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Abstract 16 

Acquiring clear and usable audio recordings is critical for acoustic analysis of 17 

animal vocalizations. Bioacoustics studies commonly face the problem of overlapping 18 

signals, but the issue is often ignored, as there is currently no satisfactory solution. 19 

This study presents a bi-directional long short-term memory (BLSTM) network to 20 

separate overlapping bat calls and reconstruct waveform audio sounds. The separation 21 
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quality was evaluated using seven temporal-spectrum parameters. The applicability of 22 

this method for bat calls was assessed using six different species. In addition, 23 

clustering analysis was conducted with separated echolocation calls from each 24 

population. Results showed that all syllables in the overlapping calls were separated 25 

with high robustness across species. A comparison between the seven 26 

temporal-spectrum parameters showed no significant difference and negligible 27 

deviation between the extracted and original calls, indicating high separation quality. 28 

Clustering analysis of the separated echolocation calls also produced an accuracy of 29 

93.8%, suggesting the reconstructed waveform sounds could be reliably used. These 30 

results suggest the proposed technique is a convenient and automated approach for 31 

separating overlapping calls using a BLSTM network. This powerful deep neural 32 

network approach has the potential to solve complex problems in bioacoustics. 33 

Author summary 34 

In recent years, the development of recording techniques and devices in animal 35 

acoustic experiment and population monitoring has led to a sharp increase in the 36 

volume of sound data. However, the collected sound would be overlapped because of 37 

the existence of multiple individuals, which laid restrictions on taking full advantage 38 

of experiment data. Besides, more convenient and automatic methods are needed to 39 

cope with the large datasets in animal acoustics. The echolocation calls and 40 

communication calls of bats are variable and often overlapped with each other both in 41 

the recordings from field and laboratory, which provides an excellent template for 42 

research on animal sound separation. Here, we firstly solved the problem of 43 
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overlapping calls in bats successfully based on deep neural network. We built a 44 

network to separate the overlapping calls of six bat species. All the syllables in 45 

overlapping calls were separated and we found no significant difference between the 46 

separated syllables with non-overlapping syllables. We also demonstrated an instance 47 

of applying our method on species classification. Our study provides a useful and 48 

efficient model for sound data processing in acoustic research and the proposed 49 

method has the potential to be generalized to other animal species. 50 

Introduction 51 

The structural identification of vocal units is essential in animal acoustic studies for 52 

sound feature analysis, sound emitter recognition, and species identification and 53 

monitoring. However, wild animal monitoring, both in the field and in the laboratory, 54 

often involves problems caused by the overlapping of different vocal units in time and 55 

frequency space, which prevents the components from being suitable for parameter 56 

analysis. As a result, the separation of overlapping sounds is an important task in 57 

bioacoustic signal processing. However, existing analysis software often struggles to 58 

process overlapping calls and previous research on the acoustic identification of 59 

animals primarily focuses on extracting target signals from background noise for 60 

species classification or population monitoring [1-4]. The process of separating 61 

overlapping calls from mixed sounds has received little attention to date and 62 

researchers conventionally abandon sounds that overlap in both time and frequency, 63 

requiring an extension of the experimental period to obtain sufficient non-overlapping 64 

recordings [5, 6]. As such, an effective method for successfully and automatically 65 
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separating overlapping calls would be of significant interest and benefit to animal 66 

researchers. 67 

Previous studies using deep neural networks have produced promising results for 68 

automated sound recognition in complex acoustic environments for animal species 69 

recognition and classification [6-8]. However, in this study, we consider the more 70 

difficult task of separating different types of syllables from overlapping calls and 71 

reconstructing sound waves from these separated signals. Existing techniques used for 72 

animal sound separation often require prohibitive quantities of labelled data. For 73 

example, multiple-instance machine learning (MIML) algorithms were proposed for 74 

use in sound feature extraction and species identification in birds [1]. However, this 75 

technique requires a cropped mask of a signal segment (without overlap) in order to 76 

extract each syllable. 77 

Deep learning networks have been applied to bioacoustic studies but have primarily 78 

been used for classification. For instance, convolutional bidirectional recurrent neural 79 

networks (CBRNNs) have been used to identify the presence of bird calls in audio 80 

samples [4]. Acoustic features were learned by the network (a classifier) and the 81 

presence or absence of a bird call was output as an indicator. Convolutional neural 82 

networks (CNNs) have been used to predict the presence of a search-phase bat 83 

echolocation call in spectrograms. This binary classification problem was used to 84 

detect the presence of bats [2]. To our knowledge, the use of deep learning techniques 85 

to separate animal calls that overlap in both time and frequency space has yet to be 86 

reported. 87 
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Multiple studies have been conducted using deep learning-based supervised speech 88 

separation with humans. Early systems included shallow models that performed a 89 

linear transformation of given mixture features during the prediction time interval. 90 

This has included Gaussian mixture models [9], support vector machines [10], and 91 

non-negative matrix factorization [11]. However, in real-world scenarios, the mapping 92 

relationship between mixture signals and sources is typically a nonlinear 93 

transformation. Nonlinear models, such as deep neural networks (DNNs), are 94 

therefore highly applicable because of their ability to identify nonlinear structures in 95 

audio signals [12-14]. Additionally, recurrent neural networks (RNNs) that exhibit the 96 

temporal behavior of a time sequence can be trained to predict time-frequency masks 97 

for target signals and separate sources from a mixed waveform [15]. Specifically, long 98 

short-term memory (LSTM) networks, a variation of RNN models that exhibit strong 99 

learning capabilities and simple construction, have been widely used for word and 100 

continuous speech recognition [16-18]. By concatenating two separate LSTM 101 

networks, bidirectional LSTMs (BLSTMs) can predict each element of a sequence 102 

based on past and future context and can naturally account for the temporal dynamics 103 

of speech. These models are typically faster and more accurate than standard RNNs in 104 

frame-by-frame phoneme classification [19]. In addition, the BLSTM network can 105 

compensate for exploding and vanishing gradient issues that can occur during the 106 

training of standard RNN models [20]. At present, BLSTMs have achieved 107 

state-of-the-art performance for speech recognition [14, 21], natural language 108 

processing [22, 23], and speaker-independent speech separation [24]. As such, a 109 
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BLSTM model was selected in this study for overlapping bat call separation. 110 

 Echolocating bats have two vocal repertoires, stereotypical echolocation calls for 111 

orientation and a variety of communication calls for social activities [25-27]. 112 

Recordings from both field and laboratory studies indicate that utterances from 113 

individual bats often overlap in both time and frequency, which provides an excellent 114 

template for research on overlapping sound separation in animals. The primary 115 

objective of this study is to develop a technique for separating two target signals 116 

(echolocation and socialization calls) from mixtures of acoustic sounds. Although 117 

deep leaning has been employed in the acoustic classification of multiple species, 118 

including nonhuman primates [28], birds [4], whales [5], and bats [2, 3], the goal of 119 

the present study is distinct from these previous cases in which deep neural networks 120 

were primarily used as classifiers. 121 

Both overlapping and non-overlapping calls (of both echolocation and 122 

communication types) were recorded from each of the collected bat species studied in 123 

our previous work. We developed a BLSTM network and used the recorded 124 

non-overlapping calls to train the model. Recorded overlapping calls were input to the 125 

trained model and separated. Independent sound files were then reconstructed for each 126 

separated signal. The correctness of these separated signals was measured by 127 

comparing the temporal-spectrum parameters between separated calls and the initially 128 

recorded (non-overlapping) calls from each species. Finally, clustering analysis was 129 

conducted to classify the bats using separated echolocation calls, which provided a 130 

practical application of the proposed technique. 131 
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Results 132 

The proposed algorithm performed well and achieved high accuracy in separating 133 

overlapping calls for each of the six species. The BLSTM model was iteratively 134 

trained until the training and validation losses reached a minimum. Loss is a 135 

summation of errors made with each sample in the training or validation sets and 136 

measures how well the model adapts during optimization. Training loss for this model 137 

decreased significantly in the first epoch. The validation loss function tended toward 138 

an asymptotic value, indicating the training algorithm had converged (S2 Fig). The 139 

BLSTM model converged slightly faster when training with CF bat samples (as 140 

opposed to FM samples). 141 

All echolocation and communication calls in the overlapping signals were 142 

correctly extracted during the separation procedure, regardless of their pulse duration 143 

or energy characteristics (see Table 1 and Fig 1). In addition, low-intensity FM 144 

components in echolocation pulses were successfully extracted from three CF bat 145 

species (Figs 1d, 1e, and 1f). 146 

Table 1. Separation results. 147 

Species Call type 
Number of 

syllable types 

Number of 

syllables in 

overlapping 

calls 

Number of 

overlapping 

syllables 

Number of 

separated 

syllables 

Rhinolophus 

ferrumequinum 

Echolocation 1 14 14 14 

Communication 4 8 8 8 

Vespertilio 

sinensis 

Echolocation 1 21 13 13 

Communication 4 8 8 8 

Hipposideros 

armiger 

Echolocation 1 28 19 19 

Communication 6 13 13 13 

Myotis Echolocation 1 54 36 36 
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macrodactylus Communication 6 15 15 15 

Rhinolophus 

pusillus 

Echolocation 1 42 30 30 

Communication 6 10 10 10 

Ia io 
Echolocation 1 26 16 16 

Communication 4 11 11 11 

 148 

Fig 1. Spectrograms from original recordings of overlapping calls and calls separated by 149 

the BLSTM network. The first graph represents each line of the original overlapping calls 150 

and the second and third graphs show the separated echolocation and communication calls, 151 

respectively. 152 

 153 

A comparison of seven temporal-spectrum parameters from the separated calls 154 

and the original recorded non-overlapping calls showed no significant differences (Fig 155 

2 and S3 Table). In addition, parameter deviations in separated calls and original 156 

non-overlapping calls showed minimal RMSE values for both echolocation and 157 

communication signals (Fig 3 and Fig 4). Clustering analysis performed with 158 

separated echolocation calls produced an accuracy of 93.8% across species (Fig 5). 159 

 160 

Fig 2. Comparisons between the separated and original calls. Two principle 161 

components extracted from seven temporal-spectral parameters were used in the study. 162 

Results for echolocation and communication calls are shown in (A-F) and (G-L), 163 

respectively. 164 

Fig 3. A comparison of deviations for separated and original echolocation calls. 165 

The RMSE value is shown under each plot. The vertical axis represents values for 166 
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each parameter and the horizontal axis represents the number of syllables measured. 167 

The red triangles represent separated calls and the blue dots represent original calls. 168 

Abbreviations include duration (duration), Fstart (starting frequency), Fend (ending 169 

frequency), Fpeak (peak frequency), Fmin (minimum frequency), Fmax (maximum 170 

frequency), and bandw (bandwidth). 171 

Fig 4. A comparison of deviations in separated and original communication calls. 172 

The RMSE value is shown under each plot. The vertical axes and abbreviations are 173 

the same in Fig 3. 174 

Fig 5. Clustering analysis for six bat species based on their separated 175 

echolocation calls. Overlapping echolocation signals cannot be used for species 176 

identification until after separation. 177 

 178 

Discussion 179 

The BLSTM network used in the present study achieved high accuracy in 180 

separating overlapping echolocation and communication calls from bats. The training 181 

and validation loss for the model also exhibited fast convergence and high robustness 182 

for bat vocalizations. In particular, the separated calls extracted by the proposed 183 

algorithm were reconstructed as waveform files with nearly the same quality as the 184 

non-overlapping calls, suggesting BLSTM networks to be useful tools for separating 185 

signals in future bioacoustic research, such as sound analysis, acoustic identification, 186 

species classification, and wild animal monitoring. 187 

It was difficult to compare the performance of this algorithm with that of previous 188 
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studies, primarily because of differences in the experimental procedure. However, a 189 

comparison of temporal-spectrum parameters between separated calls and 190 

non-overlapping calls was included as an evaluation metric. The seven parameters 191 

used in this study are commonly used in bat studies to describe the temporal-spectral 192 

features of syllables [26, 29]. Statistical results for this comparison showed no 193 

significant differences and small deviations in parameters between separated calls and 194 

original recordings, indicating the system was able to separate calls without affecting 195 

syllable quality. In addition, clustering analysis conducted with reconstructed 196 

echolocation calls was highly accurate (93.8%) for species classification, indicating 197 

that calls separated from overlapping signals could be used to synthesize initial data.  198 

 The BLSTM network exhibited good performance across all six bat species using 199 

both narrow and broad time-frequency calls. It also successfully separated different 200 

syllable types from both overlapping echolocation and communication calls (Table 1, 201 

Fig 1). No species-specific a priori knowledge or particular acoustic sensor was 202 

directly encoded into the system, making it generalizable to other animal populations 203 

with additional training data. Although the dichotomy between communication and 204 

echolocation calls is relatively drastic, the proposed separation system has potential 205 

applications for other species, as such mixtures are very common in bats. In the future, 206 

more complex emitter-independent separation could be conducted using the proposed 207 

system, such as combinations of echolocation or social calls from other animals. 208 

While deep learning models generally perform better when provided with more data, 209 

training with bat calls requires fewer samples than human speech separation, in which 210 
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available training sets can exceed hundreds of hours [13]. One possible reason for this 211 

may be the high signal-to-noise ratio (SNR) of bat sounds recorded with high-quality 212 

ultrasound devices. Previous studies have indicated that a high SNR can improve 213 

separation accuracy [30] and our results suggest this model was suitable for use with 214 

small, high-quality datasets. Although the sound data in this study were sampled in 215 

controlled lab conditions, producing recordings that were essentially free of 216 

background noise, acoustic analysis software could potentially optimize the separation 217 

further by excluding any background noise that was present in the signal. 218 

Future studies will also assess the performance of this network for other animal 219 

species. Stereotypical patterns and clearly classifiable syllables have been observed in 220 

the vocalizations of birds, non-human primates, whales, dolphins, and several other 221 

species [31-33]. Features used in the proposed BLSTM were log spectral magnitudes, 222 

which can be acquired from any vocal sound. This could potentially lead to robust 223 

software that is not specific to a certain species or task. The model could also be 224 

generalized to other animals, though limitations may exist. In addition to the quality 225 

and quantity of training samples, hyper-parameters must be tuned in accordance with 226 

the data [34, 35]. 227 

Conclusion 228 

A sound separation model was proposed for extracting bat calls, achieving 229 

excellent results. This is the first experimental evidence that the BLSTM model is 230 

suitable for separating overlapping bioacoustic signals. These results provided a new 231 

source for sound data analysis in animal acoustics research, which may contribute to 232 
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sample sizes and improve efficiency. This study also demonstrates the potential of 233 

deep neural networks for applications to animal vocalization research, including 234 

species classification and speech separation. 235 

Materials and Methods 236 

Sound recording and data preparation 237 

Species selection and sound sources. Echolocation calls from bats are primarily 238 

composed of constant frequency (CF) components and frequency modulated (FM) 239 

components. Social calls are composed of CF, FM, and noise-burst (NB) components. 240 

FM calls have short pulse durations and wide bandwidths. As such, they overlap with 241 

social calls less in time but more in frequency. In contrast, CF calls have long pulse 242 

durations and narrow bandwidths. They overlap with social calls more in time but less 243 

in frequency. In consideration of the varied overlapping patterns found in bat calls, we 244 

selected both CF bats (Rhinolophus ferrumequinum, Hipposideros armiger, and 245 

Rhinolophus pusillus) and FM bats (Vespertilio sinensis, Myotis macrodactylus, and 246 

Ia io) to test the separation capabilities of the proposed network, including six 247 

different species to test method generalizability. 248 

Source sound files from V. sinensis, M. macrodactyllus, R. ferrumequinum, R. 249 

pusillus, and H. armiger were collected from previous studies in our lab (S1 Table). 250 

Sound files for Ia io were selected from unpublished data as follows. Bats captured 251 

from the field were housed in a husbandry room with abundant food and fresh water. 252 

During each sound recording experiment, 4–5 bats were transferred to a temporary 253 

cage. Sound recordings were collected using the Avisoft UltraSoundGate 116H 254 
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(Avisoft Bioacoustics, Berlin, Germany) and a condenser ultrasound microphone 255 

(CM16/CMPA, Avisoft Bioacoustics). The sampling frequency was set to 375 kHz at 256 

16 bits. The recording experiment lasted five days in order to acquire a sufficient 257 

number of recordings, beginning at 18:00 and finishing at 6:00 the following morning. 258 

S1 Table shows sample numbers and locations for the bats, as well as the total 259 

duration of sound files selected for the study. All experimental procedures complied 260 

with the ABS/ASAB guidelines for the Use of Animals in Research and were 261 

approved by the Committee on the Use and Care of Animals at the Northeast Normal 262 

University (approval number: NENU-W-2010–101). 263 

Sound analysis. The total duration of recorded sound files (i.e., original recording 264 

files) used for each bat species is shown in S1 Table. We employed Avisoft-SASLab 265 

Pro (Version 5.2.12, Avisoft Bioacoustics, Berlin, Germany) to identify 266 

non-overlapping and overlapping syllables in echolocation and communication calls. 267 

These syllables and calls were described and classified following the nomenclature 268 

developed by Kanwal, Matsumura (36) and Ma, Kobayasi (37). The recorded 269 

non-overlapping calls were used for preparing training files of each call type and the 270 

recorded overlapping calls were used for separation. 271 

Data preparation. Supervised machine learning algorithms use training samples to 272 

“learn” the steps required for completing a task. The training phase in this study 273 

involved preparing clear and non-overlapping echolocation and communication calls, 274 

selected from original recording sounds. In this process, the BLSTM network learned 275 

features found in both call types. 276 
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Training samples consisted of randomly selected non-overlapping syllables in 277 

echolocation and communication calls from each bat species (in the original 278 

recordings), with signal-to-noise ratios (SNRs) above −20 dB. The echolocation 279 

training files contained 1,300–6,240 pulses and the communication training files 280 

contained 780–1,800 syllables (S1 Table). Although the quantity of selected syllables 281 

varied between studies, the data was sufficient for model training. Efforts were made 282 

to include roughly equivalent quantities of each syllable type. Time intervals between 283 

syllables in the training files were consistent with those of the original recordings. The 284 

lengths of training files for echolocation and communication calls were the same for 285 

each bat species (S1 Table). 286 

Model training and call separation 287 

Model structure and training stage. We developed a network with four BLSTM 288 

layers, followed by one feedforward layer (Fig 6). Each BLSTM layer included one 289 

forward and one backward basic LSTM layer, both of which were added with dropout 290 

functions (tensorflow.nn.rnn_cell.DropoutWrapper). Each BLSTM layer contained 291 

300 hidden cells and the feedforward layer corresponded to the embedding dimension 292 

(i.e., a 3D matrix with depth N=40 in this experiment). Stochastic gradient descent 293 

with a momentum of 0.9 and a fixed learning rate of 10−3 was used for training. The 294 

tanh activation function and the Adam optimizer were adopted to support adaptive 295 

learning rates and faster convergence. The structure and hyper-parameters for the 296 

model were designed based on the work of Hershey, Chen (21). 297 

Fig 6. The BLSTM model architecture and workflow graph. 298 
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The model was trained using the files for one bat species in each trial. 299 

Echolocation and communication call training files were loaded using the librosa 300 

(version 0.6.2) Python package. Frames from the two sound files were read and added 301 

together to create sound mixtures. Sound features used for training (log spectral 302 

magnitudes) were extracted from this mixture. The extraction process was completed 303 

using a short-time Fourier transform (STFT) with a Hamming window (length of 512 304 

and shift of 256). 305 

The mixture from each bat species was then segmented into 100-frame samples, 306 

all of which were divided into a training set and a validation set using a ratio of 2:1 307 

(see S1 Table for detailed sample quantities). The training set, validation set, and 308 

indicator labels were combined and input to the model. The validation set was used to 309 

optimize tuning parameters and evaluate call separation performance. Indicator labels 310 

were set to 0 or 1, representing the two types of calls in the mixture. Ideal binary 311 

masks were used to train the network and gradients were calculated using shuffled 312 

mini-batches (batch size of 128) from larger segments. 313 

The output of this model was a set of embeddings that included learned features 314 

for both echolocation and communication calls. In this framework, the deep network 315 

assigned embedding vectors to each time-frequency bin in the spectrogram. The 316 

network then minimized the distance between embeddings dominated by the same 317 

call type in each bin while maximizing the distance between embeddings dominated 318 

by different call types. The output was then compared with the validation set and 319 

indicator labels to calculate loss, which was back propagated from the output to the 320 
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input through each layer. Model weights and parameters were then updated based on 321 

the calculated loss and training was completed after sufficient iteration epochs. 322 

Separation stage. In this stage, overlapping echolocation and communication calls 323 

were randomly selected from the original recordings to create a sound file of test sets, 324 

used for separation. The log spectral magnitudes of the overlapping calls were then 325 

extracted, combined into samples, and input to the trained model. The phases of calls 326 

extracted from the sound files were also saved for use in sound reconstruction. The 327 

trained model then output embeddings for each segment (100 frames) in a process 328 

similar to the training stage. Embeddings were clustered using the k-means method 329 

from Scikit-learn (Version 0.20.0) to produce time-frequency masks. The number of 330 

clusters corresponded to the number of call types in the mixture (2 - echolocation and 331 

communication). These masks and the clustering method were then used to determine 332 

which parts of each segment in the overlapped calls would be preserved or neglected 333 

based on their correspondence to each call type. For example, if the maximum 334 

magnitudes were more likely to belong to echolocation calls, the related mask values 335 

were set to 1 and the others were set to 0, allowing the echolocation calls to be separated 336 

correctly. Finally, output calls were reconstructed using the inverse fast Fourier 337 

transform (IFFT) function numpy.fft.ifft in NumPy (Version 1.15.1). The IFFT 338 

transformed the magnitude into a wave using phase information saved at the beginning 339 

of the separation stage. The model produced two waveform files, each containing one 340 

call type. Additional detail concerning the sound separation algorithms can be found in 341 

the work of Hershey (2016). 342 
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Model evaluation 343 

The quality of reconstructed echolocation and communication calls was assessed 344 

by comparing their temporal-spectrum parameters to the non-overlapping calls 345 

selected from the original recording files (excluding training data). Avisoft-SASLab 346 

Pro was used for automatic parameter measurements of duration, bandwidth, peak 347 

frequency, minimum frequency, maximum frequency, starting frequency, and ending 348 

frequency. A t-SNE (t-distributed stochastic neighbor embedding - R3.6.1 package) 349 

analysis was adopted for dimensionality reduction. Two dimensions were extracted 350 

from these seven parameters for original and separated syllables and compared with 351 

one-way ANOVA (aov in R3.6.1) or two-sided Wilcoxon signed-rank tests 352 

(wilcox.test in R3.6.1), depending on their fit to a normal Gaussian distribution. The 353 

significance level was set to 0.05 for all tests. We adopted the root mean square error 354 

(RMSE) to measure and avoid obscuring individual variations between reconstructed 355 

and original calls. Clustering analysis was conducted using the reconstructed 356 

echolocation calls from the six bat species, to assess whether the separated calls could 357 

be further used in species classification. 358 
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