 

vimentin and morphology to each other, mc (= 3.8) and vc (= 4.0) are the self-activation 497 

dt

0h
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coefficients of morphology and vimentin, respectively, and 
mv

K （= 8.0）, 
vm

K （= 8.0）, vK  498 

（= 2.4）and mK （= 2.4） are the half maximal effective concentrations of the Hill function. mδ499 

（1.0） and vδ  （= 1.0）are degradation rates of morphology and vimentin, respectively. 500 

The Langevin simulations were performed as follows: 501 

(1) Set mβ and vβ  as 0 for simulating the control condition (i.e., without TGF-β treatment). 502 

Initialize a trajectory with random point ( 0M , 0V ) sampled from a uniform distribution within a 503 

range of [0,5) . Run simulations with the following equation: 504 

( ) ( ) ( )
2 4

2 2 4 4
m

m m m m m
v m

V MM t dt M t dt v c M dt t
V K M K

α β δ η
⎛ ⎞

+ = + + + + − +⎜ ⎟⎜ ⎟+ +⎝ ⎠
 505 

( ) ( ) ( )
2 4

2 2 4 4
v

v v v v v
m v

M VV t dt V t dt m c V dt t
M K V K

α β δ η
⎛ ⎞

+ = + + + + − +⎜ ⎟⎜ ⎟+ +⎝ ⎠
 where dt  was set to 506 

be 0.01, and ( )tη  was normal Gaussian white noise. The duration of simulation was set to 100. 507 

At the end of the simulation, the cell state relaxed to the basin of the epithelial state (Fig. S9A, 508 

which was then set as the initial condition under TGF-β treatment. 509 

(2) After generating multiple initial conditions from the first step, increase the values of mβ (to 510 

0.6) and vβ (to 1.0) to simulate the condition of TGF-β treatment. If the cell gets into the range 511 

that its distance to the attractor of the mesenchymal state (Fig. 6F and Fig. S9B) is less than one, 512 

this trajectory was considered as a trajectory of EMT.  513 

(3) After getting simuN (= 185) reactive EMT trajectories, we performed analysis with the 514 

simulated trajectories similar to we did with the experimental trajectories.  515 
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We obtained the steady state probability distribution ssP  by solving the diffusion equation (using 516 

Matlab 2018a PDEtool), ( ) ( ) ( )( ) ( )2, ,
, , , , ,

2
P M V t DP M V t F M V P M V t

t
∂

= −∇ + ∇
∂

, where 517 

( ), ,dM dVF M V
dt dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and D is the diffusion coefficient. With the steady state probability 518 

distribution, we obtained the quasi-potential of EMT defined as ( )ln ssU P∝− (62, 63). Without 519 

TGF-β, there exists a deep basin as epithelial state and a shallow basin as mesenchymal state in 520 

the quasi-potential landscape (Fig. S9A). After TGF-β treatment, the landscape is changed, on 521 

which the mesenchymal basin becomes deep, and a valley is formed where the vimentin level is 522 

high (Fig. S9 B and Fig. 6E).  523 

Computer package M-TRACK 524 

The M-track program is written in Python 3 and provided with a graphical user interface (GUI). It 525 

provides tools for analyses of cell morphology with the active shape model, distribution and 526 

texture features of protein or gene florescence in single cell, and single cell trajectories in the PC 527 

domain.  The input files include the original grey-level images, segmented cell mask and database 528 

file of tracking results from Cellprofiler. The computer package can be downloaded from GitHub 529 

(https://github.com/opnumten/M-TRACK). Part of the source code is adapted from Celltool(20). 530 

Statistical Analysis 531 

Statistical analyses were performed mainly with Python package including Scipy and Scikit-532 

learn(51, 52). Student ‘s t-test was used to calculate the statistical difference between different 533 

groups of samples. The samples for imaging were randomly selected to avoid bias.  534 

 535 
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H2: Supplementary Materials 536 

Fig. S1. Additional details for the potential system simulations. 537 

Fig. S2. Confirmation and characterization of the knock-in for the A549 vimentin-RFP cell line. 538 

Fig. S3. Additional examples of single cell trajectories in the morphology PC domain. 539 

Fig. S4. Distributions of Haralick features of cells with and without TGF-β treatment. 540 

Fig. S5. Additional examples of single cell trajectories.   541 

Fig. S6. Distributions of various cellular features of cells.   542 

Fig. S7. Additional results for defining cell states. 543 

Fig. S8. Additional results for EMT path analysis. 544 

Fig. S9. Additional results of simulation of EMT network model. 545 

Movie S1: A recorded example live cell EMT trajectory.  546 

Movie S2: Movie of morphology outlines of the EMT trajectory in Movie S1.  547 

 548 
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Figures  732 

 733 

Fig. 1. Hidden slow variables can conceal some dynamical features from snapshot data. (A) 734 

A double well potential with one observable coupled to a hidden variable with dynamics much 735 

slower than that of the process under study. (B) Superimposed trajectories from stochastic 736 

simulation, with two typical trajectories highlighted under different values of hidden slow 737 

variable. Color represents time. (C) Histogram of the observable at various time points, reflecting 738 

the snapshot data. The snapshot data does not follow a bimodal distribution characteristic of the 739 

stepping dynamics due to cell-cell heterogeneity from the coupling between hidden slow variable 740 

and observable.  741 
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 742 

Fig. 2. The generated A549 vimentin-RFP cell line was confirmed for physiology. (A) The 743 

Vimentin RFP knock-in donor. Schema of CRISPR-Cas9 mediated generation of VIM-RFP 744 

knock-in allele. (B) Colocalization immuno-staining of vimentin and endogenous vimentin RFP, 745 

scale bar equals 20 µm. (C) Matrigel invasion assay of A549 vimentin-RFP cells. After TGF-β 746 

induction, cells show increased invasive capacity, scale bar equals 100µm. 747 
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 749 

Fig. 3. Single cell trajectories are quantitative represented in the morphology space. (A) 750 

Segmentation of single cells with the DCNN/watershed method. (B) Extraction of cell outline, 751 

alignment to a mean cell shape, and resampling using the active shape model. (C) Representation 752 

of single cell shapes as a point in the 2N - 4 dimensional morphology space. (D) Principal modes 753 
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of variation of morphology. Left: First principal mode; Right: Second principal mode. +1 754 

represents the corresponding morphology’s coordinate value on the axis of PC1 or PC2 is 1. -1 755 

represents the corresponding morphology’s coordinate value on the axis of PC1 or PC2 is -1. The 756 

principal modes reflects the characteristics of cell morphology variation along the axis of PCs. (E) 757 

Reconstruction of cell shapes with principal modes. (F) A typical single cell trajectory in the 758 

leading morphology PC domain (left) and its corresponding contours (triangle dots marked by 759 

arrows in the left that have the same color as the contours) at various time points (right). Color bar 760 

represent time (unit in hour).  761 
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 763 

Fig. 4. Haralick features quantify vimentin texture structures. (A) Flowchart of quantification. 764 

Left: typical vimentin fluorescence images of single cell before (top) and after treatment of 4 765 

ng/ml TGF-β for two days (bottom, scale bar is 50 µm). Middle: Segmented single cell image 766 

with only pixels inside the cell mark kept for Haralick feature calculations. Right: Framework of 767 

calculating the single cell Haralick features. (B) Typical single cell trajectory on the plane of 768 

vimentin Haralick features PC1 and PC2 (left), and on the plane of PC3 and PC4 (right). Color 769 

bar represents time (units in hours). (C) Segmented single cell images of vimentin at various time 770 

points corresponding to the trajectory in panel B (labeled with large, triangular dots).  771 

 772 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2019.12.12.874248doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 773 

Fig. 5. Single cell EMT states are defined in the morphology/vimentin feature space. (A) 774 

Kernel density plots in the plane of morphology PC1 and vimentin Haralick features PC1 775 

estimated from measured single cell states (represented by dots), at 0 – 2 h (top) and 46 – 48 h 776 

after addition of TGF-β (bottom). (B) Distributions of cells at 0 – 2 h and 46 - 48 h cells after 777 

adding TGF-β in various features. The diagonal axes are plots of kernel density estimation of the 778 

1D distribution of the corresponding features. (C) Scatter plot of 0-2 h data (left) and 46-48 h data 779 

(right) on plane of morphology PC1 and vimentin Haralick features PC1. Color represents cell 780 

state predicted by the fitted label spreading function. E: epithelial state, I: intermediate state, M: 781 

mesenchymal state. (D) A single cell trajectory with its state predicted by the label spreading 782 
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function on the domain of morphology PC1, and vimentin Haralick features PC1 and PC3 (with 783 

states represented by different colors). 784 
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 786 

 787 

Fig. 6. Single cell trajectory analyses reveal parallel paths of EMT. (A) A typical single cell 788 

trajectory in which the major change along the vimentin Haralick PC1 precedes the major change 789 

along the morphology PC1 (Class I). (B) A typical single cell trajectory in which the morphology 790 

PC1 and vimentin Haralick PC1 show concerted variation (Class II). (C) Projection of reactive 791 

trajectories on 2D t-SNE space using the DTW distances. Color represents labels of k-means 792 

clustering on the DTW distances. (D) Mean trajectories of Class I and II trajectories, respectively. 793 
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They were calculated using the soft-DTW barycenter method. (E) Plausible mechanistic model. 794 

In this network, both morphology and vimentin changes are induced by TGF-β and they both 795 

activate each other and themselves. (F) Transition paths simulated with the model in panel E. The 796 

transition paths show dynamical characteristics similar to those observed experimentally. 797 
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Supplementary Materials 799 

 800 

 801 

Figure S1 Additional details for the potential system simulations. (A) Metropolis-Hastings 802 

sampling of the initial conditions of the left well (blue dots). Also shown is the contour plot of the 803 

potential system. (B) A 1D potential slice with the hidden slow variable set to be 0.2. All the 804 

simulations of single trajectories start from the left well and jump between two wells for a fixed 805 

duration. Single trajectory can end in either well. 806 
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 807 

Figure S2 Confirmation and characterization of the knock-in for the A549 vimentin-RFP 808 

cell line. (A) Sequencing result of the knock-in for the A549 vimentin-RFP cell line. (B) Western 809 

blot of the knock-in for the A549 vimentin-RFP cell line. (C) Immuno-staining images of Snail 810 

and N-cadherin together with cell shape and vimentin variation after TGF-β induction. After 811 

TGF-β induction, the expression level of snail and N-cadherin increased along with variation of 812 

morphology and vimentin. Scale bar is 50 µm. 813 

 814 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2019.12.12.874248doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 815 

Figure S3 Additional examples of single cell trajectories in the morphology PC domain. 816 

 817 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2020. ; https://doi.org/10.1101/2019.12.12.874248doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 818 

Figure S4 Distributions of Haralick features of cells with and without TGF-β treatment. 819 

Blue and red color represent cells 0-2 hours and 46-48 hours after adding TGF-β, respectively. 820 
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 822 

Figure S5 Additional examples of single cell trajectories.  The trajectories are plotted in the 823 

plane of vimentin Haralick PC1- PC2 (left) and vimentin Haralick PC3-PC4 (right), respectively.  824 
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 826 

Figure S6 Distributions of various cellular features of cells.  Purple and blue represent results 827 

at 0 – 2 hours and 46 - 48 hours after adding TGF-β, respectively. The diagonal axes are plots of 828 

kernel density estimation of the 1D distribution of corresponding features. 829 
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Figure S7 Additional results for defining cell states. (A) Log likelihood plots of fitted GMMs 832 

for cell feature distributions of cells 0-2 hours and 46-46 hours after adding TGF-β. (B) Scatter 833 

plots of initial estimate of states of cells at 0-2 hours (top) and 46-48 hours (bottom) on the plane 834 

of morphology PC1 and vimentin Haralick features PC1 defined by GMMs, which were fitted on 835 

morphology PC1, vimentin Haralick features PC1, PC3, and PC4 separately (color represents cell 836 

state). (C) The single cell trajectory in Fig. 5D (top, color represents time in hours) and its state, 837 

predicted by the label spreading function in various representations (bottom, color represents 838 

state).  839 
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 840 

Figure S8 Additional results for EMT path analysis. (A) The single EMT trajectory shown in 841 

Fig. 6A in the plane of vimentin Haralick PC3 and PC4 (left) and the single EMT trajectory in 842 

Fig.6B on the plane of vimentin Haralick PC3 and PC4 (right). Color represents time in hour. (B) 843 

A single EMT trajectory in which morphology PC1 varies much earlier than vimentin Haralick 844 

PC1. Color represents time (unit in hour). (C) Scatter plot of all reactive Class I trajectories and 845 

the corresponding mean trajectory (top) and scatter plot of all reactive Class I trajectories and the 846 

corresponding mean trajectory (bottom). (D) Comparison between the mean trajectories of the 847 

two classes in the 3D domain of morphology PC1, vimentin Haralick PC1 and PC3 (top), and in 848 

the 3D domain of vimentin Haralick PC1, PC3 and PC4 (bottom). (E) Distribution of reactive 849 

trajectories of time delay with maximum cross correlation between morphology PC1 and 850 

vimentin Haralick PC1 (top). Mean trajectories (using the soft-DTW barycenter method) of two 851 
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groups of trajectories classified by the time delay with maximum cross correlation between 852 

morphology PC1 and vimentin Haralick PC1 (bottom).  853 
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 855 

Figure S9 Additional results of simulation of EMT network model. (A) Quasi-potential 856 

landscape (left) and vector field (right) of EMT network model without TGF-β treatment. (B) 857 

Quasi-potential landscape of EMT network model with TGF-β treatment. (C) Projection of 858 

simulated reactive trajectories on 2D t-SNE space by using the DTW distances. Color represents 859 

labels of k-means clustering on the DTW distances. (D) Scattered plot of all simulated Class I 860 

trajectories and the corresponding mean trajectory (left), and scattered plot of all simulated Class 861 

II trajectories and the corresponding mean trajectory (right). (E) Distribution of simulated 862 

trajectories of time delay with maximum cross correlation between morphology and vimentin 863 

(left), and corresponding mean trajectories of two groups of trajectories classified by the time 864 

delay with maximum cross correlation between morphology and vimentin (using the soft-DTW 865 

barycenter method, right).  866 
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Movie S1: A recorded example live cell EMT trajectory. Each frame is a segmented cell mask 868 

cropped from the original recorded vimentin fluorescence image. 869 

Movie S2: Movie of morphology outlines of the EMT trajectory in Movie S1. (top) and its 870 

trajectory in the plane of morphology PC1 and vimentin Haralick PC1 (bottom). 871 
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