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Abstract

Identifying change points and/or anomalies in dynamic network structures has
become increasingly popular across various domains, from neuroscience to telecom-
munication to finance. One of the particular objectives of the anomaly detection task
from the neuroscience perspective is the reconstruction of the dynamic manner of
brain region interactions. However, most statistical methods for detecting anoma-
lies have the following unrealistic limitation for brain studies and beyond: that is,
network snapshots at different time points are assumed to be independent. To circum-
vent this limitation, we propose a distribution-free framework for anomaly detection
in dynamic networks. First, we present each network snapshot of the data as a linear
object and find its respective univariate characterization via local and global net-
work topological summaries. Second, we adopt a change point detection method for
(weakly) dependent time series based on efficient scores, and enhance the finite sam-
ple properties of change point method by approximating the asymptotic distribution
of the test statistic using the sieve bootstrap. We apply our method to simulated
and to real data, particularly, two functional magnetic resonance imaging (fMRI)
data sets and the Enron communication graph. We find that our new method de-
livers impressively accurate and realistic results in terms of identifying locations of
true change points compared to the results reported by competing approaches. The
new method promises to offer a deeper insight into the large-scale characterizations
and functional dynamics of the brain and, more generally, into intrinsic structure of
complex dynamic networks.
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1 Introduction

Identifying and analyzing change points and/or anomalies (which we use interchangeably)

has become an increasingly active area of research in network sciences (Host-Madsen and

Zhang, 2018; Messer et al., 2018). For example, in financial trading, a regime shift in

the network of transactions is frequently linked to various (often upcoming) insolvencies

such as bankruptcies, defaults, and recessions while a change in the network topology

of cryptocurrency transactions may suggest a potential money laundering scheme (e.g.,

Elliott et al., 2014; Vandermarliere et al., 2015). Similar to other biological networks (Wig

et al., 2011), the idea of studying the brain as a dynamic functional network is helpful in

understanding the complex network organization of the brain and can lead to profound

clinical breakthroughs (Bassett and Bullmore, 2006; Rubinov and Sporns, 2010).

Most currently available statistical methods for anomaly detection in dynamic networks

have the following limitation: network snapshots at different time points are assumed to

be independent (e.g., Peel and Clauset, 2015; Akoglu and Faloutsos, 2010; Harshaw et al.,

2016). This assumption appears to be unrealistic in many applications. For example,

cryptocurrency entities and their interactions in a network of transactions evolve in time

but obviously daily snapshots of the same network cannot be assumed to be independent.

This dependence or autocorrelation effect is well documented in the time series literature

since the 1960s (Zellner, 1962; Wolff et al., 1967). However, in many cases, this effect is

often overlooked in practice, which leads to unreliable and false conclusions. Neglecting

the dependence among the network snapshots at different time points leads to inflated

false-positive rates of change points or anomalies, especially for small and moderate sample

sizes.

To overcome this limitation, we propose a new distribution-free framework, named Net-

work Evolution Detection Method (NEDM), for anomaly detection in dynamic networks

and evolution network structures of high dimensional time series. The setup for the pro-

posed methodology entails the following: With each network snapshot as a graph object,

we find its unique univariate characterization, for example, mean degree, clustering coeffi-

cient, and clique number. As a result, a series of possibly very high dimensional network
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snapshots is transformed into a time series of scalars. Given the temporal dependence of

network snapshots, it is infeasible to assume that the resulting time series of linear charac-

teristics is independent. Next, we adopt a change point detection method (Gombay, 2008)

for (weakly) dependent time series that is based on efficient scores. To enhance the finite

sample properties of detected change points, we approximate the asymptotic distribution

of the test statistic with a sieve bootstrap procedure (Kreiss, 1988, 1992; Bühlmann et al.,

1997). We derive asymptotic properties for the NEDM statistic, validate its performance

in respect to competing anomaly detection methods via synthetic and real data experi-

ments. We illustrate the utility of the NEDM by applying it to two input data types: two

multivariate functional magnetic resonance imaging (fMRI) time series data (Cribben et al.,

2012, 2013; Cribben and Yu, 2017) and a dynamic network of the Enron email communi-

cation (Park et al., 2012; Priebe et al., 2005; Diesner et al., 2005). For the sake of brevity,

we defer the analysis of one fMRI data set to the Supplementary Material (Appendix).

In application, we find that the NEDM has the potential to unveil the time-varying cog-

nitive states of both controls and subjects with neuropsychiatric diseases such as Alzheimer’s,

dementia, autism and schizophrenia in order to develop new understandings of these dis-

eases. By applying the NEDM , we can consider whole brain dynamics, which promises to

offer deeper insight into the large scale characterizations of functional architecture of the

whole brain.

To sum up, the proposed NEDM has the following unique and significant attributes:

1. It is, to the best of our knowledge, the first paper to consider estimating change

points in any graph summary statistic for the time-evolving network structure in a

multivariate time series context.

2. It can consider thousands of time series and, in particular, the case where P , the

number of time series is much greater than T (P >> T ), the number of time points.

3. Unlike existing methods it is not limited by assuming that network snapshots at

different time points are independent.

4. It enhances the finite sample properties of the change point method by approximating
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the asymptotic distribution of the test statistic using the sieve bootstrap.

5. Although it is inspired by and developed for brain connectivity studies, it pertains to

a general setting and can also be used in a variety of situations where one wishes to

study the evolution of a high dimensional network over time.

The remainder of the paper is organized as follows. We introduce the NEDM in

Section 3. A simulation study that examines the finite sample performance of our method

via sieve bootstrapping (Kreiss, 1988, 1992; Bühlmann et al., 1997) is also covered in

Section 3. In Section 4, we describe the properties for building synthetic data and then

provide background information on the fMRI and Enron dynamic network data sets in

Section 5. The performance of the proposed algorithm, on both the synthetic and real

world data, is detailed in Section 6. Conclusion and future work is provided in Section 7.

Finally, proofs, supplementary material and processes are deferred to the Supplementary

Material.

2 Related Work

There exists a vast body of studies on dynamic network models across various disciplines

(see, Barabási and Albert (1999) and references therein). One method based on the min-

imum description length (MDL) principle and compression techniques (Sun et al., 2007)

flattens the adjacency matrices into binary strings and uses compression cost to derive data

specific features. Another procedure (DELTACON) proposed by Koutra et al. (2013) relies

on the similarity measures between a pair of equal node networks. However, anomalous

points reported by this procedure tend to suffer from limited interpretability due to their

lack of statistical quantifiers (such as critical numbers or p-values).

The first comprehensive treatment of high dimensional time series factor models with

multiple change points in their second-order structure has been put forward by Barigozzi

et al. (2018). To detect changes in the covariance matrix of a multivariate time series, Aue

et al. (2009) introduced a method using a nonparametric CUSUM type test, and Dette

and Wied (2016) proposed a test where the dimension of the data is fixed. Furthermore,
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Cribben et al. (2012, 2013) put forward a method for detecting changes in the precision

matrices (or undirected graph) from a multivariate time series. In turn, Cribben and Yu

(2017) introduced a graph-based multiple change point method for changes in the commu-

nity network structure between high dimensional time series, called Network Change Point

Detection, that uses an eigen-space based statistic for testing the community structures

changes in stochastic block model sequences. In addition, Barnett and Onnela (2016) de-

veloped a method for detecting change points in correlation networks that, unlike previous

change point detection methods designed for time series data, requires no distributional

assumptions.

3 Methodology

In this section, we describe the proposed contribution which tracks structural changes

within the network structure of data sets. We use the terms change point detection and

anomaly detection as well as the terms graphs and networks interchangeably. Table 1 in

the Supplementary materials details the notation for the rest of the paper.

3.1 Input Data: Graphs and Multivariate Time Series

Our proposed methodology is applicable to two types of the input data: data that are

originally in a form of a graph, and multivariate time series that are used to construct a

graph, based on a certain similarity measure, e.g., correlation. Since one of our primary

motivating applications is multivariate fMRI time series, below we describe in details how

networks can be constructed from such data sets.

Networks from a multivariate time series In many applications such as, for in-

stance, neuroscience and finance, input data are multivariate time series, and the first step

consists of constructing a graph structure based on a user-selected (dis)similarity measure.

That is, suppose D is a T × P multivariate time series, where T and P are the number

of time points and the number of time series, respectively. From the multivariate D, we

take a q-row sample, F ∈ Rq×P , in a sequential “one-in, one-out” manner. This mode
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of data segmentation is known as the overlapping/sliding window technique (Keogh et al.,

2001) and is ideal for maintaining the time dependency structure within D, while taking

as many samples as possible from the data matrix, D. Because each q-row sample con-

tains information from previous or successive samples, this segmentation procedure has the

advantage of capturing all (and any) network structure disturbance. Note that, depending

on the window length q, some data information may not be adequately captured because

not every row in the data matrix has an equal number of appearances in all the F folds

created. For instance, the first row (D[1, ]) and the last row (D[T, ]) are least likely to be

included in the collection of all F s. However, because we hypothesize that the changes

points occur within the data and not at the end points (at the beginning and end of the

time series) our detection procedure and results do not suffer.

Armed with F , we compute a correlation matrix R = (ρrs) ∈ RP×P by quantifying the

linear association between the P vertices in F . With R and a pre-defined threshold ω1,

we define the finite graph-associated adjacency matrix A = (ars) ∈ RP×P using

ars =

1 if ρrs > ω

0 otherwise.

Given each adjacency matrix A, we then construct a graph object Gt = (Vt ,Et).

Input data as a graph structure Alternatively, the original input data can take form

of a graph Gt observed at time point t, t = 1, 2, . . .. Such examples include communication

networks (see, for instance, the Enron study in Sections 5 and 6), power grid networks, and

the emerging blockchain technology. Indeed, one of the salient blockchain features is that

all transactions are permanently recorded on distributed ledgers and publicly available. As

a result, a blockchain graph Gt can be constructed directly on each transaction, bypassing

application of correlation and other similarity measures.

Finally, armed with the sequence of the graph objects Gt , we then calculate various

global and local graph summary statistics (Newman, 2003; Barabási and Pósfai, 2016).

1In the experimental analysis we select parameters q and ω based on previous neuroscience studies.

Alternatively, q and ω can be selected via cross-validation.
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In particular, from each graph, we estimate the following graph summaries (Yt): Average

Clustering Coefficient (ACC), Average Path Length (APL), Maximum Node Betweenness

centrality (maxBETW ), Clique number (CLQNUM), Mean Degree (MD) and Minimum

Local Clustering Coefficient (minLCC).

3.2 Detection procedure and the sieve bootstrap

Following the dimension reduction and data structure simplification in Section 3.1, our

next task is to identify the time(s) at which the regime shift(s) occur in the series of lower

dimensional embeddings. In our case, we are interested in testing the following hypotheses:

H0 : There is no change in the underlying structure of {Yt}nt=1

Ha : At an unknown time t ∈ {1, . . . , n} a change occurs in {Yt}nt=1.

We assume that the appropriate model to fit to {Yt}nt=1 is a strictly stationary and purely

non-deterministic autoregressive [AR(p)] model with Gaussian independent and identically

distributed (i.i.d.) white noise εt. The assumption of Gaussianity for εt can be relaxed and

substituted by the appropriate moment conditions (Gombay, 2008). (We run experiments

on time series with non-Gaussian innovations and find that while the proposed change point

detection is applicable to a non-Gaussian case, performance largely depends on deviations

from the normality assumption and sample size. For instance, under the null hypothesis of

no change, a nominal α-level of 0.05, and an AR(1) process with ϕ of 0.5, it takes approx-

imately 100 observations to achieve an approximate size of the test of 0.05 for a case of

t-distribution with 9 degrees of freedom; in turn, it requires about 200 observations from

a uniform distribution to achieve a similar empirical size of the test.) In turn, an approx-

imation of time series via AR(p) models, including the case of p → ∞, is widely used in

theory and methodology of time series analysis (for overview see, for instance, Pourahmadi

(2001); Shumway and Stoffer (2017), and references therein).

Remark: Note that under the considered problem of change point detection on net-

works, the network topological summary statistic {Yt}nt=1 is estimated from the data. There

currently exist no theoretical results on asymptotic properties of network statistics, espe-
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cially in a conjunction with dynamic networks; that is, besides invoking a central limit the-

orem for network mean degree, nothing can be formally said on a linear process representa-

tion of {Yt}nt=1 or its distributional properties. As a result, our approach is approximation-

based and data-driven; that is, while we cannot provide theoretical bounds on the linear

process approximation of {Yt}nt=1, we can validate performance of the proposed NEDM

against known ground truth change points.

In particular, we define Yt as

Yt − µ =

p∑
k=1

ϕk(Yt−k − µ) + εt , t > p+ 1 (1.1)

with E[Yt] = µ and let ξ = (µ, σ2, ϕ1, . . . , ϕp)
T . Given equation (1.1), we formally test the

null hypothesis of no change

H0 : ξ = ξ0,∀ t ∈ {1, . . . , n} against

Ha : ξ = ξ0, ∀ 1 6 t 6 τ − 1, at τ = [ρn], ρ ∈ (0, 1) ;

ξ = ξa, ∀ t > τ.

Most studies on change point detection calculate the pre-regime switch and post-regime

switch parameter values of all possible change points τ ∈ (1, n), and then either use the

strength of their differences to determine a regime switch or use these parameter values in

the likelihood function (Picard, 1985; Inoue, 2001). However, we use a detection algorithm

that involves a one-time parameter estimation and allows us to test for change in the

individual elements of ξ. In line with allowing for one-sided tests and for flexibility, we

adopt the change point statistic of Gombay (2008) which utilizes the efficient score vector

∇ξ`k(Y1, . . . , Yn; ξ) = ∇ξ`k(ξ) with `k as the log-likelihood function on {Yt}nt=1. For for

1 6 r 6 p+ 2 denote µ̂, σ̂2, ϕ̂1, . . . , ϕ̂p as the simultaneous solutions of the p+ 2 equations

∂/∂ξr`n(ξ) = 0, and let

B̂(u) = n−1/2I−1/2(ξ̂n)


∂

∂µ
`[nu](ξ̂n)

∂

∂σ2
`[nu](ξ̂n)

∇ϕ`[nu](ξ̂n)

 (1.2)
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be a Gaussian process (a partial sums process approximation for the structure of ∇ξ`k(ξ)).

If ξr, for 1 6 r 6 p + 2, changes at τ = [ρn] with 0 < ρ < 1, then the estimator τ̂ is

defined by:

τ̂n = min
n

{
∂

∂ξr
`k(ξ̂n) = max

1<m6n

∂

∂ξr
`m(ξ̂n)

}
, (1.3)

and

τ̂n = min
n

{
∂

∂ξr
`k(ξ̂n) = min

1<m6n

∂

∂ξr
`m(ξ̂n)

}
, (1.4)

for one-sided tests (both left and right respectively); and for two-sided tests

τ̂n = min
n

{∣∣∣∣ ∂∂ξr `k(ξ̂n)

∣∣∣∣ = max
1<m6n

∣∣∣∣ ∂∂ξr `m(ξ̂n)

∣∣∣∣} . (1.5)

Proof for the consistency of τ̂ is provided in Gombay (2008). The asymptotic indepen-

dence of the components of B̂(u) allows us define the change point test statistic for each

ξr ∈ ξ (see Gombay (2008) for the related discussion). Hence, we reject the null hypothesis,

for one-sided tests along the sequence {Yt}nt=1, if

sup
06u61

B̂(r)(u) > C1(α), (1.6)

where C1(α) is calculated from{
x : P

(
sup

06u61
B(1)(u) > x

)
= e−2x2

= α
}
.

If we are interested in two-sided hypothesis testing, a change in ξr (along the sequence

{Yt}nt=1) is acknowledged whenever

sup
06u61

|B̂(r)(u)| > C2(α), (1.7)

such that C2(α) is calculated from{
x : P

(
sup

06u61
|B(1)(u)| > x

)
=
∑
k 6=0

(−1)k+1e−2(kx)2 = α
}
.

Convergence of the test statistic B̂(r)(u) to its asymptotic distribution can be relatively

slow. The Type I error estimates tend to be conservative with lower power of the test.

Under the premise that {Yt}nt=1 follows an AR(p) model with Gaussian i.i.d. white noise,

we propose to adopt a sieve bootstrap procedure for constructing the distribution of the
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change point test statistic B̂(j)(u) for finite samples. The idea of such a bootstrap for time

dependent data – originally named AR(∞) bootstrap – goes back to the results of Kreiss

(1988, 1992). The approach was later further investigated by Bühlmann et al. (1997) who

coined the term sieve for this bootstrap method. The procedure is outlined in Algorithm

1, and its theoretical properties are stated in Theorem 1.

Figure 1: The size of the test plotted against ϕ for the asymptotic distribution and sieve

bootstrap procedure when testing for a change in the mean of an AR(1) model using

T = 100.

To compare finite sample performance of the asymptotic distribution to the sieve boot-

strap method, we simulate data (with a total of 5000 Monte Carlo iterations) from an

AR(1) model in equation 1.1 and evaluate the following: the size and power of the test [for

precise details on the simulation procedure used, please see the Appendix]. The choice of

the model coefficient (ϕ) depends on ensuring the assumption of weak stationarity for the

simulated AR(1) series. Indeed note that as ϕ approaches 1, the time series gets closer to a

random walk process, that is, we approach to a boundary case of violating the assumptions

of weak stationarity, outlined for the change point statistic based on the efficient scores

(Theorem 1 of Gombay, 2008). As a result, the performance of the change point detection

method deteriorates.

Figure 1 depicts the size of the test for the simulated data. It shows that the asymptotic

distribution behaves more conservatively compared to our sieve bootstrap distribution.
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Figure 2: Power of the test plotted against ϕ for the asymptotic distribution and sieve

bootstrap procedure when testing for a change in the mean of an AR(1) model with (T =

100).

Additionally, we find that the size is more conservative for the asymptotic distribution

when ϕ is closer to +1 (i.e., the size is worse when ϕ = 0.9 compared to ϕ = 0.5). However

for negative ϕ cases, we find that the size of the test under the asymptotic distribution

approaches the declared 5% level of significance as ϕ approaches −1. Apart from the fact

that the sieve bootstrap’s size is closer to the nominal rate than the asymptotic distribution,

we find that as ϕ approaches +1 the size of the test steadily hovers around the declared

5% level of significance. This supports our assertion that the asymptotic distribution of

the change point test statistic has relatively conservative Type I error, and validates our

sieve bootstrap procedure for finite samples.

The results for power is displayed in Figure 2 and from this we notice that as µ in-

creases, the power of the test also increases under both the asymptotic and the bootstrap

distributions. In addition, as ϕ approaches +1, there is a drop in the power values for

both the asymptotic and sieve bootstrap (with larger power values reported by our boot-

strap procedure). Next to this, we find that as ϕ approaches −1 the power of the test

improves for both the bootstrap and the asymptotic distribution; with the bootstrap again
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outperforming the asymptotic distribution.2

Algorithm 1: Nonparametric sieve bootstrap procedure for the change point statistic

under an AR(p) process

Input : Time series {Yt}nt=1; Change point test statistic Tn(.); Level of significance

α; Number of bootstrap replications Γ.

1 For {Xt}nt=1 = {Yt − µ̂}nt=1, fit an AR(p) process and extract the coefficients {ϕ̂r}pr=1.

2 Calculate Tn(X1, X2..., Xn).

3 Obtain ε̃t from the residuals ε̂t = Xt −
∑p

k=1 ϕ̂kXt−k.

(Note: ε̃t = ε̂t − ε̄n, where ε̄n =
1

n

∑n
t=1 ε̂t).

4 for i ← 1 : Γ do

5 Sample, with replacement, {ε̃∗t}nt=1 from {ε̃t}nt=1.

6 Simulate {X∗t }nt=1, with innovation {ε̃∗t}nt=1 and coefficients {ϕ̂r}pr=1.

7 Calculate the change point test statistic T ∗n(X∗1 , X
∗
2 , ..., X

∗
n).

8 Define Zi for each Monte-Carlo iteration as:

9 Zi =

 1 |T ∗n | > |Tn|

0 otherwise.

10 end

11 The bootstrap p-value for testing H0 is given by
∑Γ

i=1

Zi

Γ
.

Theorem 1 (Sieve bootstrap) Let Yt be an autoregressive process as defined in equation

(1.1) [with y = {Yt}nt=1], E|εt|6 <∞,
∑∞

j=0 j|ϕj| <∞, and p(n) = o((n/log(n))1/4). With

B̂∗(u) as the bootstrap estimate for the p+ 2-dimensional Gaussian process B(u) , and as

n→∞, we have

sup
0≤u≤1

|P∗[n1/2(B̂(r)∗(u)−B(r)∗(u)) ≤ y]− P[n1/2(B̂(r)(u)−B(r)(u)) ≤ y]| = op(1).

Proof of Theorem 1 is in the Appendix.

2From Gombay (2008), a specific value of ϕ (and not |ϕ| or ϕ2) generates a specific change point statistic

(B̂(u)) and the change point estimator (τ̂).
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Suppose ε̃t = ε̂t − ε̄n, with ε̄n = 1/n
∑n

t=1 ε̂t, then the nonparametric sieve bootstrap

estimate B̂∗(r)(u) can be replaced with a hybrid parametric bootstrap estimate B̂�(r)(u)

by generating a Gaussian sample {ε̃�t}nt=1 ∼ N(0, s2
n), with s2

n =
∑n

t=1(ε̃t − ¯̃εt)
2/(n− 1) as

the sample variance of {ε̃t}nt=1. This yields a finite sample performance similar to that of

{ε̃∗t}nt=1, with reduced computing time.

Corollary 1 If Yt satisfies equation (1.1), then under H0

sup
0≤u≤1

|P∗[n1/2(B̂�(r)(u)−B�(r)(u)) ≤ y]− P[n1/2(B̂(r)(u)−B(r)(u)) ≤ y]| = op(1). (1.9)

Proof of Corollary 1 is in the Appendix.

4 Simulations

To validate our NEDM , we compare it to the BOM (Barnett and Onnela, 2016) using

simulated data. In particular, we provide a sensitivity analysis for the NEDM under

various q, ω and ROI choices. We do not compare the NEDM to the KV FM (Koutra

et al., 2013) because it does not provide a quantifier for the statistical significance (acp-

value) for the change point detected. Such a quantifier is necessary for deducing the power

and size of the test for the methods under study. The simulation study covers two scenarios:

a no-change point and a one-change point. As evaluation metrics, we use the true detection

rates (i.e., power of the test) and the false alarm levels under a pre-defined significance

level (i.e., size of the test). A total of 100 Monte Carlo simulations is carried out in

each scenario under various window length q = {5, 10, 15, 20, 25, 30}, threshold parameter

ω = {0.05, 0.1, 0.15}, two different time series lengths (T = 200, 300) and for two graph

node sizes (P = 5, 10). In addition, we provide similar analyses with T = 300, P = 50 in

Appendix B of the Supplementary material.

The first simulation illustrates the baseline (no change point) scenario using a vector

autoregression (VAR; Zellner, 1962; Hamilton, 1995) model; the VAR model is a generaliza-

tion of the univariate AR process with more than one time-evolving component. Given the

(p×1) vector of time series variables Ft = (f1t, f2t, . . . , fpt)
T , the w-lag vector autoregressive
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(VAR(w)) process is defined as

Ft = a+ Π1Ft−1 + Π2Ft−2 + · · ·+ ΠwFt−w + εt, t = 1, . . . , T. (1.10)

where Πi is an (p × p) coefficient matrix and εt is an (p × 1) unobservable mean white

noise vector process with time invariant covariance matrix Σ (Zivot and Wang, 2007). The

VAR model is used to reconstruct the linear inter-dependency element prevalent among

multivariate time series applications such as fMRI data.

The second simulation, which depicts a one-change point scenario, is created by con-

catenating two data streams from distinct multivariate Gaussian distributions: (D1,D2)

where D1 ∼ N(µ = 0,Σ1 = (Σ1ij)) and D2 ∼ N(µ = 0,Σ2 = (Σ2ij)) with

Σ1ij =

1 if i = j

0 otherwise

Σ2ij =

1 if i = j

0.9 otherwise.

The results for the simulations are presented in Figures 4 and 5, and a discussion of the

results is provided in Section 6.

5 Experimental Data

Next, we demonstrate the NEDM ’s application to two input data types: multivariate

fMRI time series and a portion of the Enron emails network. In the fMRI case study,

we compare the performance of the NEDM against two other techniques for anomaly

(change point) detection in the multivariate setting: the KV FM (Koutra et al., 2013) and

the BOM (Barnett and Onnela, 2016). With the Enron networks, we only implement the

NEDM with the APL network summary (because from our experiments the APL-based

analysis produced the best outcome), and compare the change points we find with various

events that characterized the timeframe of the Enron scandal. In addition, we compare

the performance of the NEDM to results obtained by the KV FM . We do not compare

our results with the BOM because the BOM is only applicable to multivariate time series

data.
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5.1 Case study: Anxiety fMRI data

The data was taken from an anxiety-inducing experiment (Cribben et al., 2012, 2013). The

task was a variant of a well-studied laboratory paradigm for eliciting social threat, in which

participants must give a speech under evaluative pressure. The design was an off-on-off

design, with an anxiety-provoking speech preparation task occurring between lower anxiety

resting periods. Participants were informed that they were to be given 2 min to prepare

a 7 min speech, and that the topic would be revealed to them during scanning. They

were told that after the scanning session they would deliver the speech to a panel of expert

judges, though there was “a small chance” they would be randomly selected not to give

the speech. After the start of fMRI acquisition, participants viewed a fixation cross for

2 min (resting baseline). At the end of this period, participants viewed an instruction

slide for 15 s that described the speech topic, which was “why you are a good friend”.

The slide instructed participants to be sure to prepare enough for the entire 7 min period.

After 2 min of silent preparation, another instruction screen appeared (a relief instruction,

15 s duration) that informed participants that they would not have to give the speech.

An additional 2 min period of resting baseline completed the functional run. Data were

acquired and preprocessed as described in previous work (Wager et al., 2009). During the

course of the experiment a series of 215 images were acquired (TR = 2 s). In order to create

ROIs, time series were averaged across the entire region. The data consists of 4 ROIs and

heart rate for n = 23 subjects. The regions in the data were chosen because they showed a

significant relationship to heart rate in an independent data set. The temporal resolution

of the heart rate was 1 s compared to 2 s for the fMRI data. Hence, the heart rate was

down-sampled by taking every other measurement.

5.2 Case study: Enron email networks

The Enron emails data set is a benchmark data set applied in numerous instances of

anomaly detection (e.g., Peel and Clauset, 2015; Park et al., 2012; Priebe et al., 2005;

Diesner et al., 2005). More information on this data set can be found online (http:

//www.cs.cmu.edu/~enron/). We used the cleaned version of the employee-to-employee
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email (sent and received) network over the period November 1998 to July 2001. We initialize

each employee as a single node and aggregate the data by month. This implies that if there

is at least one email between two employees within the month under study, an edge is

connected to the respective nodes. Figure 3 displays the cumulative nature of the Enron

network between November 1998 to July 2001, and the state of the network after two specific

month/year periods. In total, we obtain 33 networks with 102 nodes in each network.

Figure 3: Enron employee-to-employee email network (November 1998 - July 2001). Top:

Cumulative network from November 1998 to July 2001; Bottom (Left): Email network at

November 1998, (Right): Email network at July 2001.
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6 Results

The NEDM uses the following summary statistics: Average clustering coefficient (ACC),

Average Path Length (APL), Maximum Node Betweenness Centrality (maxBETW ),

Clique number (CLQNUM), Mean degree (MD) and Minimum Local Clustering Coef-

ficient (minLCC). As we already mentioned in the previous section, we compare our

method to Barnett’s method (BOM) in the simulation study. However, we include results

from KV FM for the Enron e-mail data set.

6.1 Simulation study

Figure 4: The size of the test for the no-change (change in mean) scenario with T =

{200, 300}, ω = {0.05, 0.1, 0.15}, q = {5, 10, 15, 20, 25, 30} and P = 5.

Figure 4 presents the results for the no-change point scenario. We find that as q increases
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the size of the test reported by all network summaries under the NEDM increase, leading

to more liberal results. Moreover, we find that as ω increases, the size reported by all

network summaries under the NEDM improve (and become closer to the 5% level of

significance). In particular, we find that the size of the test reported by the NEDM under

the maxBETW network summary almost always outperforms the size reported by the

BOM (except for one situation when w = 0.05, T = 200 and q = 30). Furthermore, we

notice that two other network summaries (ACC and MD) are highly sensitive to increasing

ω, and that their size values improve substantially as ω increases from 0.05 to 0.15. For the

BOM results, we find that the size of the test tends to be more liberal as P increases (the

size increases from 18% to 20%), and that its performance is inferior to the NEDM with

the maxBETW network summary. In conclusion, many of the graph summary statistics

appear superior to the BOM in terms of the size of the test.

The results for the one-change point simulation is presented in Figure 5. Overall, the

BOM appears to attain the highest power (i.e., it correctly flags the one-change sce-

nario every time). However, this performance is equally matched by the NEDM with the

maxBETW network summary. In addition, for other network summaries utilized in the

NEDM , we found that power drops as ω and T increase, and that power increases as q

increases. Furthermore, we notice that as T increases from 200 to 300, the power reported

by our NEDM with the CLQNUM summary statistic experiences a substantial drop, but

this also improves as q rises.

In summary, we found that both the power and the size of the test (detection ability)

are sensitive to the choice of parameters (q, ω and T ). In addition, while the BOM has

excellent power, it suffers from liberal Type I errors. Overall, we found that the NEDM

in combination with the maxBETW has the best performance in terms of maintaining the

size of the test while also having excellent power.

6.2 Case study: Anxiety fMRI data

From our analyses, we obtained the results displayed in Figure 6 for the NEDM (with

ACC, APL, maxBETW andminLCC as summary statistics), the BOM and theKV FM .
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Figure 5: The power of the test for the one-change (change in variance) scenario with

ω = {0.05, 0.1}, q = {5, 10, 15, 20, 25, 30}, T = {200, 300}, τ = {88, 156} and P = 10.

Results generated by the NEDM with CLQNUM and MD as the network topological

summary statistic are deferred to the Supplementary material. Previous analyses of these

data found change points at the times of the speech instruction slides, primarily time points

60 and 130 (Cribben et al., 2012, 2013). Additionally, all results obtained by the NEDM

(plus the plot in the Supplementary material) found many of the expected change points at

(and between) the time points of the speech instruction slides, and also during the speech

preparation phase (time points 60-130).

While the KV FM found more changes points (as expected given it does not provide a

quanitifier for statistical significance) at the time points of the speech instruction slides and

also during the speech preparation phase, many of the change points for the subjects were

very close to one another which makes them unrealistic for fMRI data. While the BOM
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Figure 6: Change point detection for the anxiety fMRI data.

also found some significant changes points at the speech instruction slides time points,

the NEDM found significantly more. In addition, having change points so close to one

another (as is the KV FM cases) makes it impossible to estimate the network structure

between each pair of significant change points and also breaks down the ability to interpret

and apportion the change phenomenon to a biological process (as in the case of the fMRI

data used here). In turn, the framework of the NEDM allows for an estimation which

depends on a visual display of the underlying dynamic brain networks with the advantage

of noticing structural changes within these embeddings.

6.3 Case study: Enron email networks

We now turn to the anomaly detection problem for data in the form of a graph, that is,

the Enron email network. From our list of network summary statistics, we utilize the APL

because APL appears to be fairly sensitive to intrinsic properties of data in the form of

dynamic networks. We link the results (Figure 7) obtained in this analysis to various events
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in the Enron scandal timeline. With the NEDM , the times for significant detection points

occur at months 2, 7, 12, 15, 18 and 24. In comparison, the time period for month 2

(November 1998 to December 1998) is linked to the hire of Andrew Fastow as the finance

chief. The time period of month 7 was from April 1999 to June 1999. This is around the

time when Enron’s CFO was exempted by the Board of Directors from the company’s code

of ethics so that he could run the private equity fund LJM1, and also around the time when

the head of Enron’s West Coast Trading Desk in Portland Oregon, Timothy Biden, began

his first experiment to exploit the new rules of California’s deregulated energy market.

Figure 7: Detection of Enron Email Networks from November 1998 - July 2001.

Next to this, month 12 is linked to the period August 1999 to October 1999 which

was around the time when Enron’s CFO started to raise money for two LJM funds (LJM1

and LJM2), which was later used to buy Enron’s poorly performing assets in order to

make its financial statement look better. The time period for months 15 and 18 was

from December 1999 to March 2000. This was close in time that the energy prices in

California rose significantly and the power reserves became low, which was followed by the

blackouts in metropolitan areas. Many believed that one of the reasons for California’s

energy crisis was Enron’s trading, which leaded to the investigation of Federal Energy

Regulatory Commission (FERC). This investigation was connected with our next detection

point at month 24, which was from August 2000 to December 2000, since it was the
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time the FERC investigation exonerated Enron from wrongdoings in the California energy

crisis. The time period around month 24 is a very interesting one not only because it is

connected with FERC investigation, but also because Enron’s share price hit all-time high

of $90.56 and then Enron used “aggressive” accounting to declare $53 million in earnings

on a collapsing deal that hadn’t earned anything at all in profit.

Figure 2 in the Appendix displays the outcome of the KV FM analysis. Note that,

because theKV FM is based on graph similarity scores, we only have results from December

1998 to June 2001 (Time point 0 is November 1998, and there are no more networks for

comparison after July 2001). With the KV FM , anomalies are reported at times 2, 6 and

23. These times coincide with time periods [December 1998 - January 1999], [April 1999

- June 1999] and [September 2000 - November 2000]. In Figure 2 (in the Supplementary

Materials), we notice that the KV FM is only able to flag 3 out 5 anomalous time points

that the NEDM reported.

7 Conclusion

In this paper, we develop a new approach, the NEDM , for analyzing and modeling the

network structure between (possibly) high dimensional multivariate time series from an

fMRI study which consists of realizations of complex and dynamic brain processes. The

method adds to the literature by improving understanding of the brain processes measured

using fMRI. The NEDM is, to the best of our knowledge, the first paper to consider

estimating change points for time evolving graph summary statistics in a multivariate time

series context. Although this paper is inspired by and developed for brain connectivity

studies, our proposed method is applicable to more general settings and can also be used

in a variety of situations where one wishes to study the evolution of a high dimensional

graph over time, e.g., in conjunction with telecommunication, financial (Cribben, 2019),

and blockchain networks.

There are several novel aspects of the NEDM . First, it allows for estimation of graph

summary statistics in a (possible) very high-dimensional multivariate time series setting, in

particular, in situations where the number of time series is much greater than the number

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2019.12.15.876730doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.15.876730
http://creativecommons.org/licenses/by-nc-nd/4.0/


of time points (P >> T ). Hence, in a biomedical neuroimaging setting, it can consider the

dynamics of the whole brain or a very large number of brain time series, thereby providing

deeper insights into the large-scale functional architecture of the brain and the complex

processes within. Second, the NEDM is, to the best of our knowledge, the first piece of

work to consider estimating change points of time evolving graph summary structure in a

multivariate time series context. We introduced a novel statistical test for the candidate

change points using the sieve bootstrap and showed that it outperformed the asymptotic

distribution. However, as the NEDM is based on binary segmentation it is restricted by

the minimum distance between change points.

It has been shown that neurological disorders disrupt the connectivity pattern or struc-

tural properties of the brain. Future work entails applying the NEDM to resting state

fMRI data from subjects with brain disorders such as depression, Alzheimer’s disease and

schizophrenia and to control subjects who have been matched using behavioural data. By

comparing change points and partition specific networks, the NEDM may lead to the

robust identification of cognitive states at rest for both controls and subjects with these

disorders. It is hoped that the large-scale temporal features resulting from the accurate

description of brain connectivity from our novel method, which might lead to better di-

agnostic and prognostic indicators of the brain disorders. More specifically, by comparing

the change points of healthy controls to patients with these disorders, we may be able

understand the key differences in functional brain processes that may eventually lead to

the identification of biomarkers for the disease.

As an extension to monitoring change points in graph objects, we intend to incorporate

higher order structures, such as tensors, in the network snapshot characterization proce-

dure of the NEDM . Moreover, we intend to extend our analysis to include the estimation

of network summaries that are based on the local topology and geometry of the graph. In

particular, we intend to incorporate a motif-based analysis and the concepts of topological

data analysis (TDA), particularly, persistent homology, in the derivation of graph summary

statistics (Carlsson, 2009; Patania et al., 2017). Indeed, tracking local network topolog-

ical summaries based on graph persistent homology offers multi-fold benefits. First, this
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approach enables us to consider edge-weighted networks. Second, it allows for enhancing

analysis of the underlying network organization at multi-resolution levels. Third, simulta-

neously considering multiple local network topological statistics based on graph persistent

homology minimizes the loss of network information that currently occurs due to reducing

a high dimensional structure to a univariate time series representation of a single network

summary.

Another interesting theoretical direction is to explore various types of approximation

models for dynamics of local and global network topological summaries and the associated

error bounds, which as a result, can also yield an insight on theoretical guarantees of

resampling and subsampling procedures in application to (non)linear processes of network

topological descriptors Kreiss et al. (2011) and related uncertainty quantification in network

anomaly detection.

SUPPLEMENTARY MATERIAL

R Code and Data : The supplemental files for this article include files containing R code

and data for reproducing all the simulated and empirical studies in the paper.

Appendix : The supplemental files include an Appendix which contains the following: (i)

Theorem 1 from Gombay (2008) and Notations table . (ii) Simulation analysis for

the NEDM size and power with P = 50. (iii) Additional results for the NEDM

applied to the Anxiety fMRI data under the remaining network summaries. (iv) Plot

for the KV FM Enron email network analysis. (v) Analysis and discussion of case

study (resting state fMRI data). (vi) Proofs for Theorem 1 and Corollary 1. (vii)

Procedure for comparing asymptotic and sieve bootstrap distributions.
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Supplement to “Nonparametric Anomaly

Detection on Time Series of Graphs”

Dorcas Ofori-Boateng, Yulia R.Gel, Ivor Cribben.

1 Appendix A: Notation and Theorem

Table 1: Notation

Symbol Description

G = (V,E) graph/network; V set of vertices, E set of edges

q ;ω window length, threshold parameter

D T × P multivariate time series; T number of time points,

P number of time series

F q-row fold of D

R; A correlation matrix; adjacency matrix

CLQNUM clique number

MD mean node degree

ACC average clustering coefficient

APL average path length coefficient

BOM Barnett & Onnela’s change detection method

KV FM Koutra et al.’s DELTACON method

NEDM network-evolution detection method

minLCC minimum local clustering coefficient

maxBETW maximum node betweenness centrality

Theorem 1 (Gombay (2008)) Assume the sequence of observations {Yt} satisfy equation

(1.1) with Gaussian i.i.d. white noise {εt}, var(εt) = σ2, and characteristic polynomial
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ϕ(z) = 1 − ϕ1z − ... − ϕpz
p has roots outside the unit circle. Then there exists a (p +

2) - dimensional Gaussian process B(u) with independent Brownian bridge components

B(r)(u), j = 1, ..., p+ 2, such that :

max
1≤j≤p+2

sup
0≤u≤1

|B̂(r)(u)−B(r)(u)| = op(1). (1.11)

2 Appendix B: Experimental data analysis

2.1 Simulation study: Size & Power of the NEDM with P = 50

We performed Monte Carlo simulations (5000 iterations) under a no-change point (change

in mean) scenario and a one-change point (change in variance) scenario with P = 50 using

the same parameters stated in Pages 13-14 described under Section 4 of the manuscript.

The results are presented in Figures 1 and 2, respectively.

Figure 1: The size of the test for the no-change (change in mean) scenario with T = 200,

ω = {0.05, 0.1, 0.15}, q = {5, 10, 15, 20, 25, 30} and P = 50.

In Figure 1, we find that as the window length (q) and the threshold ω increase the size

of the test reported by all network summary statistics (with the exception of maxBETW )

under NEDM also increase, leading to more liberal results. With maxBETW , however,

we find that as both q and ω increase, the size of the test steadily approaches the declared
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Figure 2: The power of the test for the one-change (change in variance) scenario with

T = 300, ω = {0.05, 0.1, 0.15}, q = {5, 10, 15, 20, 25, 30}, τ = 157 and P = 50.

5% level of significance. In turn, BOM appears to be very conservative, delivering a size

of the test close to 0% for all q and ω. This is in contrast to our analysis in the manuscript

with P = 5. Here we found that the size of the test under BOM tends to be more liberal

(ranging between 18% to 20%).

Figure 2 shows that, for P = 50, NEDM with the maxBETW network summary

performs as well as BOM in terms of power (i.e., it correctly flags the one-change scenario

every time) except for one combination. This is very similar to the results for P = 5. In

summary, we can conclude that both the power and the size of the test tend to be sensitive

to the choice of parameters (q, ω and T ) and that the performance of the NEDM also

depends on the choice of network summary statistic which in turn is likely to be driven by

the underlying network topology.

2.2 Case study: Anxiety fMRI data

Figure 3 presents additional results for the Anxiety fMRI data based on the NEDM with

CLQNUM and MD as the network summary statistics. To this end we find that the

NEDM is able to detect 3 change locations with the MD summary, and 1 change location

with the CLQNUM network summary. Table 2 presents a summary of the numerical

results obtained based on this data.
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Results for Anxiety fMRI data.

Table 2: Summary of change points detected for the Anxiety fMRI data.

Subject ACC APL maxBETW CLQNUM MD minLCC BOM KV FM

1 94 62,93 94 92

2 72 111,112,120

3 138 134 134 72 134 134 92,94

4 115 69,70,76,117

5 63 63,70 68,131 63 64 64 108

6 106 90

7 63 61

8 109 102 77,78

10 99 126 67

11 92,93

12 99 116 75,90,94

13 65,66 71 62,65

14 106 104 97 88,111

15 65,66,98

16 140 92

17 77 97 97,104

18 130

19 93

20 65 70 100 61,62,86

* Subjects not included have no change points detected across all methods.
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Figure 3: The change points detected for the Anxiety fMRI data using the NEDM and

the CLQNUM and the MD summary statistics.

2.3 Case study: Enron email network using the KV FM

Figure 4: The detected change points for the Enron email data set from November 1998 –

July 2001 using the KV FM .
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2.4 Case study: resting state fMRI data

We apply the NEDM , with all network summary statistics except the CLQNUM , to a

resting-state fMRI data as described in Cribben and Yu (2017). The CLQNUM summary

is omitted due to computational challenges encountered during the analysis. Participants

(n = 45) are instructed to rest in the scanner for 9.5 minutes, with the instruction to keep

their eyes open for the duration of the scan. We apply the Anatomical Automatic Labeling

(Tzourio-Mazoyer et al., 2002) atlas to the adjusted voxel-wise time series and produce

time series for 116 Regions of Interest (ROIs) for each subject by averaging the voxel time

series within the ROIs. In total, each time series contained 285 time points (9.5 minutes

with TR = 2 s).

Results

Results obtained in this case study (as seen in Figure 5) show significant change point

locations for all 45 subjects. As resting state data is unconstrained, we do not know where

the true network change points occur. However, the NEDM finds significant change points

in the network structure for many subjects with the maximum number of change points

being 4 which lines up with the results in Cribben and Yu (2017). From Figure 5, we

find a high indication that change points vary highly across network summaries and that

some change states endure longer periods while others transition more quickly. On the

other hand, results by the BOM and by the KV FM appear to suggest the detection of a

much larger number of significant change points for each subject. This is expected for the

KV FM given that it does not provide a quanitifier for statistical significance. Furthermore,

judging from the close proximity and the total number of change points reported by these

two methodologies, we deduce that some of the change points for the subjects are unrealistic

for resting state fMRI data. As noted above, having change points so close to one another

makes it impossible to estimate the network structure between each pair of significant

change points.
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Figure 5: The detected change points for the resting state fMRI data set.
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3 Appendix C: Proofs for Theorem 1 and Corollary 1

Theorem 1

Proof. Note that the assumptions on Yt imply that it satisfies assumptions A1′, A2, and B

of Bühlmann et al. (1997).

From Equation (1.2), we know that

B̂(u) = n−1/2I−1/2(ξ̂n)


∂

∂µ
`[nu](ξ̂n)

∂

∂σ2
`[nu](ξ̂n)

∇ϕ`[nu](ξ̂n)

 .

Hence, each individual component of B(r)(u) and its bootstrap counterpart B(r)∗(u) also

satisfy the assumption C of Bühlmann et al. (1997). As a result, by invoking Theorem 3.3

of Bühlmann et al. (1997) (as n→∞), we obtain

sup
0≤u≤1

|P∗[n1/2(B̂(r)∗(u)−B(r)∗(u)) ≤ Y]− P[n1/2(B̂(r)(u)−B(r)(u)) ≤ Y]| = op(1).

Corollary 1

Proof. Note that s2n is a consistent estimator of E(ε2t ) = σ2 (Lehmann and Casella, 2006).

Hence, given that ε̃�t are independent random variables drawn from N(0, s2n),

{ε̃�t}nt=1
D−→ {ε̃t}nt=1.

As a result,

X�t
d∗−→ Xt in probability, (1.16)

and in view of the proof for Theorem 1

sup
0≤u≤1

|P∗[n1/2(B̂�(r)(u)−B�(r)(u)) ≤ y]− P[n1/2(B̂(r)(u)−B(r)(u)) ≤ y]| = op(1).
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4 Appendix D: Asymptotic and Sieve bootstrap dis-

tribution simulations

The procedure for assessing the performance of the sieve bootstrap technique to the asymp-

totic distribution is set up as follows:

1. Simulate 5, 000 Monte Carlo simulations of an AR(1) time series with different sam-

ples (n = 100, 200, 300) and change point times (τ = 50, 100, 180).

2. Consider the following scenario for identifying change points in the AR(1) time series:

change in mean (µ). We use Γ = 5000 replications for the sieve bootstrap procedure

(as expressed in Algorithm 1).

3. With equation (1.1) as reference, the AR(1) model is defined as

Yt − µ = ϕ(Yt−1 − µ) + εt; t ∈ [1, n]; εt ∼ Gaussian WN(0, σ2).

4. For each sample n, with σ2 and ϕ as nuisance parameters, we test the following:

H0 : µ = µ0,∀ t ∈ [1, n] against

Ha : µ = µ0, ∀ 1 6 t 6 τ − 1, at τ = [ρn], ρ ∈ (0, 1) ;

µ = µa, ∀ τ > n.

5. With σ2 = 1 and µ0 = 0, we use the values ϕ = (−0.5, 0.1, 0.5).
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