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 17 
ABSTRACT  18 

Understanding factors influencing microbial interactions, and designing methods to identify key 19 

taxa, are complex challenges for achieving microbiome-based agriculture. Here we study how 20 

grafting and the choice of rootstock influence root-associated fungal communities in a grafted 21 

tomato system. We studied three tomato rootstocks (BHN589, RST-04-106 and Maxifort) grafted to 22 

a BHN589 scion and profiled the fungal communities in the endosphere and rhizosphere by 23 

sequencing the Internal Transcribed Spacer (ITS2). The data provided evidence for a rootstock 24 

effect (explaining ~2% of the total captured variation, p < 0.01) on the fungal community. 25 

Moreover, the most productive rootstock, Maxifort, supported greater fungal species richness than 26 

the other rootstocks or controls. We then constructed a phenotype-OTU network analysis 27 

(PhONA) using an integrated machine learning and network analysis approach based on sequence-28 

based fungal Operational Taxonomic Units (OTUs) and associated tomato yield data. PhONA 29 

provides a graphical framework to select a testable and manageable number of OTUs to support 30 

microbiome-enhanced agriculture. We identified differentially abundant OTUs specific to each 31 

rootstock in both endosphere and rhizosphere compartments. Subsequent analyses using PhONA 32 

identified OTUs that were directly associated with tomato fruit yield, and others that were indirectly 33 

linked to yield through their links to these OTUs. Fungal OTUs that are directly or indirectly linked 34 

with tomato yield may represent candidates for synthetic communities to be explored in agricultural 35 

systems. 36 

 37 

  38 
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IMPORTANCE 39 

The realized benefits of microbiome analyses for plant health and disease management are often 40 

limited by the lack of methods to select manageable and testable synthetic microbiomes. We 41 

evaluated the composition and diversity of root-associated fungal communities from grafted 42 

tomatoes. We then constructed a phenotype-OTU network analysis (PhONA) using these linear and 43 

network models. By incorporating yield data in the network, PhONA identified OTUs that were 44 

directly predictive of tomato yield, and others that were indirectly linked to yield through their links 45 

to these OTUs. Follow-up functional studies of taxa associated with effective rootstocks, identified 46 

using approaches like PhONA, could support the design of synthetic fungal communities for 47 

microbiome-based crop production and disease management. The PhONA framework is flexible for 48 

incorporation of other phenotypic data and the underlying models can readily be generalized to 49 

accommodate other microbiome or other ‘omics data.  50 

 51 
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Introduction 54 

Interactions are key to defining system behaviors, structures, and outcomes. In microbial systems, 55 

interactions among organisms define their distribution, assemblies, and ecosystem functions. In 56 

addition to microbe-microbe interactions, microbes interact with their hosts, and are essential to 57 

host health and performance (1-8). In agriculture, plant–microbe interactions improve plant 58 

productivity by providing access to nutrients (9-11), reducing infection by plant pathogens (5, 12), 59 

triggering plant growth promoting factors (13, 14), and enhancing plant resistance (15, 16) and 60 

tolerance to abiotic stresses (17-19). Although the importance of microbes and host-microbe 61 

interactions to host health and ecological processes is well-known, interaction-based approaches to 62 

manage crop-production remain a scientific frontier. Past attempts to translate information about 63 

microbial interactions to design biocontrol agents or biofertilizers have often had limited efficacy 64 

and durability (20, 21). Most microbial inocula have been applied as single species, often selected 65 

based on pairwise relations of microbes with a pathogen or the host. Interactions among microbes 66 

as well as with the host are important, and the net outcome of these complex interactions defines 67 

host health and ecosystem functions(22). Thus, it is critical to understand the ecology of microbes 68 

selected for biological applications, and systems approaches centered on host-microbe interaction 69 

can help guide the selection of microbes for synthetic communities(23).  70 

Among tools to better understand microbial interactions, network models of microbial 71 

communities, and studies of network structures and key groups, have proven popular for generating 72 

hypotheses about how to engineer microbial consortia. In such network models of microbiomes, a 73 

node represents an OTU, and a link exists between two OTUs if their sequence proportions are 74 

significantly associated across samples. When evaluated with other conventional measures of 75 

microbial community structures, such as diversity indices, network models can be used to identify 76 

hub taxa that may be key to maintaining microbial assemblages and diversity (24), or to evaluate 77 

changes in community complexity and interactions in response to experimental treatments (25). 78 

Microbiome networks are useful for describing general community structures and their key 79 

properties and are often the most practical option when additional information about species 80 

interactions is missing or the goal is to compare across studies with different types of data (26, 27).  81 

The utility of network analysis for identifying candidate assemblages for biocontrol can be enhanced 82 

by incorporating nodes that represent other additional types of features (28, 29). For instance, a 83 

novel association of host metadata with the microbiome was revealed in an integrated microbiome-84 

metadata network (30), where a feature strongly associated with hub microbes can serve as a marker 85 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.12.874966doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874966


 5 

to measure host performance. In agriculture, plant yield or other phenotypic traits can be integrated 86 

in microbiome networks, with the potential to identify microbial consortia that are predictive of host 87 

phenotypes. Because such models include host phenotypes, they facilitate finding candidate sets of 88 

OTUs that may directly or indirectly affect host phenotypic traits. Visualization of networks is often 89 

valuable for this purpose, but the real value of phenotype-based network models is their ability to 90 

infer potential candidate taxa or consortia. The hypothesized beneficial sets of OTUs may represent 91 

targets for pure culturing efforts or, if cultures exist, the sets can be further evaluated in laboratory 92 

or field studies. 93 

While phenotype-based network models have the potential to identify key taxa, application 94 

of such models should be integrated with findings from other community analyses so that the 95 

inference about key taxa is biologically and ecologically meaningful. For example, plant microbiome 96 

studies indicate that a small but consistent proportion of variation in microbial communities is often 97 

explained by the host genotype (31-37), indicating the potential for genotype-based modulation of 98 

microbial communities in crop-production on a broader scale. These results support the idea of 99 

host-specific microbial community selection (38). Many such microbes may be taxa that are 100 

evolutionarily essential for the survival and function of plants (39, 40). In addition, the extent of host 101 

genotype filtering of microbes differs across the rhizosphere, rhizoplane, and endosphere, and varies 102 

from one host species to another (41-43). Results that indicate microbial filtering by different crop 103 

hosts, plant compartments, geographic locations, and environmental factors (44, 45) are promising 104 

for designing experiments to minimize the search space, or necessary sample numbers, to identify 105 

candidate taxa for synthetic communities. For instance, factors that explain great variation in 106 

microbial community composition, but that are outside the control of management, can be treated 107 

as blocks in experimental designs, so that host- or compartment-specific effects on the microbial 108 

community can be searched to identify the most desirable candidate taxa.  109 

In our current study, building on previously described agricultural experiments in grafted 110 

tomato systems (46, 47), we characterized the root-associated fungal (RAF) communities and 111 

implemented an interaction-based approach to select potential candidate fungi that are predictive of 112 

tomato yield and/or that are in significant association with other fungal taxa. The new phenotype-113 

OTU network analysis (PhONA) is a method for network-visualization and a framework to support 114 

the selection of candidate taxa and to integrate system traits (such as host yield) in microbe-microbe 115 

association networks. PhONA first identifies OTUs predictive of phenotype using lasso regression, 116 

then uses the predicted OTUs from lasso regression to build a reduced GLM. PhONA then 117 
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combines the GLM results indicating positive or negative associations of the predicted OTUs with 118 

the host phenotype as well as with other OTUs in a network model (Fig. 1). Due to the large 119 

number of OTUs compared to the sample size, lasso regression was used because it is suited for 120 

minimizing overfitting when applied with a relatively small sample size (48) and has been 121 

implemented in microbiome studies (49, 50).  122 

Phenotype-based selection of microbial consortia is promising as an effective approach to 123 

select representative microbial taxa and could support the design of microbiome-based products. 124 

Changes in abundance (51), successive selection over multiple generations (3), or analyses of binary 125 

host-microbe relationships (52) are some of the recent phenotype-based applications to select 126 

candidate taxa for biological applications. Despite the importance of biological test-based 127 

approaches, difficulty in culturing all the microbes makes computational approaches instrumental to 128 

define microbe-microbe and host-microbiome associations, and to identify the biological and 129 

ecological key taxa. Tools to describe the community structures based on the co-occurrence matrix 130 

or covariance structures (53, 54) are more common, whereas tools to integrate host phenotype or 131 

environmental factors are at an earlier phase of development. Relatively small sample sizes 132 

combined with large number of features may limit applications of the recent graph-based 133 

approaches. Such methods allow measurement of direct associations via conditional dependence 134 

structures and offer options to include environmental and phenotypic information in the model (55).  135 

CoNet (56) and Flashweave (55) allow representation of the phenotype or an environmental variable 136 

as an extra node or a column in the adjacency matrix, and the same statistical method can be applied 137 

to define the associations among microbes and between microbes and phenotypes (taxa and 138 

metadata). PhONA is generic as it allows the user to select data structure-specific models for 139 

microbe-microbe and microbe-phenotype associations.  140 

In the current case study, we used lasso regression to identify the subset of OTUs and then 141 

fitted them using GLMs to predict OTU-phenotype associations, whereas the OTU-OTU 142 

associations were defined using SparCC. Additionally, we contrasted the RAF community’s diversity 143 

and interactions among the rootstocks and the controls, for endosphere and rhizosphere 144 

compartments. Based on our yield data, rootstock vigor, and previous studies of microbial 145 

interactions (25), we expected a greater number of fungal OTUs and of microbial associations for 146 

more productive rootstocks. Moreover, in our previous studies of bacterial communities in the 147 

tomato rhizobiome, we observed compartment-specific (endosphere vs rhizosphere) effects of 148 

grafting and rootstocks on bacterial community composition and diversity (47), and expected similar 149 
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effects on RAF diversity and composition. All the code and vignettes for PhONA are available at 150 

https://ravinpoudel.github.io/PhONA/index.html and archived at zenodo (DOI: 151 

10.5281/zenodo.6600986). 152 

 153 

 154 

METHODS 155 

Experimental Plots, Rootstocks, and Study Sites.  We studied grafted tomato plants in 156 

high tunnels in an experimental design similar to that described by Poudel et al. (47). Tomato plants 157 

were grafted following a tube-grafting protocol described in Meyer et al. (46). Our study included 158 

three rootstocks (BHN589; RST-04-106, and Maxifort) in four graft treatments: 1) nongrafted 159 

BHN589 plants; 2) selfgrafted BHN589 plants (plants grafted to their own rootstock); 3) BHN589 160 

grafted to RST-04-106; and 4) BHN589 grafted to Maxifort. We chose BHN589 as scion primarily 161 

based on its popularity due to high yield and high-quality fruit with a long shelf life. For rootstocks, 162 

we selected Maxifort because it is a productive and popular rootstock, and RST-04-106 as a new 163 

rootstock variety based on tomato breeders’ recommendations.  164 

Our study included two sites: Olathe Horticulture Research and Extension Center (OHREC) 165 

and Common Harvest Farm, a farm managed by a collaborating farmer. For more information 166 

about the sites, see Table S1. At each study site, the four graft treatments were assigned to four plots 167 

per block in a randomized complete block design. Each plot consisted of 5-8 plants, and one middle 168 

plant per plot was sampled during the peak growth stage. There were six blocks at OHREC, and 169 

four blocks at Common Harvest Farm, such that for each year, each graft treatment was replicated 170 

10 times. The experiment was repeated for two years (2014 and 2015) with a similar design, with the 171 

blocks and rootstocks randomly and independently assigned in each year.  172 

Sample Preparation, DNA Extraction, and Amplicon Generation.  To compare the 173 

fungal communities, we selected a center plant from each plot and carefully dug the whole plant out 174 

such that the majority of the roots remained intact. Endosphere and rhizosphere samples were 175 

prepared as previously described (47) and the total genomic DNA was extracted using a DNA 176 

extraction kit (MoBio UltraClean Soil DNA Isolation Kit; MoBio, Carlsbad, CA, USA) as per 177 

manufacturer’s protocol, with slight modification during the homogenization step (47). To recover 178 

high genetic diversity, we opted for the two-step PCR approach. The primary PCR amplicons were 179 

generated in 50 μL reactions under the following conditions: 1 μM forward and reverse primers, 10 180 

ng template DNA, 200 μM of each dioxynucleotide, 1.5 mM MgCl2, 10 μL 5x Phusion Green HF 181 
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buffer (Finnzymes, Vantaa, Finland), 24.5 μL molecular biology grade water, and 1-unit (0.5 μL) 182 

Phusion Hot Start II DNA Polymerase (Finnzymes, Vantaa, Finland). PCR cycle parameters 183 

consisted of a 98° C initial denaturing step for 30 seconds, followed by 30 cycles at 98° C for 10 184 

seconds, 57° C annealing temperature for 30 seconds, and 72° C extension step for 30 seconds, 185 

followed by a final extension step at 72° C for 10 minutes. All samples were PCR-amplified in 186 

triplicate to minimize stochasticity, pooled, and cleaned using Diffinity RapidTip (Diffinity 187 

Genomics, West Chester, PA, USA).  In this PCR, we amplified the entire ITS region of fungal 188 

rRNA genes using primers ITS1F-CTTGGTCATTTAGAGGAAGTAA and ITS4-189 

TCCTCCGCTTATTGATATGC (e.g. 57). The average amplicon length of the ITS region in fungi 190 

is about 600 bp and could not reliably be fully covered with the Illumina MiSeq platform (v.3-191 

chemistry) in a single read. Thus, in the following nested PCR, only ITS2 of the ITS region was 192 

amplified using fITS7-ITS4 primers (58) incorporating unique Molecular Identifier Tags (MIDs) at 193 

the 5' end of the reverse primer (ITS4). For the nested PCR, we used similar reagents and PCR 194 

conditions as in the primary PCR, with some modifications: the number of PCR cycles was reduced 195 

to ten, total reaction volume was reduced to 25 ul, and 5 ul of cleaned PCR product from the first 196 

PCR amplification was used as the DNA template. The nested PCR was also run in triplicate, pooled 197 

by experimental unit, and cleaned with an Agencourt AmPure cleanup kit using a SPRIplate 96-ring 198 

magnet (Beckman Coulter, Beverly, MA, USA) as per the manufacturer’s protocol. Then, 200 ng of 199 

cleaned, barcoded amplicons were combined per experimental unit, and the final pool was cleaned 200 

again using an Agencourt AmPure cleanup kit as above. Illumina MiSeq adaptors were ligated to the 201 

library and paired-end sequenced on a MiSeq Personal Sequencing System (Illumina, San Diego, CA, 202 

USA) using MiSeq Reagent Kit V3 with 600 cycles. The endosphere and the rhizosphere amplicon 203 

libraries were sequenced separately in two runs. Adaptor ligation and sequencing were performed at 204 

the Integrated Genomics Facility at Kansas State University. All sequence data generated in this 205 

study were deposited in the NCBI Sequence Read Archive depository (BioProject:……). 206 

Bioinformatics and OTU Designation.  The sequence library of fastq files was curated 207 

using the MOTHUR pipeline (Version 1.33.3; (59)) following steps modified from the MiSeq 208 

Standard Operating Protocol (SOP; www.mothur.org/wiki/MiSeq_SOP). Briefly, the forward and 209 

the reverse reads were assembled into contigs using the default alignment algorithm. Any sequences 210 

shorter than 250 base pairs or containing an ambiguous base call or more than eight homopolymers 211 

or missing MIDs were removed from the library. Barcoded sequences were assigned to experimental 212 

units, and the data for endosphere and rhizosphere libraries were merged and processed together for 213 
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the remaining steps in the MOTHUR pipeline. The pairwise distance matrix based on the filtered 214 

sequences was created and sequence data clustered into OTUs at 97% sequence similarity using the 215 

nearest neighbor joining algorithm. The clustered OTUs were assigned to a putative taxonomic 216 

identity using a Bayesian classifier (60) referencing the UNITE plus INSD non-redundant ITS 217 

database (61). To minimize the bias resulting from unequal sequence counts per sample, samples 218 

were rarified to the lowest sequence count among the samples (6,777). The final curated OTU 219 

database included 1,084,281 total sequences representing 16,151 fungal OTUs, including singletons 220 

(5,376).  221 

Statistical analyses.  We evaluated the network of associations among fungal OTUs with 222 

network models to better understand the community composition and the interactions therein. The 223 

observed OTU database was divided into eight subsets, each combination of the four rootstocks and 224 

two compartments (endosphere and rhizosphere), such that we constructed eight networks in total. 225 

In our network models, a node represents an OTU and a link exists between a pair of OTUs if there 226 

is evidence (p < 0.05) that their frequencies are correlated (positively or negatively) across samples. 227 

Reducing false associations due to compositional bias in network modeling of microbiome data is 228 

important for clearer interpretation (62). Thus, we used a Sparse Correlations for Compositional 229 

data (SparCC) method to evaluate the pairwise associations (62), designed to minimize the 230 

compositional bias effect due to normalization. In our analyses, associations were defined in 20 231 

iterations, and the significance of a pairwise association was determined from 100 bootstrapped 232 

datasets. Once the matrix defining all the pairwise associations was derived, we selected only those 233 

OTUs for which the absolute value of at least one association was greater than 0.5 (and p < 0.05) in 234 

the network analyses for each of the rootstock genotypes.  235 

To identify the OTUs associated with tomato yield in each rootstock, a regression-based 236 

model was fitted to the observed data. Marketable tomato yield data reported by Meyer et al. (46) 237 

was the response variable and fungal OTUs were potential predictors. We used the caret package 238 

(63) to evaluate the lasso regression and selected OTUs using varImp functions. Lasso regression 239 

used an L1 regularization approach to shrink the less important variables’ coefficients to zero and to 240 

reduce the number of variables in the model.  In lasso regression, lambda determines the penalty of 241 

regularization, and its value can range from zero to infinity; when it is zero, the results are similar to 242 

the least square lines.  A grid-based approach was used to tune the lambda parameter using repeated 243 

(ITERS=500) 5-fold cross-validation and the value of lambda with lowest variance was selected. 244 

Only the OTUs with non-zero coefficients were selected, based on the lasso-regression model, to 245 
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build the reduced GLM model, and the association type of each OTU with phenotype was 246 

estimated. Given the small sample size, we did not evaluate the model performance by splitting the 247 

data into training and test cases, although this would be a valuable step in future studies with larger 248 

sample sizes. PhONA then integrates the results from the GLM model for yield with the OTU-249 

OTU association network. We plotted the resulting network using the igraph package (54) in R. To 250 

evaluate the role of nodes in the network, we placed each node in one of four categories – 251 

peripherals, module hubs, network hubs, and connectors – based on the within-module degree and 252 

among-module connectivity (24, 55). Role analyses were only used the presence or absence of links 253 

in the network and do not account for the link types (i.e. positive or negative associations).  254 

To evaluate the effects of rootstocks on fungal diversity, Shannon entropy and species 255 

richness were evaluated using the vegan package (64) wrapped by the phyloseq package (65) in R 256 

(66). Differences in diversity across the rootstocks were compared using a mixed model ANOVA in 257 

the lme4 package in R (67). Study site and sampling year were treated as random factors, blocked by 258 

study sites, whereas the rootstock and compartments were treated as fixed factors. Changes in fungal 259 

community composition across the samples were estimated based on a Bray-Curtis dissimilarity 260 

distance matrix and visualized in non-metric multidimensional scaling (NMDS) plots. The 261 

contribution of factors to the observed variation in fungal composition was estimated in a 262 

permutational multivariate analysis of variance (PERMANOVA, using 1000 permutations) using the 263 

adonis function in the vegan package (64). To identify OTUs that were sensitive to the rootstock 264 

treatments, the observed frequency (proportion) of each OTU was evaluated by fitting a generalized 265 

linear model (GLM) with negative binomial distribution, to identify depleted or enriched OTUs 266 

(Differentially Abundant OTUs – DAOTUs). Likelihood ratio tests and contrast analyses (between 267 

the hybrid rootstock and controls) were performed for the fitted GLM to identify the DAOTUs. We 268 

used OTU frequencies from selfgrafts and nongrafts as controls, in comparisons with other 269 

rootstocks, using contrasts. All tests were adjusted to control the false discovery rate (FDR, p < 270 

0.01) using the Benjamini-Hochberg method (68). A differential abundance test was performed 271 

within the controls (selfgraft vs. nongraft) to identify the OTUs responsive to the grafting 272 

procedure, itself. !  273 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.12.874966doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874966


 11 

RESULTS 274 

RAF in the Grafted Tomato System.  Once rare OTUs (<10 sequence counts, which 275 

accounted for more than 90% of the observed OTUs) were removed, the community consisted of 276 

1586 OTUs and 1,063,017 sequences. Of these sequences, 4.8% remained unclassified at the phylum 277 

level (Fig. S1). The classified sequences represented Ascomycota (52.5%), Basidiomycota (25.6%), 278 

Zygomycota (11.5%), Chytridiomycota (3.6%), Glomeromycota (1.7%), and Rozellomycota (0.07%) 279 

(Fig. 1). At the class level, Pezizomycetes, Agaricomycetes, and Dothideomycetes were the most 280 

abundant across all the rootstocks. At the order level, the communities were dominated by Pezizales, 281 

Pleosporales, Cantharellales, Mortierellales, and Hypocreales. Analyses at the family level revealed 282 

that Pyronemataceae, Mortierellaceae, Ceratobasidiaceae, and Pleosporaceae were the most common 283 

taxa overall. At the genus level, Mortierella, Thanatephorus, and Alternaria were the most abundant 284 

genera. 285 

Effects of Grafting and Rootstock on α-Diversity.  There was strong evidence for a 286 

rootstock effect on OTU richness (F1, 3 = 8.6, p < 0.001) and Shannon entropy (F1, 3 = 3.2, p = 0.02) 287 

for tomato RAF communities. Mean species richness was higher in both the endosphere (p = 0.01) 288 

and rhizosphere (p = 0.001) of one of the hybrid rootstocks, Maxifort, compared to the nongrafted 289 

control. Shannon entropy followed trends similar to richness with a higher estimate for Maxifort; 290 

however, there was only evidence for higher Shannon entropy in Maxifort for the rhizosphere (p = 291 

0.004), but not for the endosphere (p = 0.6) (Fig. 2). Both species richness and Shannon entropy 292 

were higher (p < 0.001) in the rhizosphere than in the endosphere across all the rootstock genotypes 293 

(Fig. S2). 294 

Effects of Grafting and Rootstock on RAF Composition.  Based on previous studies of 295 

the plant genotype effect on the rhizobiome (47), we expected a significant rootstock effect on 296 

community composition. Rootstock explained 2% of the variation in the RAF community 297 

composition (PERMANOVA; p<0.01), whereas compartment, study site, and year explained a 298 

greater proportion of the variation than rootstock (Fig. S3 and Table S2). Endosphere-rhizosphere 299 

compartments accounted for 8.92% of the variation. Study site and interannual variation explained 300 

8.34% and 5.38% of the total variation, respectively (Table S2).  301 

Comparison of DAOTUs.  The analysis of differential abundance found effects of 302 

rootstock genotype at the individual OTU level. While analyses of alpha diversity indicated higher 303 

diversity in the rhizosphere than in the endosphere, we observed the opposite in the analysis of 304 

DAOTUs, with nearly twice as many DAOTUs in the endosphere (n = 146 i.e. 9.2% of the total 305 
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OTUs) compared to the rhizosphere (n = 76 i.e. 4.8% of total OTUs) (Figs. 2 and S4). Comparison 306 

across rootstocks indicated a greater number of DAOTUs in Maxifort (n = 80) than in RST-04-106 307 

(n = 66) and the selfgraft control (n = 49). Compared to the hybrid rootstocks, the number of 308 

depleted taxa was greater in the selfgraft control (n = 28). Among the enriched OTUs in Maxifort, 309 

27 OTUs belonged to Basidiomycota, 20 to Ascomycota, and 11 to Glomeromycota, whereas four 310 

basidiomycete, three ascomycete, and one zygomycete OTUs were depleted in Maxifort. In RST-04-311 

106, enriched taxa included 22 OTUs in Basidiomycota, 20 OTUs in Ascomycota and five OTUs in 312 

Glomeromycota, whereas the depleted OTUs included six in Zygomycota. Comparing the self- and 313 

nongraft controls, nine OTUs in Ascomycota, three OTUs in Basidiomycota, and four OTUs in 314 

Zygomycota were enriched in the selfgraft treatment, whereas 12 OTUs in Basidiomycota, seven 315 

OTUs in Ascomycota, four OTUs in Zygomycota, and three OTUs in Glomeromycota were 316 

depleted in the selfgraft treatment.  317 

Network Analysis/ General Network Structures.  Fungal community complexity, 318 

defined in terms of mean node degree and community structures/motifs, varied among the 319 

rootstocks in both the endosphere and the rhizosphere, with a greater mean node degree in one of 320 

the hybrid rootstocks, Maxifort, compared to both controls and RST-04-106 (Figs. 3, S5, S6, and 321 

Table S3). Complexity was higher in the rhizosphere than in the endosphere compartment (Figs. 3, 322 

S5, S6, and Table S3). In addition to the total number of links, the link type (either positive or 323 

negative) differed among the rootstocks in both compartments (Table S3), with a higher ratio of 324 

negative to positive links in Maxifort in both the endosphere and the rhizosphere compartments. 325 

Rhizosphere fungal communities had a higher ratio of negative to positive links than those in the 326 

endosphere, for all rootstocks. Although we observed rootstock-specific or compartment-specific 327 

effects on the node degree and ratio of negative to positive links, the number of modules defined 328 

using a simulated annealing (SA) algorithm were similar in both the endosphere and rhizosphere 329 

compartments and across the rootstocks (Table S3). Our analyses of node types divided the 330 

observed nodes in the association-network into four categories: peripherals, module hubs, network 331 

hubs, and connectors. More taxa in the rhizosphere were identified as key nodes than in the 332 

endosphere, and key nodes were more common in the hybrid rootstocks than in the non- and 333 

selfgrafted controls (Figs. 4 and 5). 334 

Lasso regression, GLM, and PhONA.  Using lasso regression and GLM models, we 335 

identified the OTUs predictive of tomato yield in each compartment in each rootstock. The number 336 

of predictive OTUs identified by the varImp function was about the same across the rootstock 337 
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treatments in both the compartments. However, not all the predicted OTUs were associated with 338 

other OTUs in the network models. The Maxifort rhizosphere had the highest number of OTUs 339 

(10) associated with other OTUs in the network models. Only a subset of the entire microbiome was 340 

predictive of the yield, among which only a few microbes were associated with other microbes in the 341 

network models.  342 

DISCUSSION 343 

This study demonstrated the effect of rootstocks on RAF community composition and structure. 344 

General diversity-based analyses indicated a rootstock effect. The most productive hybrid rootstock, 345 

Maxifort, supported higher fungal richness and Shannon entropy, as well as a greater number of 346 

DAOTUs than the controls, consistent with the expectation that higher diversity and a higher 347 

number of responsive taxa (DAOTUs) would be associated with a more productive genotype. Also 348 

consistent with our expectations, we observed higher microbial diversity and fewer responsive taxa 349 

(DAOTUs) in the rhizosphere compared to the endosphere. The integrated host phenotype and 350 

OTU network in the PhONA identified potential candidate taxa for each rootstock, and community 351 

structures in the endosphere and rhizosphere compartments. The general network analysis found 352 

more interactions and more complex network structures in fungal communities associated with 353 

Maxifort, consistent with our expectation that a more productive rootstock would have greater 354 

community complexity.  Community complexity, when defined in terms of mean node degree, 355 

differed between the root compartments: the endosphere community was less complex than the 356 

rhizosphere community in all the rootstocks. Overall, our study i) showed that rootstocks and 357 

grafting are significant drivers of RAF community composition, diversity and structure, and ii) 358 

introduced and illustrated the use of PhONA as an analytical framework to select potential 359 

candidates for microbiome-based agriculture. Potential candidates are those taxa that were directly 360 

predictive of higher yield (taxa with direct positive links with the yield node in the network), taxa 361 

that have positive associations with taxa positively associated with yield, and/or taxa that have 362 

negative associations with taxa negatively associated with yield. There is the potential to consider 363 

taxa multiple steps removed from the yield response, with the understanding that uncertainty about 364 

the link to yield increases the more steps the taxon is from the yield node. From a practical 365 

standpoint, our results indicate the potential for using plant genotypes and agricultural practices to 366 

modulate plant-associated microbial communities, and the potential for the PhONA framework to 367 

improve identification of candidate taxa to support microbiome-based crop production. 368 
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In contrast to network models that portray only microbe-microbe interactions, PhONA 369 

integrates the results of GLM models of microbe association with phenotypic traits to support 370 

inference about candidate taxa and predictive microbiome analyses. Thus, candidate taxa can be 371 

selected not only because they have a direct association with the host response variable(s), but also 372 

because they are indirectly associated with the host response variable through their associations with 373 

community members that have direct associations with host traits. For instance, a node that has a 374 

positive association with the system phenotype node (in our case, yield) might have negative or 375 

positive associations with other OTUs. Such OTUs with indirect positive associations with the 376 

desired phenotype might also be included in biofertilizer consortia. Using a PhONA, a rational 377 

consortium can be selected based on the phenotype of interest. Applying PhONA for disease or 378 

pathogen resistance phenotypes could be useful for designing rational biocontrol consortia. We also 379 

observed some OTUs with direct negative associations with the yield node. Efforts to control 380 

negatively associated taxa, as well as the taxa that have positive associations with these taxa, might 381 

contribute to maximizing yield. Although we did not observe any disease symptoms in our 382 

experiments, OTUs negatively associated with the yield node might represent a case of 383 

asymptomatic negative microbial effects on yield. Efforts to explore negatively associated OTUs 384 

might provide opportunities to minimize asymptomatic yield loss in crops.  385 

The main goal of PhONA is to provide a systems framework to generate hypotheses about 386 

the role of microbiome components in host function and performance, and to support the potential 387 

for mechanistic/predictive models to better understand host-microbiome interactions. In planta 388 

experiments with fungal cultures are essential to test the hypotheses generated by these models, to 389 

help to differentiate between associations that are based on consistent biological interactions and not 390 

simply based on shared (or opposing) environmental niche preferences. It is important to be 391 

cautious in attributing biological interactions to the key structures in network attributes because the 392 

links in the PhONA may or may not depict biological interactions. That is, many links may represent 393 

only correlative relationships and not causal ones (28). For instance, the hub node in the network is 394 

often regarded as a key node, but the high number of links with the hub node in the association 395 

network could be due to shared niches, biological interactions, or a mixture thereof. If the 396 

associations are mostly due to shared niches, removing such a hub node will have a more limited 397 

effect, whereas removal of a hub node involved in many biological interactions could lead to 398 

significant effects on the microbial community.  399 
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RAF community composition, diversity, and interactions differed between the endosphere 400 

and rhizosphere compartments. Although the endosphere and the rhizosphere are physically 401 

adjacent, they are distinct in community composition and diversity. Compartment specificity in 402 

community composition and diversity has been reported for other plant species, in both natural and 403 

agricultural settings (31, 69, 70). Usually, bulk soil is considered a source of microbial communities, a 404 

subset of which is selected for in the rhizosphere (31, 71), mainly as a function of root exudates and 405 

rhizodeposits (43, 72-75). Selection of the rhizosphere microbiome could be specific (e.g., 406 

antagonistic to plant pathogens) (76, 77) or more general with less influence of host genotype. In 407 

comparison, the endosphere of host plants often supports lower microbial diversity compared to the 408 

rhizosphere (70, 71). Host tissues and defense systems act as biotic filters (2). As a result, the 409 

microbiome is more specialized in the endosphere than in the rhizosphere. RAF compartment 410 

specificity may also be an important consideration for microbe-based disease management strategies 411 

– especially for the management of pathogens or pests that are compartment specific, such as 412 

endoparasites and ectoparasites. 413 

RAF community composition and diversity also differed among the rootstock genotypes. 414 

Plant genotypes can structure root-associated fungal communities (31, 70, 78). The commercial 415 

rootstocks in our study have been bred to provide resistance against specific soilborne pathogens 416 

and pests. Small host genotypic differences could alter the physiological and immunological 417 

responses in the root systems, thereby selecting genotype-specific RAF communities (79). For 418 

example, some root exudates and metabolites could be specific to a plant genotype (80-82) and 419 

provide specific control of microbial communities (83-85). In some cases, the host genotype effect 420 

can be directly attributed to root anatomy (77, 85, 86). Efficient root types and architectures are 421 

desired agronomic traits to cope with biotic and abiotic stresses (87), and root systems vary among 422 

and within plant species (86). Moreover, the effect of plant genotypes on microbial communities in 423 

the root system may be linked to the flow of nutrients between the aboveground-scion and 424 

belowground-rootstocks, where vigorous rootstock genotypes could drive greater resources to the 425 

microbial communities by supporting larger scion biomass. In such a positive nutrient feedback 426 

between the scion and rootstock, rootstock genotype appears to be a more critical driver than the 427 

scion genotype (88). Rootstock genotypes supporting higher yield and biomass may support higher 428 

microbial diversity by excreting a greater volume of photosynthates as root exudates and 429 

metabolites. Although we did not evaluate root exudates, and used the same scion across the study, 430 

our study is consistent with a role of higher yield and biomass (as for the Maxifort rootstock) being 431 
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associated with higher fungal diversity. Additionally, we observed an effect of rootstock on the RAF 432 

community composition. Collectively, the results support our expectations of rootstock-specific 433 

control of the RAF community. 434 

Our definition of complexity is based on interactions in networks, using a definition similar 435 

to that used in other microbiome network analyses (25, 34, 89).  However, a greater number of 436 

interactions and complex network structures/motifs would tend to be observed whenever more 437 

nodes exist in these association networks, an inherent relationship not always considered in studies 438 

of complexity in microbiomes.  The higher number of OTUs associated with Maxifort would tend 439 

to result in higher complexity compared to rootstocks with fewer OTUs. Another potential measure 440 

of complexity is network density, the proportion of links observed in a network relative to the total 441 

number of possible links.  For all the rootstocks we studied, network density was similar (0.04) in 442 

both compartments, indicating similar community complexity. Statistical methods comparable to 443 

rarefaction, designed to equalize the number of nodes across networks or methods to balance OTU 444 

richness for sampling efforts (90), will be a valuable future effort for understanding how network 445 

complexity responds to treatments and for making comparisons across studies. In addition, methods 446 

to optimize and automate the selection of association thresholds to define the pairwise relationships 447 

in a microbiome network is a gap and opportunity for improving microbiome network analyses. For 448 

graphics in the figures in this analysis, we selected a level of association such that an interpretable 449 

number of OTUs were depicted for visual consideration. Studies directly applied to identify 450 

potential microbial assemblages for agricultural applications could benefit from exploring results for 451 

a range of thresholds. 452 

Our study indicates the rootstock-genotype specific effect on RAF diversity, composition, 453 

and interactions, and also demonstrates integration of system phenotypes such as plant yield in a 454 

network-based model to support selection of candidate taxa for biological use. However, in 455 

sequence-based studies such as ours, the biological and functional significance of the candidate 456 

OTUs remains unknown. Follow-up experiments with fungal cultures will be necessary to determine 457 

the biological roles of the candidate OTUs, and to differentiate causal associations from correlations 458 

based on niche preference. Similarly, further development of PhONA to incorporate temporal 459 

microbiome data and Bayesian learning and inference methodologies (91, 92) has the potential to 460 

support causal inference, including understanding of directionality in microbiome networks. 461 

PhONA utilizes a lasso regression and GLM to link OTUs with a system phenotype, although many 462 

other models such as random forest and other machine learning approaches (93) could also be 463 
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employed. Given the nature of microbiome data, having a high number of features (p) and relatively 464 

small number of samples (n), other models to address the n x p problem can improve PhONA 465 

predictions. Rather than pure prediction, our methods aim to find the key predictors and use them 466 

in the GLM model for evaluating associations with the yield response. PhONA focused on finding 467 

the attributable predictors/OTUs that are key to biological interventions, which are missed in 468 

approaches that are focused purely on prediction (94). Smaller sample size was a limitation in our 469 

current study, reflecting the challenge of processing a large number of plant replicates, and we did 470 

not validate the results from our model by splitting data into training and test sets. A rigorous model 471 

validation step would improve the accuracy of PhONA. As lab-based technologies and 472 

computational resources become less expensive, studies with large sample sizes are becoming more 473 

practical and, when combined with an analytical framework like PhONA, microbial community 474 

analyses can go beyond simple analyses of diversity to help make microbiome-based agriculture a 475 

reality. 476 
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FIG 1 The Phenotype-OTU network analysis (PhONA) combines (A) an OTU-OTU association 488 
network with (B) the nodes selected based on predictive model for their association with a host 489 
phenotype variable such as yield, to create (C) a PhONA. 490 
 491 
FIG 2 Enriched and depleted OTUs across tomato rootstock genotype combinations (nongraft 492 
BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks (RST-04-106 and 493 
Maxifort)) evaluated for the rhizosphere (A) and the endosphere (B), using OTU counts from 494 
selfgrafts and nongrafts as controls. All the tests were adjusted to control the false discovery rate 495 
(FDR, p < 0.01) using the Benjamini-Hochberg method. Each point represents an OTU labeled at 496 
the genus level and colored based on phylum, and the position along the x-axis represents the 497 
abundance fold-change contrast with controls (except for the selfgraft vs. nongraft comparison, 498 
where the nongraft treatment was used as a control for the contrast). 499 
 500 
FIG 3 Phenotype-OTU network analysis (PhONA) of endosphere fungal taxa for BHN589 grafted 501 
on Maxifort. Node color indicates the phylum, except that the yellow-color node represents yield 502 
associated with the rootstock. Nodes connected to the rootstock yield node with black links are taxa 503 
that were predictive of rootstock yield, where dotted and solid lines indicate negative and positive 504 
associations with the yield node, respectively. Red and blue links represent negative and positive 505 
associations, respectively, between OTUs. Nodes are labeled with the finest-resolution taxonomic 506 
categorization available. 507 
 508 
FIG 4 Partitioning of endosphere fungal OTUs according to their network roles. Nodes were 509 
divided into four categories based on within-module degree and among-module connectivity. The 510 
blue dashed line represents a threshold value (0.62) for among-module connectivity, and the red 511 
dashed line represents a threshold value (2.5) for within-module degree. Nodes were categorized as 512 
peripherals, connectors, module hubs, and network hubs. Node color indicates rootstock treatment 513 
(nongraft BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks (RST-04-106 514 
and Maxifort)).  515 
 516 
FIG 5 Partitioning of rhizosphere fungal OTUs according to their network roles. Nodes were 517 
divided into four categories based on within-module degree and among-module connectivity. The 518 
blue dashed line represents a threshold value (0.62) for among-module connectivity, and the red 519 
dashed line represents a threshold value (2.5) for within-module degree. Nodes were categorized as 520 
peripherals, connectors, module hubs, and network hubs. Node color indicates rootstock treatment 521 
(nongraft BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks (RST-04-106 522 
and Maxifort)). 523 
 524 
FIG S1 Relative abundance of endosphere and rhizosphere fungi at the phylum level recovered 525 
from four tomato rootstock treatments: nongraft BHN589, selfgraft BHN589, and BHN589 grafted 526 
on two hybrid rootstocks (RST-04-106 and Maxifort). Each individual bar represents a rootstock 527 
treatment, and the colored area within the bar represents the relative abundance of the 528 
corresponding phylum. 529 
 530 
FIG S2 Comparison of overall fungal diversity (A) and richness (B) associated with tomato 531 
rootstock genotypes and controls, evaluated in the endosphere and rhizosphere. The plot is divided 532 
by the four tomato rootstock treatments: nongraft BHN589, selfgraft BHN589, and BHN589 533 
grafted on two hybrid rootstocks (RST-04-106 and Maxifort). Shannon entropy and species richness, 534 
measures of community diversity, were both higher for Maxifort (p < 0.005) compared to the self-535 
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graft and RST-04-106 in the rhizosphere, while there was not evidence for a difference in Shannon 536 
entropy in the endosphere (p = 0.634). Treatment means were separated using the "difflsmeans" 537 
function as specified in the lmerTest package in R. Tests for boxplots sharing a letter or letter case 538 
type had p > 0.05. 539 
 540 
FIG S3 Non-metric multidimensional scaling (NMDS) ordination plot of samples labeled by tomato 541 
rootstock (nongraft BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks 542 
(RST-04-106 and Maxifort)), compartment (endosphere or rhizosphere), and study site, based on the 543 
Bray-Curtis dissimilarity distance matrix of fungal OTUs. Color indicates rootstock treatment, shape 544 
indicates study site, and size indicates compartment. Ellipses surrounding the samples indicate the 545 
95% CI of the endosphere and rhizosphere sample centroids. 546 
 547 
FIG S4 Number of DAOTUs in a contrast analysis, evaluated for the endosphere and rhizosphere 548 
compartments for four tomato rootstock treatments: nongraft and selfgraft BHN589, and BHN589 549 
grafted on two hybrid rootstocks (Maxifort and RST-04-106). The green color in each bar represents 550 
the number of enriched taxa, and the red color represents the number of depleted taxa. The number 551 
of differentially changed taxa was greater for the endosphere than for the rhizosphere. Among the 552 
contrast pairs, hybrid rootstocks had a greater number of enriched taxa compared to depleted taxa. 553 
However, the number of depleted taxa was higher compared to enriched taxa in the controls. 554 
Among the treatments, Maxifort had the highest number of DAOTUs in both compartments.  555 
 556 
FIG S5 Phenotype-OTU network analysis (PhONA) of endosphere fungal taxa for tomato 557 
rootstock treatments: (A) nongraft and (B) selfgraft BHN589, and (C) BHN589 grafted on RST-04-558 
106. Node color indicates the phylum, except that the yellow-color node represents yield associated 559 
with the rootstock. Nodes connected to the rootstock yield node with black links are taxa that were 560 
predictive of rootstock yield, where dotted and solid lines indicate negative and positive associations 561 
with the yield node, respectively. Red and blue links represent negative and positive associations, 562 
respectively, between OTUs. Nodes are labeled with the finest-resolution taxonomic categorization 563 
available. 564 
 565 
FIG S6 Phenotype-OTU network analysis (PhONA) of rhizosphere fungal taxa for tomato 566 
rootstock treatments: (A) nongraft and (B) selfgraft BHN589, and BHN589 grafted on two hybrid 567 
rootstocks ((C) RST-04-106 and (D) Maxifort). Node color indicates the phylum, except that the 568 
tomato-color node represents yield associated with the rootstock. Nodes connected to the rootstock 569 
yield node with black links are taxa that were predictive of rootstock yield, where dotted and solid 570 
lines indicate negative and positive associations with the yield node, respectively. Red and blue links 571 
represent negative and positive associations, respectively, between OTUs. Nodes are labeled with 572 
the finest-resolution taxonomic categorization available.    573 
 574 
TABLE S1 Sites included in the study, their soil type, and geographic coordinates. 575 
 576 
TABLE S2 Results of the multivariate permutational analysis of variance (PERMANOVA) for 577 
fungal taxon abundance data. Permutation was based on the Bray-Curtis distance matrix generated 578 
for root associated fungal communities at the OTU level from four tomato rootstock treatments: 579 
nongraft and selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks (Maxifort and RST-580 
04-106) (1000 permutations). P values < 0.05 are in bold. 581 
 582 
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TABLE S3 Network attributes and links observed in the fungal association networks for four 583 
tomato rootstock treatments: nongraft and selfgraft BHN589, and BHN589 grafted on two hybrid 584 
rootstocks (Maxifort and RST-04-106) in each of rhizosphere and endosphere compartments. 585 
 586 
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 849 
FIG 1 The Phenotype-OTU network analysis (PhONA) combines (A) an OTU-OTU association 850 

network with (B) the nodes selected based on predictive model for their association with a host 851 

phenotype variable such as yield, to create (C) a PhONA.  852 

OTU2

OTU3 OTU4

OTU5

OTU6

OTU7

OTU8

OTU9

OTU10

OTU11

OTU12
OTU13

OTU14OTU15

OTU16

OTU17

OTU18

OTU19

OTU20

Phenotype

OTU13

OTU7

OTU12

OTU11

OTU10

Phenotype
OTU13

OTU7

OTU12

OTU11

OTU10

OTU3

OTU6

OTU8OTU9

OTU16

OTU17

OTU19

(A) OTU-OTU association 
network based on SparCC

(B) OTUs predictive of host 
phenotype, based on predictive 
model 

(C) PhONA predicting candidate taxa 
based on association network (A) and 
phenotype-predictive OTUs (B) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.12.874966doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874966


 27 

(A) 853 

 854 
  855 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2019. ; https://doi.org/10.1101/2019.12.12.874966doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.12.874966


 28 

(B) 856 

 857 

FIG 2 Enriched and depleted OTUs across tomato rootstock genotype combinations (nongraft 858 

BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks (RST-04-106 and 859 

Maxifort)) evaluated for the rhizosphere (A) and the endosphere (B), using OTU counts from 860 

selfgrafts and nongrafts as controls. All the tests were adjusted to control the false discovery rate 861 

(FDR, p < 0.01) using the Benjamini-Hochberg method. Each point represents an OTU labeled at 862 

the genus level and colored based on phylum, and the position along the x-axis represents the 863 

abundance fold-change contrast with controls (except for the selfgraft vs. nongraft comparison, 864 

where the nongraft treatment was used as a control for the contrast). 865 
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         867 

 868 

FIG 3 Phenotype-OTU network analysis (PhONA) of endosphere fungal taxa for BHN589 869 

grafted on Maxifort. Node color indicates the phylum, except that the yellow-color node 870 

represents yield associated with the rootstock. Nodes connected to the rootstock yield node with 871 

black links are taxa that were predictive of rootstock yield, where dotted and solid lines indicate 872 

negative and positive associations with the yield node, respectively. Red and blue links represent 873 

negative and positive associations, respectively, between OTUs. Nodes are labeled with the 874 

finest-resolution taxonomic categorization available. 875 
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      876 

 877 
 878 
FIG 4 Partitioning of endosphere fungal OTUs according to their network roles. Nodes were 879 

divided into four categories based on within-module degree and among-module connectivity. 880 

The blue dashed line represents a threshold value (0.62) for among-module connectivity, and the 881 

red dashed line represents a threshold value (2.5) for within-module degree. Nodes were 882 

categorized as peripherals, connectors, module hubs, and network hubs. Node color indicates 883 

rootstock treatment (nongraft BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid 884 

rootstocks (RST-04-106 and Maxifort)).  885 
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 887 
 888 
 889 

 890 
 891 
FIG 5 Partitioning of rhizosphere fungal OTUs according to their network roles. Nodes were 892 

divided into four categories based on within-module degree and among-module connectivity. 893 

The blue dashed line represents a threshold value (0.62) for among-module connectivity, and the 894 

red dashed line represents a threshold value (2.5) for within-module degree. Nodes were 895 

categorized as peripherals, connectors, module hubs, and network hubs. Node color indicates 896 

rootstock treatment (nongraft BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid 897 

rootstocks (RST-04-106 and Maxifort)). 898 
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 900 

                        901 

FIG S1 Relative abundance of endosphere and rhizosphere fungi at the phylum level recovered 902 

from four tomato rootstock treatments: nongraft BHN589, selfgraft BHN589, and BHN589 903 

grafted on two hybrid rootstocks (RST-04-106 and Maxifort). Each individual bar represents a 904 

rootstock treatment, and the colored area within the bar represents the relative abundance of the 905 

corresponding phylum. 906 
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 910 

(B) 911 

912 
  913 

FIG S2 Comparison of overall fungal diversity (A) and richness (B) associated with tomato 914 

rootstock genotypes and controls, evaluated in the endosphere and rhizosphere. The plot is 915 

divided by the four tomato rootstock treatments: nongraft BHN589, selfgraft BHN589, and 916 

BHN589 grafted on two hybrid rootstocks (RST-04-106 and Maxifort). Shannon entropy and 917 

species richness, measures of community diversity, were both higher for Maxifort (p < 0.005) 918 

compared to the self-graft and RST-04-106 in the rhizosphere, while there was not evidence for a 919 

difference in Shannon entropy in the endosphere (p = 0.634). Treatment means were separated 920 
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using the "difflsmeans" function as specified in the lmerTest package in R. Tests for boxplots 921 

sharing a letter or letter case type had p > 0.05. 922 
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                      924 

 925 
FIG S3 Non-metric multidimensional scaling (NMDS) ordination plot of samples labeled by 926 

tomato rootstock (nongraft BHN589, selfgraft BHN589, and BHN589 grafted on two hybrid 927 

rootstocks (RST-04-106 and Maxifort)), compartment (endosphere or rhizosphere), and study 928 

site, based on the Bray-Curtis dissimilarity distance matrix of fungal OTUs. Color indicates 929 

rootstock treatment, shape indicates study site, and size indicates compartment. Ellipses 930 
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surrounding the samples indicate the 95% CI of the endosphere and rhizosphere sample 931 

centroids. 932 
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 934 
FIG S4 Number of DAOTUs in a contrast analysis, evaluated for the endosphere and 935 

rhizosphere compartments for four tomato rootstock treatments: nongraft and selfgraft BHN589, 936 

and BHN589 grafted on two hybrid rootstocks (Maxifort and RST-04-106). The green color in 937 

each bar represents the number of enriched taxa, and the red color represents the number of 938 

depleted taxa. The number of differentially changed taxa was greater for the endosphere than for 939 

the rhizosphere. Among the contrast pairs, hybrid rootstocks had a greater number of enriched 940 

taxa compared to depleted taxa. However, the number of depleted taxa was higher compared to 941 

enriched taxa in the controls. Among the treatments, Maxifort had the highest number of 942 

DAOTUs in both compartments.  943 
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C) 951 

 952 
FIG S5 Phenotype-OTU network analysis (PhONA) of endosphere fungal taxa for tomato 953 

rootstock treatments: (A) nongraft and (B) selfgraft BHN589, and (C) BHN589 grafted on RST-954 

04-106. Node color indicates the phylum, except that the yellow-color node represents yield 955 

associated with the rootstock. Nodes connected to the rootstock yield node with black links are 956 

taxa that were predictive of rootstock yield, where dotted and solid lines indicate negative and 957 

positive associations with the yield node, respectively. Red and blue links represent negative and 958 

positive associations, respectively, between OTUs. Nodes are labeled with the finest-resolution 959 

taxonomic categorization available.  960 
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D) 971 

 972 
FIG S6 Phenotype-OTU network analysis (PhONA) of rhizosphere fungal taxa for tomato 973 

rootstock treatments: (A) nongraft and (B) selfgraft BHN589, and BHN589 grafted on two 974 

hybrid rootstocks ((C) RST-04-106 and (D) Maxifort). Node color indicates the phylum, except 975 

that the tomato-color node represents yield associated with the rootstock. Nodes connected to the 976 

rootstock yield node with black links are taxa that were predictive of rootstock yield, where 977 

dotted and solid lines indicate negative and positive associations with the yield node, 978 

respectively. Red and blue links represent negative and positive associations, respectively, 979 

between OTUs. Nodes are labeled with the finest-resolution taxonomic categorization available.980 
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 TABLE S1 Sites included in the study, their soil type, and geographic coordinates. 981 
 982 

Study sites Location Latitude Longitude Soil type 

Olathe Horticulture Research and Extension Center 
(OHREC) Johnson County, KS 38.88N 94.99W Chase silt loam 

Common Harvest Douglas County, KS 38.96N 95.20W Eudora-Kimo  
complex 

983 
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 47 

TABLE S2 Results of the multivariate permutational analysis of variance (PERMANOVA) for 984 

fungal taxon abundance data. Permutation was based on the Bray-Curtis distance matrix 985 

generated for root associated fungal communities at the OTU level from four tomato rootstock 986 

treatments: nongraft and selfgraft BHN589, and BHN589 grafted on two hybrid rootstocks 987 

(Maxifort and RST-04-106) (1000 permutations). P values < 0.05 are in bold. 988 

Factor Sum of Squares % Explained P value 

Rootstocks 1.24 2.07 < 0.01 

Compartment 5.36 8.92 < 0.001 

Study_Site 5.01 8.34 < 0.001 

Year 3.23 5.38 < 0.001 

Rootstocks:Compartment 0.58 0.97 0.972 

Rootstocks:Study_Site 1.39 2.32 < 0.01 

Compartment:Study_Site 1.59 2.65 < 0.001 

Rootstocks:Year 1.00 1.66 0.111 

Compartment:Year 1.00 1.66 < 0.001 

Study_Site:Year 1.46 2.43 < 0.001 

Rootstocks:Compartment:Study_Site 0.55 0.91 0.998 

Rootstocks:Compartment:Year 0.49 0.82 1.000 

Rootstocks:Study_Site:Year 1.22 2.03 < 0.01 

Compartment:Study_Site:Year 0.60 1.00 < 0.01 

Rootstocks:Compartment:Study_Site:Year 0.60 1.00 0.989 

Residuals 34.75 57.86  

Total 60.07 100.01  
 989 
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48 

TABLE S3 Network attributes and links observed in the fungal association networks for four 

tomato rootstock treatments: nongraft and selfgraft BHN589, and BHN589 grafted on two hybrid 

rootstocks (Maxifort and RST-04-106) in each of rhizosphere and endosphere compartments. 

 

 

 

 

Compartment Rootstocks N Node Edge Node 
Degree Density Modules 

(SA) 
Negative 

Edge 
Positive 

Edge 
Negative/Positive 

Edge 

Endosphere 

Nongraft 20 78 112 1.6 0.04 10 5 112 0.04 
Selfgraft 20 115 115 1.4 0.04 11 9 98 0.09 

RST-04-106 20 71 110 1.5 0.04 11 9 96 0.09 
Maxifort 20 92 182 2.0 0.04 10 32 148 0.21 

Rhizosphere 

Nongraft 20 132 337 2.6 0.04 12 72 257 0.28 
Selfgraft 20 113 272 2.4 0.04 9 63 200 0.32 

RST-04-106 20 133 338 2.5 0.04 11 54 280 0.19 
Maxifort 20 173 740 4.3 0.04 11 279 451 0.61 
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