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Abstract

Phylogenetic analysis i.e. construction of an accurate phyloge-
netic tree from genomic sequences of a set of species is one of
the main challenges in bioinformatics. The popular approaches
to this require aligning each pair of sequences to calculate pair-
wise distances or aligning all the sequences to construct a mul-
tiple sequence alignment. The computational complexity and
difficulties in getting accurate alignments have led to develop-
ment of alignment-free methods to estimate phylogenies. How-
ever, the alignment free approaches focus on computing dis-
tances between species and do not utilize statistical approaches
for phylogeny estimation. Herein, we present a simple align-
ment free method for phylogeny construction based on contigu-
ous sub-sequences of length k termed k-mers. The presence or
absence of these k-mers are used to construct a phylogeny us-
ing a maximum likelihood approach. The results suggest our
method is competitive with other alignment-free approaches,
while outperforming them in some cases.

Keywords: phylogeny, alignment-free, k-mer, maximum
likelihood

1 Introduction

A phylogenetic or evolutionary tree represents the evolutionary
history of different biological organisms. The earliest phyloge-
netic tree was portrayed by Darwin in his book “The Origin
of Species” [1]. Efficient and accurate construction of phylo-
genies from genomic data of various species is a fundamental
problem in the fields of biology such as bioinformatics and sys-
tematics.

Phylogeny reconstruction methods can be broadly classi-
fied into two groups: distance based and character based. Dis-
tance based methods take a distance matrix containing pairwise
distances among the species as input, which is calculated from
the sequences in a pre-processing step. On the other hand, char-
acter based methods make use of the sequences typically in the
form of a multiple sequence alignment. Popular distance based
methods include UPGMA [2], Neighbor-joining [3] etc. They
are fast and can handle many sequences but they perform well
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when the species involved have high similarity. Maximum par-
simony [4], on the other hand, is a character based approach,
where a character matrix is taken as input. The best tree un-
der maximum parsimony criterion is the one that minimizes
the number of changes in the nucleotide sequences over time.
Maximum Likelihood [5], a probabilistic character based ap-
proach, uses a specific model of sequence evolution to find a
best scoring tree that maximizes likelihood of observing the set
of input sequences. This approach is quite realistic in nature
and can be used for species that vary widely in terms of simi-
larity.

Both distance based and character based approaches usu-
ally require prior alignment of input sequences. Alignment of
sequences is a process that inserts gaps within the sequences
in such a way that the identical nucleotides of different species
align next to each other as much as possible. In distance based
methods, sequences are aligned pairwise whereas in character
based methods the sequences of all the species are aligned to
construct a multiple sequence alignment. The quality of align-
ments greatly affects the result of the analysis. Finding the best
alignment for multiple sequences is not trivial. As the length
of two sequences increases, the number of possible alignments
increases exponentially and it becomes difficult to find an op-
timal alignment. Usually the alignment is done progressively,
and various heuristics are used. Constructing the distance ma-
trix through alignment of each pair of sequences is also com-
putationally expensive.

To overcome these difficulties, phylogenetic analyses have
shifted towards approaches that are no longer confined to align-
ment needs. A number of alignment free methods have been in-
troduced, that construct tree models of genetic relations among
species without the need for alignments, saving a lot of time
and memory in the process. Moreover, sometimes parts of the
genomic sequences become shuffled or swapped which cause
alignment based methods to perform poorly. Alignment free
ones, however, are robust to such rearrangement events and
also efficient for large sequence lengths.

A multitude of alignment-free methods have been de-
veloped recently that have been comprehensively reviewed
in [6, 7]. In the early days, exact matches were used as a ba-
sis for measuring similarity between sequences. Later works
have extended these to allow a few mismatches. Notably, co-
phylog [8] makes use of matching word counts in the sequences
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with the allowance of a mismatch, followed by pairwise dis-
tance calculation and tree generation. andi [9] looks for mis-
matches surrounded by long exact matches. The mismatches in
these words are then counted to find the number of substitutions
between two sequences. Multi-SpaM [10] works on the SWM
or Space Word Match [11] approach to identify quartet groups,
i.e. a group of four space words with matching nucleotides at
the match positions and probable mismatches at the don’t care
positions. Trees obtained from each group are then combined
to form the final tree.

However, most of the alignment free methods developed
so far are distance based methods and hence they do not al-
low model based phylogeny estimation that are known to be
more robust than distance based approaches. An illustration
of classification of phylogeny estimation approaches was pre-
sented in [6] which is shown in Figure 1. Höhl and Ragan [12]
proposed a Bayesian approach for phylogeny inference using
presence and absence of k-mers. In this paper, we follow a sim-
ilar approach and present K-Phylo, an alignment-free method
for phylogeny reconstruction that uses maximum likelihood for
tree estimation. It is based on presence or absence of k-mers in
the input sequences. We propose an approach for k-mer length
selection and apply our method on standard datasets used to
assess alignment free methods.

Figure 1: Classification of phylogeny estimation methods [6].
The blocks in grey are highlighted to mark their usage in the
model we developed.

2 Methods
K-Phylo is a character based, alignment-free method that cir-
cumvents the complexity of multiple sequence alignment and
combines the merits of maximum likelihood estimation in tree
construction. Figure 2 shows the steps involved in the recon-
struction process of this method. First, a k-mer counting tool
is used to determine the set of k-mers present in each sequence
for various k. Then these are combined to construct binary ma-
trices denoting presence or absence of the k-mers in different
species and the best k is chosen. Finally, the matrix correspond-
ing to the best k is fed to a suitable phylogeny construction
software to produce the output tree topology. Each step is de-
scribed in more detail in the following sub-sections.

2.1 Generating K-mers

In this step, k-mers are extracted from the input DNA se-
quences using Jellyfish 2.2.4 tool [13] for a range of values of
k. Both the actual k-mer and its reverse compliment equivalent
are retrieved. For example, if a k-mer is ACGTA then its com-
pliment is TGCAT and reverse compliment is TACGT. DNA
strands exist in double helix form and sub-sequences from both
strands are likely to appear in the input sequences. This is why
both variations are included in the count. The output of this
step is a list of k-mers.

2.2 Generating Binary Matrices

Depending on whether the extracted k-mer instances exist in
the given sequences or not, an output similar to the binary ma-
trix in Table 1 is produced. This matrix constitutes of only 0’s
and 1’s. Its rows and columns represent the k-mers and input
species respectively. An entry in the matrix contains 1 if the
k-mer representing the row exists in the sequence of the specie
representing the column, and 0 otherwise. One such matrix is
produced for each value of k in a particular range which is fur-
ther explained in 2.3. We have used hashing for this particular
task. All the generated k-mers are read from a file and a unique
index is generated for each of them. These are inserted in a
hash table along with the species identification number. The
k-mers are then read one by one from this hash table, while
placing the appropriate value in the desired position of the ma-
trix.

k-mer S1 S2 S3 S4
ATTGCA 0 0 1 0
AATTCA 0 1 1 0
AGTGCT 1 0 1 0
CGTGCC 0 0 0 0
GGTGCC 0 0 0 1
GGTGCG 1 0 0 1

Table 1: Binary Matrix

2.3 Finding an Appropriate k-mer Length

A major challenge in k-mer based phylogeny estimation meth-
ods is the selection of appropriate k-mer length. As the k-mer
length increases, the probability of finding this k-mer in the
nucleotide sequences reduces and vice versa (Figure 3). A
small k-value means the k-mer will be common and will re-
sult in large number of 1’s in the binary matrix while a large
k-value would produce long runs of 0’s. An optimal k-mer
length should be such that it captures the similarities of close
species and the dissimilarities of distant ones, making the best
usage of information offered by the dataset.

One of the ways of k selection is explained in [14]. The
limitation of this selection process is that it is solely depen-
dent on sequence length and does not take into account resem-
blances between sequences. Another mechanism in [15] ex-
plains a method of finding a range of feasible values of k as a
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Figure 2: First, different k-mers are listed from the input sequences. Then separate binary matrices from all these k-mer counts
are produced. From the binary matrices of different k-mers, kentropy is chosen based on the cumulative entropy values. Lastly,
the binary matrix produced from this k-mer length is fed into RAxML for the estimation of the final phylogenetic tree.

function of sequence length, but does not refer to selection of
any specific value of k. So this selection process is also not
very suitable for our method. K-Phylo uses a simple way of
choosing an appropriate k-mer length - entropy.

Figure 3: Probability of existence of k-mers depends on the k-
mer length. In this figure, the k-mer AT of length 2 is found in
all 3 taxa. However, the k-mer ATAGCGC of length 7 is found
only in the source taxon (T1).

Entropy is the randomness or information loss of a sys-
tem. It represents disorder (e.g. variation between two DNA
sequences) and can be used to model the diversity of different
genome sequences [16]. Since it is a good measure of random-
ness, it can be expected to capture the uncertainty present in
a binary matrix. Maximum entropy occurs when k-mers of a
certain length have exactly 50% presence among all the taxa.
Long runs of 0’s and 1’s would reduce overall entropy while
short runs would do the reverse. Information entropy is the
average rate at which information is produced by a stochastic
source of data. We use the following equation for entropy cal-
culations.

H(X) = −
∑

p(X) log p(X)

Empirical evidence suggests that k values less than 9 make
the k-mers too common while those greater than 31 make exact
matches difficult to find in the sequences. K-Phylo is therefore
run from k-mer length 9 to 31, and entropy values are calcu-
lated for each value of k. From the binary matrix corresponding
to a certain value of k, we choose 5000 random k-mer rows and
calculate the cumulative entropy using the mentioned equation.
The cumulative entropy values from different k-mer lengths are
then compared. The value of k resulting in the maximum en-
tropy is chosen to be the most suitable one, indicating highest
uniformity. Let us call this length kentropy.

2.4 Generating Phylogenetic Tree

Once we have obtained the kentropy value, the next step is to
construct a tree topology from the binary matrix produced for
this length. To do this, this matrix is fed into RAxML soft-
ware [17] as input. From the various maximum likelihood
models available, we have used BINGAMMA since our input
data contains merely 0’s and 1’s. The BINGAMMA model is
defined for binary data and assumes a gamma prior on site mu-
tation rates. This model takes in binary sequences and outputs
a tree topology. Since a character substitution affects many k-
mers in the sequences, we focus on topology at this stage and
leave branch length estimation as future work. We also note
that RAxML assumes the sites are independent which is vio-
lated here due to the same reason.
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RF Distance K-Phylo RAxML(w alignment)
Average 0.9 0.8
MAX 2 2
MIN 0 0
Mode 0 0

Standard Deviation 0.99 0.98

Table 2: Comparison on 20 simulated datasets

2.5 Implementation

K-Phylo is implemented in C++ and Python. Besides, it uses
the following tools for k-mer counting and phylogeny estima-
tion:

• K-mer Counting Tool - Jellyfish 2.2.4
A rigorous comparison of k-mer counting methods is
presented by Zhang et al. [13] On the basis of this com-
parison we can find that Jellyfish is fast, and supports
dynamic memory. Jellyfish is therefore preferable for
large genome sequences. It extracts both the k-mer and
its reverse complement (explained in Section 2.1) in the
counting step.

• Phylogenetic Tree Construction Software - RAxML
8.2.4
RAxML stands for Randomized Axelerated Maximum
Likelihood [17]. It is a popular phylogenetic analysis
software and can handle large datasets. It uses partial
likelihood vectors over and over and thus by rearranging
distance, it restores branch length and topology. For tree
production, we have used its BINGAMMA model.

3 Datasets and Results

3.1 Datasets

We have used both simulated and biological datasets for testing
K-Phylo. 20 different simulated nucleotide sequence data are
generated using SeqGen [18], varying the number of species,
source tree and branch lengths. It is provided with a source tree
(in Newick format) as input and is used to generate nucleotide
sequences according to the input tree. Some constraints are
applied to the source phylogenetic trees used for generating
the simulated sequences. It is ensured that the input species
are neither too distant, nor too close. Branch lengths of ex-
treme values, too small or too large, are avoided. The model
we have used is general time reversible model with sequence
length set to 50000. The source tree is treated as benchmark
and the primary performance metric used for comparison of
tree topology is Robinson Foulds (RF) distance between esti-
mated tree and its benchmark. This metric gives a measure
of distance between two trees by counting the number of dis-
similar partitions. The RF distance between the estimated and
benchmark tree is found using KTreeDist [19]. Performance
of simulated data is compared with that of an alignment-based
method, GTRGAMMA model from RAxML.

Five real datasets, relevant to our research, are used to
compare our method to the existing different methods. These
are full mitochondrial genome sequences of seven primates
[6], full genome sequences of 8 Yersinia strains [20], full
genome sequences of 27 E.coli/Shigella strains [20], assem-
bled genomes of 25 fish species of the suborder Labroidei [21]
and assembled 29 E.coli/Shigella strains [8]. In case of the real
datasets other than the seven primates dataset, the sequences,
benchmark trees and RF distances - all are obtained from the
site AFproject [7] - a platform for comparison of alignment-
free methods on different datasets. For seven primates, se-
quences and benchmark are obtained from [6].

3.2 Selection of k-mer length using entropy

A matter of interest is whether the chosen k value (kentropy)
with maximum entropy actually corresponds to the estimated
tree with minimum RF distance or how far it is from the ideal k
generated by K-Phylo. For example, from Figure 4, in the seven
primates dataset, different k-mer lengths resulted in trees hav-
ing different RF distances but K-Phylo successfully captured
the k-mer length which generated a tree having RF distance
of 0. Similarly, in the 27 E.coli/Shigella strains dataset, al-
though several k-mer lengths result in trees having various RF
distances like 8, 10, 12 or even 18, K-Phylo picked the kentropy

value of 25 which produced a tree having the lowest RF dis-
tance (8) compared to the RFs generated from other k values
using K-Phylo.

From here on, we consider the tree corresponding to
kentropy and compare its RF distance with those achieved
by similar methods. In this paper, we compare K-Phylo to
co-phylog [8], andi [9], Multi-SpaM [10], Average Common
Substring [22], Composition Vector [23], kr [24], FFP [25],
Grammar-Based Distance [26] and Skmer [27] on the datasets
mentioned. The ranking of these methods shown in Figure 5
are taken from AFproject [7].

3.3 Simulated Data

For each simulated dataset, we construct a tree by aligning the
sequences using Clustal Omega [28] and then running RAxML
with the GTRGAMMA model. We also construct a tree by run-
ning K-Phylo in an alignment free approach. The trees gener-
ated by K-Phylo from most of the simulated samples have RF
distances of 0 from the source tree, i.e. they are exactly same.
In many cases, the RF values between estimated tree and source
tree are as good as the RF values between RAxML (with align-
ment) and the source tree. In some rare cases, RAxML (with
alignment) exceeds K-Phylo in terms of performance.

The results are apparent from Table 2. We can see that the
average RF distance between K-Phylo and source tree is very
close to that of the approach using alignment. The maximum
and minimum RF distances are similar for both approaches
considering sample simulated sequences. The mode values
of RF difference are the same, while the averages are almost
equal.
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Figure 4: Choosing a suitable k-mer length in K-Phylo - while different k-mer lengths result in trees having different RF distances,
K-Phylo picks kentropy that results in a tree having the best RF distance possible on seven primates and the 27 E.coli/Shigella
strains dataset.

Figure 5: RF distance comparison among K-Phylo and several different methods on real datasets. Labels on top of the bars
represent the corresponding method’s respective rank from [6] (for the seven primates dataset) and AFproject [7] (for rest of the
dataset). On the seven primate dataset, K-Phylo generates the exact benchmark tree leading to a RF distance of 0. This gives our
method a ranking of 1. On the 25 fish species dataset, tree generated from K-Phylo has RF distance of 2, placing it in rank 1.
On the 29 E.coli dataset, K-Phylo secures the 5th position, performing better than Multi-SpaM. On the Yersinia dataset, K-Phylo
generates a RF distance of 10, securing the 6th position. Finally, on the 27 E.coli dataset, K-Phylo tree has RF distance of 8
resulting in rank 3.
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Figure 6: (a) Estimated phylogeny using K-Phylo and (b) the benchmark tree on seven primates dataset. [6] Here, K-Phylo
achieves RF distance of 0 from the benchmark tree.

3.4 Primate Dataset

There are full genome sequences of seven primate species in
this dataset. Here, K-Phylo produces an exact tree as the bench-
mark tree with RF distance of 0. The benchmark tree used
is from [6]. Figure 5 shows that K-Phylo is better than or as
good as all other methods. Although maximum entropy occurs
at k equals 9, we found 0 RF distance for some other k-mer
lengths as well. The tree estimated by our method along with
the benchmark is demonstrated in Figure 6. The calculated en-
tropy values and RF Distances corresponding to different val-
ues of k are listed in Table S2 of Supplementary Data.

3.5 25 Fish Species

In this dataset, there are assembled mitochondrial genomes of
25 fish species of the suborder Labroidei. On the best k-mer
length (9), the resultant tree (Figure 7) from K-Phylo has RF
distance of 2 which ranks it 1st among the 90 methods available
in AFproject [7]. This can be visualized from Figure 5, which
also highlights the fact that the estimated tree from K-Phylo has
lower RF distance than that achieved by any other methods in
the graph. Therefore, on this dataset, K-Phylo outperforms the
methods it is compared with. The calculated entropy values and
RF Distances corresponding to different values of k are listed
in Table S2 of Supplementary Data.

3.6 29 E.coli/Shigella Strains

This dataset contains assembled 29 E.coli/Shigella strains. The
tree from K-Phylo has RF distance of 12 on the best k-mer
length (25), ranking it 5th among the 90 methods listed in AF-
project [7]. Referring to Figure 5, it is evident that our method

performed better than Multi-SpaM on this dataset, but did no
better than some of the compared methods. The tree estimated
by K-Phylo on this dataset and the benchmark tree are available
in Figure S3 of Supplementary Data. The calculated entropy
values and RF Distances corresponding to different values of k
are listed in Table S3 of Supplementary Data.

3.7 Yersinia Strains

This dataset holds full genome sequences of 8 Yersinia strains.
On the best k-mer length (32), K-Phylo generates an RF dis-
tance of 10 which gives it rank 6 among the 70 methods pre-
sented in AFproject [7]. On this dataset, each of the trees pro-
duced from the different k values (9 to 31) has RF distance of
10. From Figure 5, it can be seen that several other popular
methods have RF distances very close to K-Phylo. It should
be noted that results on this dataset are surprising as methods
performing well on the rest of the datasets performed poorly
here and vice versa as claimed in [15]. The tree estimated by
K-Phylo on this dataset and the benchmark tree are available
in Figure S1 of Supplementary Data. The calculated entropy
values and RF Distances corresponding to different values of k
are listed in Table S3 of Supplementary Data.

3.8 27 E.coli/Shigella Strains

This dataset contains 27 full genome sequences of
E.coli/Shigella strains. K-Phylo achieves RF distance of
8 on its best k-mer length (25). This ranks our method 3
among the 70 methods available in AFproject [7]. Figure 5
reveals that our method performs better than kr and FFP on
this dataset. The tree estimated by K-Phylo on this dataset and
the benchmark tree are available in Figure S2 of Supplemen-
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Figure 7: (a) Estimated phylogeny using K-Phylo and (b) the benchmark tree on 25 fish genomes dataset. K-Phylo has RF
distance of 2 which ranks it 1st in comparison with the methods presented in AFproject[7].

tary Data. The calculated entropy values and RF Distances
corresponding to different values of k are listed in Table S4 of
Supplementary Data.

4 Conclusion

We presented an alignment free approach for phylogeny con-
struction. It is based on presence or absence of k-mers in ge-
nomic sequences and estimates the tree using a maximum like-
lihood approach. While the method performs well on some
datasets, it does not work well if the species involved are dis-
tant since in this case very few k-mers are conserved across the
species. In future the performance of our method may be im-
proved by considering k-mer counts instead of using presence
or absence only. Moreover, the current version of this method
uses an existing likelihood based phylogeny estimation tool and
is concerned with tree topology only. Another future extension
will be to develop a model to estimate branch lengths using this
approach.

5 Supplementary Data

Additional information are available in the supplementary data.
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