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Running Title: Soybean root lateral organ gene regulatory networks   22 
 23 
Abstract 24 
Legume plants such as soybean produce two major types of root lateral organs, lateral roots and 25 

root nodules. A robust computational framework was developed to predict potential gene 26 

regulatory networks (GRNs) associated with root lateral organ development in soybean. A 27 

genome-scale expression dataset was obtained from soybean root nodules and lateral roots and 28 

subjected to biclustering using QUBIC. Biclusters (BCs) and transcription factor (TF) genes with 29 

enriched expression in lateral root tissues were converged using different network inference 30 

algorithms to predict high confident regulatory modules that are repeatedly retrieved in different 31 

methods. The ranked combination of results from all different network inference algorithms into 32 

one ensemble solution identified 21 GRN modules of 182 co-regulated genes networks 33 

potentially involved in root lateral organ development stages in soybean. The pipeline correctly 34 

predicted previously known nodule- and LR-associated TFs including the expected hierarchical 35 

relationships. The results revealed high scorer AP2, GRF5, and C3H co-regulated GRN modules 36 

during early nodule development; and GRAS, LBD41, and ARR18 co-regulated GRN modules 37 

late during nodule maturation. Knowledge from this work supported by experimental validation 38 

in the future is expected to help determine key gene targets for biotechnological strategies to 39 

optimize nodule formation and enhance nitrogen fixation.  40 

  41 
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Introduction 42 
 43 

Gene regulation is a fundamental process that controls spatial and temporal patterns of 44 

gene expression. Transcription factors (TFs) are central to gene regulation as their activities 45 

determine the expression patterns and function of multiple genes (1). A TF is a functional protein 46 

that binds to short sequences (called TF binding site; TFBS or cis-regulatory elements) on the 47 

upstream promoter region of genes to regulate their transcription. One TF can regulate multiple 48 

genes including other TFs in a signaling, developmental, or metabolic pathway and so act as 49 

master regulators of the pathways. The nested group of all different TF regulators and their 50 

downstream target genes form gene regulatory networks (GRNs) (2).  Identification of gene 51 

regulatory networks and key TFs that are part of these networks is an effective approach to 52 

answer multiple biological questions on genotype to phenotype relationships. For example, 53 

potential TFs, their co-regulators, and downstream signaling pathways, and target genes 54 

associated with specific biological processes can be predicted by constructing GRNs. 55 

 56 

Clustering of large-scale datasets such as global gene expression profiles obtained by 57 

RNA-sequencing to identify co-regulated TFs and the targeting genes is a promising approach to 58 

model and infer the GRNs at a systems level (3, 4). Briefly, genes/TFs with similar expression 59 

patterns (i.e. co-expressed genes) with a tendency to co-activate across a group of samples might 60 

give insight on TFs regulated gene network and related biological process. In fact, multiple 61 

levels of gene regulation affect transcriptional regulatory capabilities (5). Recruitment and 62 

binding of other protein such as “co-factors” in complexes and other small protein molecules to 63 

target DNA sequences is one of the major mechanisms (6). Often, this interactions between 64 

different TFs and co-factor partners are studied using protein-protein interaction (PPI) assays 65 

which provide immediate insights into their potential biological function (7, 8). GRNs can be 66 

validated by PPI data, as PPIs can reveal signaling, regulatory and/or biochemical roles of 67 

proteins based on their interactomes (9).  68 

The combined use of high-throughput data and mathematical models to build gene co-69 

expression and regulatory networks is the core principle of systems biology approaches (10). 70 

However, these large-scale datasets are likely to be noisy, and GRN predictions using these big 71 

datasets may contain many false positives. Additionally, GRN inference is a computationally 72 
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intensive job; so filtered datasets consisting of well-defined/accurate datasets (such as 73 

significantly co-expressed genes set) might dramatically reduce the computational complexity 74 

and time. Most importantly, it would reduce the true search space for the prediction of regulators 75 

(TFs) and their potential target genes. In order to obtain significantly co-expressed genes, 76 

“biclustering” is a desirable method as it allows two-way clustering of genes as well as samples 77 

i.e. a similar expression pattern (co-expressed genes) under a subset of all samples. 78 

Subsequently, this sorted biclustering-filtered data fed into GRN inference algorithms might 79 

improve and accurate predictions of a regulator and their target genes. We applied this approach 80 

to determine gene regulatory networks associated with root lateral organ development in 81 

soybean. 82 

 83 

Plants produce lateral organs such as leaves, flowers, and axillary branches in the shoot, 84 

and lateral roots in the roots. Pools of stem cells present in the growing tip of the shoot (the shoot 85 

apical meristem) contribute to the formation of aerial/shoot lateral organs. Lateral organs in the 86 

root are unique in that they are derived via “de novo” differentiation of mature cells in the root. 87 

Lateral roots are present in all vascular plants, but a group of Fabids clade plants is capable of 88 

producing another root lateral organ, called root nodules. These arise from specific and 89 

coordinated interactions with a set of nitrogen-fixing bacteria collectively called rhizobia. For 90 

example, the interaction of soybeans with Bradyrhizobium diazoefficiens results in root nodules. 91 

Biological nitrogen fixation in root nodules helps reduce the need for chemical nitrogen 92 

fertilizers, which are expensive and cause environmental pollution. Similarly, proper patterns of 93 

lateral root formation (root branching) are crucial for plants to access water and other nutrients in 94 

the soil. Therefore, these two root lateral organs play important roles in the development of 95 

soybeans, a major crop in the United States as well as in other countries. Many functional 96 

genomics studies have identified genes expressed during nodule development in soybean and 97 

other legumes, but gene expression profiles during lateral root formation have not been evaluated 98 

in legumes (11, 12). 99 

Recently, we obtained transcriptomes of emerging nodules, mature nodules, emerging 100 

lateral roots, and young lateral roots in soybean (13), we present a robust  computational 101 

framework, which we applied to predict TFs and their target GRNs associated with soybean root 102 

nodule development. This approach consists of the following steps (Figure 1): (i) preparing a 103 
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compendium of soybean lateral organ transcriptome data and cataloging TFs enriched in root 104 

nodules; (ii) Initial biclustering of transcriptome data using QUBIC (14, 15, 16) to identify all 105 

(nodule development stage-specific) co-expressed gene modules; (iii) GRN construction and 106 

inference based on identified gene modules and reliable network construction programs, Lemon-107 

Tree (17) and Inferelator (18); (iv) Augmentation of GRNs with evidence from physical or direct 108 

and indirect regulatory interaction information from PPI and cis-regulatory element enrichment 109 

analysis; and  (v) building a consensus from different modes of GRN inference for potential 110 

regulators and their predicted GRNs. We ran two modes of Lemon-Tree, one with default mode, 111 

where Lemon-Tree itself produce the co-expressed clusters and the other mode with reinforced 112 

bicluster (BC) information from QUBIC. This study provides a template framework for GRN 113 

construction and augmentation by exploiting big data sets, which are increasingly generated, 114 

deposited and available (making use of available data) in public domain. 115 

 116 
Material and methods 117 
 118 

RNA-seq dataset for root lateral organ development in soybean 119 

We utilized the genome-wide soybean transcriptome dataset generated for root lateral 120 

organs (13). This dataset contains the transcriptomes of two different developmental stages of 121 

two root lateral organs collected in three biological replicates: emerging nodules (EN), mature 122 

nodules (MN), emerging lateral roots (ELR) and young lateral roots (YLR). Adjacent root 123 

sections above and below these organs devoid of any lateral organs (designated as ABEN, 124 

ABMN, ABELR, and ABYLR respectively) were used to construct respective age- and 125 

inoculation-status appropriate control tissue libraries. Comparison of gene expression profiles 126 

between each lateral organ tissue type and the corresponding control tissue type (e.g., EN vs. 127 

ABEN, ELR vs. ABELR and so on) helped identify organ-specific/enriched genes. In total, 24 128 

RNA-seq libraries (four target tissue types, four control tissue-types, three biological replicates 129 

each) were prepared, sequenced, and analyzed. Expression patterns of preciously known marker 130 

genes, consistency between replicates, high sequence quality of this dataset indicated that it was 131 

of very high quality and well-suited for global gene expression analysis (13). A total of 113,210 132 

gene transcripts (FPKM threshold ≥ 1 in at least one sample) with their normalized expression 133 

values in 24 different tissues from the above dataset were utilized here.  134 

 135 
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Further, for expression comparisons at different steps during our analysis, we utilized the 136 

public datasets, soybean gene atlas encompassing RNA-seq data from 14 different soybean 137 

tissues  (19) and Soybean eFP browser http://bar.utoronto.ca/efpsoybean/cgi-bin/efpWeb.cgi 138 

comprising RNA-seq data from soybean root hair and other tissues (20, 21). Soybean genome 139 

sequence assembly version 7.0 (Gmax_109_gene.gff3.gz”; ftp://ftp.jgi-140 

psf.org/pub/compgen/phytozome/v9.0/Gmax/annotation/) was used for gene annotation and 141 

Arabidopsis orthologs information. 142 

 143 

Cataloging TFs enriched in root lateral organ development stages in soybean 144 

To achieve our objective of identifying regulator TFs and prediction of GRNs associated 145 

with root nodules, we used soybean transcription factor annotations from the Plant transcription 146 

factor database (PlantTFDB v3.0; http://planttfdb.cbi.pku.edu.cn/) (22) as a starting point. 147 

Among 58 TF families annotated in soybean, 48 TF families had at least one member 148 

differentially expressed in at least one of the four organ tissue types. For each TF family, we 149 

summed the unique transcripts that were enriched in EN and/or MN to calculate the total number 150 

of family members enriched in nodule tissues. Similarly, we calculated the number of TFs 151 

enriched in lateral root tissues. By comparing the number of family members enriched in nodule 152 

vs. lateral root tissues, we identified nodule-specific or -enriched, lateral root-specific or -153 

enriched, and lateral organ non-specific (equal number of transcripts in lateral root and nodules) 154 

TF families (Figure 1; Table S1). Statistical analysis (Fisher’s Exact test, P<0.05) of nodule- vs. 155 

lateral root- specific enrichment showed that TALE, MYB-related, MIKC, C2H2, bZIP, G2-like, 156 

WRKY, and NFYB were either nodule-specific or significantly enriched in nodules (Figure 2). 157 

Overall, very distinct families of TFs appear to be active in nodule and lateral roots despite 158 

reported morphological similarities between these organs. 159 

 160 

We selected a set of 294 TFs, which were differentially expressed and specifically 161 

enriched in EN, and MN tissues in our dataset as possible regulators (see Results, Supplementary 162 

Table S1). This approach led us to focus on regulators and their GRNs acting specifically during 163 

nodule development. We also included 22 previously characterized TFs/ regulator genes reported 164 

elsewhere in literature for their respective role in root lateral organ development in model crop 165 

plants as positive control marker genes for validation and relevancy of parameters 166 
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(Supplementary Table S2). For example, ENOD40, FWL1, LBC_A, LBC_C1, LBC_C2, and 167 

LBC_C3 genes were used as marker genes, and NIN1 and NSP1 were used as marker regulators 168 

for nodule development. ARF5, CRF2, GATA23, LRP1, and TMO7 genes were used as marker 169 

regulators for lateral root development. Together, we used 316 TFs of interest as a starting point 170 

for the identification of GRNs. 171 

 172 

Initial biclustering of transcriptome data  173 

We utilized normalized expression values of all the 113,210 gene transcripts in 24 174 

libraries for initial biclustering, rather than only significantly differentially expressed gene 175 

(DEGs) transcripts. We reasoned that irrespective of enrichment, the TFs and their target gene 176 

clusters tend to have similar expression patterns in the root lateral organs, making this an 177 

unbiased approach. We chose biclustering (two-way clustering), over traditional clustering for 178 

simultaneously clustering using QUBIC (QUalitative Biclustering) (15) to identify all the 179 

statistically significant biclusters (BCs) of target genes with TFs, if any as well as samples from 180 

the above transcriptome data. Different combinations of QUBIC’s parameters were tuned to 181 

optimize biclustering to retain the majority of TFs while keeping the total number of transcripts 182 

to the minimum. The program first discretizes the data using the parameters q and r and then a 183 

heuristic algorithm applied to identify biclusters, where q is the proportion of affected expression 184 

data under all conditions for each gene; and r represents the rank of the regulating conditions 185 

detected by the parameter q. It is suggested to select a smaller q to focus on a local regulator 186 

(15). Parameter f controls the overlap between different BCs, and k controls the minimum 187 

number of samples in BCs. Another important parameter c; which controls the level of 188 

consistency in BCs, was tested to balance the number of TFs and a total number of genes 189 

covered in BCs. We obtained 219 BCs that contained 240 of the 316 TFs (76%) and 30, 639 out 190 

of 113,210 transcripts (~27%; See Results for details). This “filtered” dataset was used for 191 

regulator and GRN prediction. All programs were tested and implemented on a Linux server 192 

with Intel x86-64 processor and 32 cores with 1TB RAM configuration. 193 

 194 

Prediction of potential TF regulators and their GRN inference 195 

To improve the confidence of regulator and GRN prediction, we utilized two module-196 

based GRN inference methods: Lemon-Tree (v.3.0) (17) and Inferelator (v.2015.08.05) (23). We 197 
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compared and scored the regulatory prediction made by both methods to select high confidence 198 

regulators and their target genes in GRN.  199 

 200 

Lemon-Tree 201 

Lemon-Tree has the option to integrate cluster information; hence, we ran it in two 202 

modes: (i) where clusters were generated by Lemon-Tree from the “filtered” dataset (mode I) 203 

and (ii) where BC information from QUBIC was fed to Lemon-Tree as co-expressed gene 204 

modules for GRN inference (mode II). For mode I, we ran ten independent Gibbs sampler runs 205 

of Lemon-Tree (with default parameters) to identify the most confident regulatory modules and 206 

TF regulators. The results were used to extract representative module solution (tight clusters) 207 

from an ensemble of all possible statistical models using the Gibbs sampler method. Lemon-Tree 208 

modules are clustered (hierarchical tree) based on samples with similar mean and standard 209 

deviation. This tight cluster corresponds to sets of genes, frequently associated across all 210 

clustering solutions. For mode II, we prepared this tight cluster dataset using BCs information 211 

from QUBIC, but otherwise used the same settings used for mode I.  212 

 213 

In the next step, the Lemon-Tree algorithm provides a list of weighted TFs with a ranked 214 

probability score, and the top 1% were selected as true regulators for each cluster of co-215 

expressed genes. A global score reflecting the statistical confidence of the regulator assigned to 216 

each node in a hierarchal tree manner for each set of co-expressed genes modules. The regulator 217 

score takes into account the number of trees a regulator is assigned to, with what score (posterior 218 

probability), and at which level of the tree (24). An empirical distribution of scores for randomly 219 

assigned regulators-to-module is also provided to assess significance (17). In this dataset, the 220 

lowest score of a regulator in the top 1% list was at least 3x higher than that of the highest score 221 

for a randomly assigned regulator (See Result section for details). Therefore, either the top 1% or 222 

at least a 3-fold higher score than randomly assigned regulators appears to be a good threshold to 223 

determine true regulators. 224 

 225 

Inferelator 226 

Inferelator (20 bootstraps) with default settings was utilized to build regulatory networks. 227 

Similar to Lemon-Tree, it also uses the gene expression matrix to predict the regulator TFs and 228 
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their target genes. However, unlike Lemon-Tree, Inferelator does not take cluster information as 229 

input, but generates its own clusters. The program generated a ranked list of target genes for each 230 

regulator TF utilizing the gene expression matrix and the TFs of our interest. Unlike Lemon-231 

Tree, there is no "score-based" selection of TFs in Inferelator, while there are score-based 232 

regulatory interactions between TF and their target genes. Inferelator-generated scores (s) for TF 233 

(x) regulating gene (g) using input gene expression matrix (RNA-seq) as:  234 

��� � �|��	�
��  ���
�
������� � �|��	�
�� X ����������, ��� 

where a regulatory interaction confidence score is multiplied by the sign of the correlation 235 

coefficient between the TF and the putative target gene to differentiate putative activating from 236 

repressing interactions (positive and negative scores, respectively) (18, 25). 237 

 238 

Combined scoring of regulatory predictions for consensus GRN  239 

By taking advantage of the top regulator prediction feature of Lemon-Tree and top-240 

ranked regulatory target prediction of Inferelator, we compared and combined TF and targeted 241 

module genes from all three-inference solutions: Lemon-Tree mode I, II, and Inferelator 242 

(described above). The regulatory TFs and corresponding target genes common among all three-243 

inference solutions using Linux “comm” command, were rated as potential consensus regulators 244 

and their targeted GRN interactions. Ranked score function for every predicted regulatory 245 

interaction was calculated by normalizing scores produced by each inference solution (score 246 

divided by the highest score in each inference solution) and then averaging normalized score 247 

calculated from all three-inference solutions. These ranked scores were used to select high 248 

confidence candidate TF-target interactions. These were showed in edges in the GRN modules, 249 

visualized and analyzed using Cytoscape (version 3.3.0) (26). 250 

������� �	
��, �� �
∑ ���� �  �
�� ��, ���� �  �
�� ���, ������������
��

3
 

 �����, �� �
�

�
 

Ns=normalized score  251 

x = probabilistic score from each mode  252 

X= maximum score in each mode 253 

L-mode I = Lemon-Tree mode I 254 
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L-mode II = Lemon-Tree mode II 255 

 256 

Protein-protein interaction (PPI) network evidence for physical interaction  257 

Most eukaryotic TFs recruit various co-factors for their DNA-binding specificities and 258 

regulatory activities through PPIs. To evaluate potential PPIs that are part of the predicted GRNs, 259 

a total of 31,932,066 predicted/experimentally validated soybean protein interactions (NCBI 260 

taxon-Id:3847) were obtained from the STRING database (version 10.0) (search tool for the PPI 261 

network) (27). This database provides information on both experimental and predicted 262 

interactions from varied sources based on co-expression, experiments and literature mining, etc. 263 

We evaluated and compared if the predicted TFs and targets from the different inference 264 

solutions (Lemon-Tree mode I, II and Inferelator) were potential PPI partners using all the 265 

31,932,066 STRING PPI interactions in soybean. Non-redundant dataset, ignoring the transcript 266 

numbers of TFs, targets (from TF-target interactions) predicted by three individual inference 267 

solutions and PPI from STRING were compared using the Linux “comm” command to identify 268 

TF-target pair common in STRING dataset and their PPI scores. 269 

 270 

Cis-regulatory motif and functional enrichment analysis evidence for direct regulation  271 

Cis-regulatory motif enrichment was carried out using potential promoter sequences of 272 

target genes for all potential regulator TFs predicted by all three inference solutions (Lemon-273 

Tree mode I, II and Inferelator). Motif enrichment and Gene Ontology were performed by 274 

ShinyGO (http://www.ge-lab.org:3838/go/) using p-value cutoff (FDR) < 0.05 to determine 275 

regulation and function.  276 

 277 

Results 278 

 279 

Optimization of QUBIC parameters for initial biclustering  280 

The primary goal for biclustering in our analysis was to optimize the total number of 281 

significant BCs; where the majority of the TFs (out of TFs of interest and marker TFs) are 282 

retained while keeping the total number of genes to a minimum for true GRN prediction. In order 283 

to evaluate this condition, we iterated various runs in several steps to empirically optimize key 284 

QUBIC parameters. For example - q to focus on a local regulator, and as regulatory networks are 285 
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quite small networks, we chose smaller q values. To control the overlap by checking the 286 

overlapping genes and the number of TFs in between produced BCs, we iterated the run with f = 287 

0.5 to 0.65 (by 0.1). We used k = 6 presumably to retain at least three replicates each from either 288 

early or late developmental stages or from lateral root or nodule tissue types in one BC. 289 

Importantly, the consistency level of BCs was tested using parameter “c” iterated from c = 0.5 to 290 

1 (by 0.1) to balance the number of TFs and a total number of genes covered in BCs. We noticed 291 

that the lower consistency level “c” values led to the increased size of BCs. We evaluated the 292 

produced BCs to determine the “c” value at which we covered the greatest number of TFs in 293 

comparison to a total number of genes without losing much consistency (c). At c = 0.98, 76% of 294 

the TFs of interest were retained with just 27% of the genes covered in BCs (Figure 3). 295 

Interestingly, the maximum number of marker TFs (18 out of 22) cataloged for root lateral 296 

organs were covered at c = 0.98. On the other hand, at the best consistency level (c=1), only 297 

three marker TFs were covered in BCs (not shown). Overall, based on results from several 298 

iterations and optimizing for the inclusion of greater number of TFs in BCs, we finalized the 299 

following parameters: r = 1, q= 0.2, c = 0.98, o = 500, f = 0.25, k = 6; which produced 219 300 

statistically significant BCs (Supplementary Table S3). These 219 BCs comprised ~27% (30, 301 

639 out of 113,210) of total gene transcripts. Notably, ~76% (240 out of 316 TFs of our interest) 302 

of the TFs of interest and marker TFs were retained in 141 of the 219 total BCs produced. The 303 

first cluster was the largest cluster with a total of 446 genes. We conclude that the empirical 304 

determination of biclustering parameters depending on the biological question and the associated 305 

experimental objective is crucial for useful outcomes. 306 

 307 

Evaluation of QUBIC biclusters using characterized TFs and co-expressed genes from 308 

public lateral root organ-related datasets 309 

We observed organ-specific bicluster each for lateral root (both ELR and LR; BC001) 310 

and nodule (both EN and MN; BC013) tissues that included all three biological replicate samples 311 

in one bicluster, suggesting that these are likely to be highly consistent and reproducible. Four 312 

BCs each were specific to all three replicates of ELR (BC015, 019, 033 and 101) and MN (044, 313 

048, 152 and 155) tissue types (Supplementary Table S3). To test the rationality of BCs, we 314 

compared the expression patterns of co-expressed genes with marker TFs in publicly available 315 

transcriptome data (19). The transcription factor “NSP1 (Glyma16g01020)” crucial for nodule 316 
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development was present in BC037 and BC045 (Supplementary Table S3B). BC037 was specific 317 

to nodule tissues and comprised of 367 co-expressed genes. Among these, 52% had more than 318 

two-fold up-regulation in EN and MN tissues in our RNA-seq data. A marker gene highly 319 

enriched in nodule tissues, ENOD40 (Glyma02g04180), was found in five BCs (BC013, 22, 40, 320 

45, 53 and 95) with different combinations of nodule samples clustered together in each BC.  All 321 

genes in BC013 that showed specificity for nodule tissue samples with all three replicates in EN 322 

and MN in our study. Also, 50% of the genes from this BC showed greater expression in nodule 323 

tissue relative to other tissues types in the soybean gene expression atlas (19) (Supplementary 324 

Table S4). Gene Ontology (GO) enrichment analysis for this BC showed enrichment of nucleic 325 

acid metabolic process GO term with a significant p-value (FDR; 0.02) and molecular function 326 

GO term “Purine ribonucleoside triphosphate binding (FDR; 0.05); both of which are associated 327 

with biological nitrogen fixation, a process specific to nodule tissues. For example, soybean 328 

nodules export nitrogen in the form of ureides (purines) (28). The above observations indicate 329 

the appropriate clustering of relevant transcripts and validate the parameters used for clustering. 330 

Notably, we observed few novel transcripts and genes with unknown function, co-expressed in 331 

the nodule-specific biclusters (Supplementary Table S4). This observation suggests a potential 332 

role for these genes in nodule development and offers candidate genes for functional 333 

characterization. 334 

 335 

Further, we took advantage of the time course data for IAA-induced lateral root 336 

development in Arabidopsis (29), to select and evaluate marker genes present in LR-related BCs 337 

in soybean. For example, the LR marker TF, GmTMO7 (Glyma04g34080), a potential ortholog 338 

of Arabidopsis TMO7 identified in the above study, was present in BCs 110, 120 and 173 339 

(Supplementary Table S3). Of the 113 genes present in BC120, 96 showed coordinated up-340 

regulation with TMO7 in LR tissues, whereas 17 showed negative co-expression. Upon 341 

comparison with the Arabidopsis LR induction time course dataset (29), we found 15 co-342 

expressed soybean orthologs (13 positively co-expressed and 2 negatively co-expressed). Where 343 

seven (out of 13) from positively co-expressed gene orthologs set were mostly induced in the 344 

later stage of lateral root development, one (out of two) from negatively co-expressed had down-345 

regulation in a later stage of lateral root development (see marked blue and red box in 346 

Supplementary Table S5). The other lateral root marker LRP1 was in BC019 that comprised of 347 
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845 genes. Among these genes, 746 were positively and 99 were negatively co-expressed with 348 

LRP1 in all three replicates of ELR. Interestingly, 30 (out of 46 matched genes) of the positively 349 

co-expressed genes were potential orthologs of Arabidopsis genes that also showed induction 350 

during a similar stage of lateral root development (Supplementary Table S5) in the LR induction 351 

time course dataset (29). These comparisons enabled us to evaluate the ability of biclustering 352 

parameters and GRN algorithms to appropriately identify regulators and regulatory relationships 353 

of target genes during root lateral organ development.   354 

 355 

Regulatory TF and their Gene Regulatory Networks (GRN) related to root lateral organ 356 

development in soybean 357 

For the prediction of regulators and inference of corresponding GRNs, we utilized only 358 

those 141 BCs that contained our TFs of interest and marker TFs (240 TFs) which comprised 359 

25.8% (29,270 out of 113,210) of expressed gene transcripts. This approach potentially reduced 360 

the computational complexity and time required for modeling GRNs relevant to our study. This 361 

sum expression matrix of 29,270 genes and 240 TF genes (Supplementary Table S6) was used as 362 

input for GRN inference by Lemon-Tree mode I, mode II and Inferelator.  363 

 364 

Lemon-Tree produced 828 tight clusters in step 1 from the input expression matrix. A 365 

higher number of clusters (828 vs. 141 BCs from QUBIC) suggested that Lemon-Tree clusters 366 

were relatively more discrete/smaller in comparison to QUBIC BCs. In step 2, two separate 367 

options/modes were utilized (See methods and Figure 1). In mode I, we utilized the 828 tight-368 

clustered modules generated by Lemon-Tree (mode I) and in mode II, the 141 BCs produced by 369 

QUBIC (mode II). In mode I, 176 TFs were ranked as the top 1% regulators, whereas in mode II, 370 

92 TFs were ranked as top 1% regulators (Supplementary Table S7). Score evaluation was 371 

performed for top 1% and randomly predicted regulators from both modes. In both the cases, the 372 

minimum score for a top regulator (14.22; mode I and 12.13 mode II) was ~3 times higher than 373 

the maximal score (4.99; mode I and 4.23; mode II) for a randomly assigned regulator (Figure 4). 374 

This suggested that the scores for top regulators are greater than what could be expected by 375 

chance. Inferelator algorithm predicted 132 TFs as potential regulators and five predicted groups 376 

(Supplementary Table S7). Comparison of 176, 92, and 132 TFs predicted as regulators 377 

respectively, by Lemon-Tree mode I, mode II, and Inferelator, revealed that 56 TFs (~27%) were 378 
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predicted by all three different modes (Figure 5A). We ranked these common 56 TFs as high 379 

confidence TF regulators. In addition, ~62% of the TFs predicted as regulator by Lemon-Tree 380 

mode I were also identified as regulators by Lemon-tree mode II and/or Inferelator 381 

(Supplementary Figure S1A). 382 

 383 

Furthermore, a total of 113,668 non-redundant TF-target regulatory interactions were 384 

predicted by all three modes (Lemon-Tree mode I – 26,012, mode II – 95,845 and Inferelator - 385 

3,287) (Supplementary Table S8). A higher number of regulatory interactions in Lemon-Tree 386 

mode II is likely due to larger BCs produced by QUBIC. There was relatively smaller overlap 387 

among the three modes (Supplementary Figure S1B). We evaluated if the known LR and nodule 388 

marker TFs were predicted as regulators as a measure of successful TF prediction by the three 389 

different modes. Soybean orthologs of lateral root marker TFs, LRP1 (Glyma14g03900), ARF5 390 

(Glyma14g40540), CRF2 (Glyma08g02460), and TMO7 (Glyma04g34080 and 391 

Glyma06g20400) were predicted as regulators by all three inference modes. Additional orthologs 392 

of ARF5 (Glyma17g37580) and CRF2 (Glyma05g37120) were predicted as regulators by 393 

Lemon-Tree mode I and II. However, orthologs of GATA23 (Glyma03g39220, 394 

Glyma19g41780), and LRP1 (Glyma02g44860, Glyma07g35780) were not identified as 395 

regulators by any of the modes. These four genes were not enriched in LR tissues 396 

(Supplementary Table S2) potentially why they were not predicted as a regulator in this dataset. 397 

Successful prediction of four of the five LR-associated markers correctly as regulators by all 398 

three modes suggested that the pipeline was reliable and would be used in predicting previously 399 

unknown regulators of nodule development. 400 

 401 

A number of TFs were demonstrated to play a crucial role in nodule development through 402 

genetic evidence from model legumes (4, 30). These include NODULE INCEPTION (NIN) 403 

(RWP-RK family; (31), NODULATION SIGNALING PATHWAY1 and 2 (NSP1 and NSP2; 404 

GRAS domain proteins), Nuclear Factor Y (NF-YA1; (32)), Ethylene Response Factors 405 

Required for Nodulation (ERN1 and ERN2; AP2/ERF family; (33)), and CYCLOPS (coiled-coil 406 

domain protein) (34–37). In addition, a MYB TF that interacts with NSP2, an ARID domain 407 

protein that interacts with SymRK, a bHLH and a set of HD-ZIP IIIs involved in nodule vascular 408 

development, and a C2H2 Zn finger TF involved in bacteroid development are also known (38). 409 
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A potential soybean ortholog of NIN, Glyma02g48080 (34), belonging to orthogroup OGEF1237 410 

was predicted as a regulator by Lemon-Tree mode I. Only one other NIN-like gene in this 411 

orthogroup (Glyma04g00210) was included in our list of input TFs based on expression 412 

enrichment in nodules, but was not predicted as a regulator by any mode. Two other NIN-like 413 

genes outside of this orthogroup (Glyma12g05390 and Glyma01g36360) were predicted to be 414 

regulators by Lemon-Tree modes I and II. Nodule-enriched NFY-As (Glyma02g35190 and 415 

Glyma10g10240) were identified as regulators by Lemon-Tree mode I and Inferelator. In Lotus 416 

japonicus, two Nuclear Factor-Y (NF-Y) subunit genes, LjNF-YA1 and LjNF-YB1, were 417 

identified as transcriptional targets of NIN (39). In agreement, our analysis predicted that one of 418 

the soybean NIN-like genes, Glyma12g05390, regulates NF-YA1 (Glyma10g10240; Lemon-419 

Tree mode II) and the other NIN-like gene, Glyma01g36360, regulates NF-YA2 420 

(Glyma02g35190; Lemon-Tree mode I; Supplementary Table S7).  421 

Two potential orthologs of LjERN1 (Glyma02g08020 and Glyma19g29000) were 422 

predicted as regulators by Lemon-Tree modes I and II. Among the major nodulation TFs, only 423 

NSP1 was not predicted to be a regulator by our GRN pipeline. In summary, the pipeline 424 

correctly predicted known nodulation and LR TFs including the expected relationships between 425 

NIN, NF-YA, and ERN1.  426 

 427 

Putative protein-protein interactions (PPI) identified in root lateral organ-related GRNs 428 

Co-expressed and co-regulated genes have a higher likelihood of having an indirect 429 

functional interaction or direct physical interaction (40). Many TFs form a complex with other 430 

proteins for proper molecular and cellular activity. PPIs are the physical interactions between 431 

two or more proteins which form the crux of a functional protein complex formation (41). To 432 

evaluate if potential regulators identified by us undergo PPIs with other co-regulated proteins, we 433 

compared all 113,668 unique TF-target predicted regulatory interactions from three modes of 434 

GRN inference method against experimentally verified and/or predicted PPIs based on 435 

experimental data reported in the STRING database (see methods for details). We identified, 843 436 

potential interactions among 69 TFs with PPI confidence scores ranging from 150 to 995 437 

(Supplementary Figure S2, Supplementary Table S9). The high scorer (>800) PPIs were 438 

observed from Lemon-Tree mode II run. It was previously suggested that a score < 800 were 439 

probably false positives that originated from prediction methods (42). Also, the maximum 440 
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number (~64%) of PPI interactions were identified by Lemon-Tree mode II, while only four PPI 441 

were predicted by all three modes (Supplementary Figure S1C). A likely explanation is the 442 

comparatively bigger BCs in this mode generated by QUBIC. While overall, in comparison to all 443 

predicted interactions by each mode independently, Inferelator had a greater frequency (2%) of 444 

interactions in PPI, i.e., out of total predicted 3288, 61 were observed in PPI, followed by 445 

Lemon-Tree Mode I (1%) and then mode II (0.65%). Two ARF5 lateral root markers 446 

Glyma14g40540 and Glyma17g37580 were predicted to interact with Glyma13g43050 (PPI 447 

score 980) and Glyma15g13640 (PPI score 530) present in GRNs predicted by Lemon-Tree 448 

mode I and Inferelator respectively. Glyma13g43050 is an ortholog of Arabidopsis IAA28 which 449 

has been demonstrated to interact with AtARF5 (43), and this regulatory module plays a key role 450 

in lateral root development (44).  451 

 452 

High confidence TF regulators and their GRNs associated with root lateral organ 453 

development in soybean 454 

To determine high-confident regulatory interactions and build a consensus GRN, we 455 

evaluated if interactions were conserved across all three modes of GRN prediction (Lemon-Tree 456 

modes I, II and Inferelator). Results showed that 182 co-regulatory interactions (for 21 TFs) were 457 

commonly predicted by all three modes (Figure 4B, Supplementary Table S10). Therefore, for 458 

38% of the TFs predicted as a regulator (21 of 56), have also predicted common target genes 459 

independently by all three modes. These 21 TFs made independent GRN with their co-regulated 460 

target genes (Figure 6). We ranked the consensus interactions by computing the average of the 461 

normalized score given by all three GRN inference modes (ranged from min = 0.19, max=0.88) 462 

(See materials and methods for full detail). Table 1 shows the score for 21 commons TFs and 463 

their common regulatory interaction predicted from different methods (Lemon-Tree mode I, 464 

Lemon-Tree mode II and Inferelator). The complete list of modules together with their high-465 

scorer regulators for this study is available in the Supplementary Table S10. Based on the 466 

expression of the TF regulator and their predicted target (Figure 7), we categorized GRN 467 

enriched in specific lateral organ tissues. 468 

 469 

TF regulators AP2; ANT (AINTEGUMENTA), transcriptional factor B3 family protein, 470 

AtGRF5 (Growth-Regulating Factor 5), C3H, AtbZIP52 (Arabidopsis thaliana basic leucine 471 
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zipper 52), PC-MYB1, and SHR (Short Root) appear to co-regulate GRN modules during early 472 

nodule (EN) development. TF regulators GRAS; scarecrow-like transcription factor 6 (SCL6), 473 

LBD41 (LOB Domain-Containing Protein 41), AP2 domain-containing transcription factor 474 

TINY, NUC (nutcracker); nucleic acid binding, AtbZIP5 (Arabidopsis thaliana basic leucine-475 

zipper 5), FRU (FER-Like Regulator Of Iron Uptake), ARR18 (Arabidopsis Response Regulator 476 

18) and two unknown TF proteins appear to co-regulate GRN modules late during nodule (MN) 477 

development. Interestingly, four PPI interaction (out of total 843 PPI network) were also 478 

commonly predicted by all three GRN inference networks in our study for LBD41 and FRU in 479 

mature nodules (Supplementary Table S10, Supplementary Figure S2B). ARF16 and AUX/IAA-480 

ARF complex were observed for ELR development, whereas TMO7 and ARF10 (Auxin 481 

Response Factor 10) co-regulated GRN for YLR development in soybean.  482 

 483 

Discussion 484 

 485 

In spite of the economic and environmental importance of biological nitrogen fixation in 486 

nodule in soybean, there is still an unanswered question of what key TFs regulate the underlying 487 

GRNs in nodules and lateral roots (4). We developed a robust computational framework for 488 

GRN construction using genome-scale gene expression data. Specifically, this framework 489 

integrates genomic and transcriptomic data to infer the key regulators and GRN associated with 490 

nodule development in soybean. The predicted networks consistently included experimentally 491 

verified genes, demonstrating the ability of our framework to reveal significant, potentially 492 

important GRNs. With a broader impact, the framework can be used as a template for 493 

constructing GRNs to address any biological question of interest in any species.  494 

 495 

To reduce the computational complexity and make the predicted regulator TFs and GRNs 496 

relevant to our biological question, a biclustering method and a regulatory network inference tool 497 

were used, where their parameters were optimized via several iterations for data analysis and 498 

modeling. Among existing GRN inference algorithms, Lemon-Tree and Inferelator were 499 

successfully applied in different biological questions due to their valued feature i.e. top regulator 500 

and top-ranked regulatory target prediction (45–48). Lemon-Tree detects regulatory modules and 501 

regulators from gene expression data using probabilistic graphical models (17). Whereas, 502 
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Inferelator learns a system of ordinary differential equations using the Bayesian Best Subset 503 

Regression that describes the rate of change in transcription of each gene or gene-cluster, as a 504 

function of TFs. It has been shown that predictions made by the Inferelator are highly accurate 505 

for top ranking predictions. Stochastic Lemon-Tree and Inferelator perform better if the 506 

transcriptional program can be inferred from a pre-specified list of regulators rather than from a 507 

full gene list, because erroneous interactions with non-regulators will be eliminated a priori (49). 508 

So, we took the differentially expressed TFs and predefined marker TFs with a known role in 509 

nodule and LRs to infer GRN. 510 

 511 

Novel regulators of nodule development 512 

We distinguished organ (lateral root/ nodule) and/or developmental stage-specific 513 

(early/mature) consensus GRNs based on organ-specific enrichment of the TFs, their differential 514 

expression and expression pattern of their co-regulated genes in our transcriptome data. In 515 

addition, we also employed comparative genomics and information from public tissue atlas and 516 

transcriptome data. The analysis correctly predicted four of the five LR regulators with high 517 

confidence and known nodulation TFs including the expected relationships between them. For 518 

example, the phylogenetic analysis suggested that ERN2 may not be present in legumes that 519 

form determinate nodules such as soybean, L. japonicus, or common bean (50). The expression 520 

of ERN1 and ERN2 are under the control of NIN and NF-YA in Medicago, a legume that forms 521 

indeterminate nodules. In fact, NF-YA binds the promoter of ERN1 directly regulating its 522 

expression in Medicago. However, ERN1 expression does not appear to be regulated by NIN or 523 

NF-YA in L. japonicus as its expression is not altered in nin or nf-ya loss of function mutants. 524 

Our GRN prediction also did not identify ERN1 as a target of NF-YA or NIN in soybean. ERN1 525 

is directly regulated by CYCLOPS in L. japonicus. NSP2 and CYCLOPS were not included in 526 

the input TF list due to no nodule-specific enrichment and/or incorrect annotation. The inclusion 527 

of CYCLOPS in future analyses might reveal regulatory relationships between ERN1 and 528 

CYCLOPS in soybean. It remains to be seen if this is conserved among other determinate nodule 529 

forming legumes including soybean. Given the reliability of the pipeline in accurately predicting 530 

known TFs, we discuss previously unknown regulators of nodule development predicted by the 531 

pipeline. 532 

 533 
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An identified EN-GRN was enriched with cell division and cycle functions. Three TFs 534 

were predicted to drive GRNs specifically associated with emerging nodules, which are soybean 535 

orthologues of Arabidopsis ANT (AINTEGUMENTA; At4g37750), AP2/B3 domain 536 

transcriptional factor (At5g58280), and AtGRF5 (Growth-Regulating Factor 5). All the three 537 

genes are associated with sites of cell proliferation in Arabidopsis. While GRF5 plays a role in 538 

cell proliferation during leaf primordia formation and leaf development, ANT is crucial for 539 

flower development. At5g58280 shows the highest expression level in the shoot apex, 540 

particularly in the central zone. Indeed, it is likely that the soybean TFs associated with EN 541 

GRNs direct cell proliferation during early nodule development. Seven other TFs belonging to 542 

C3H, bZIP, MYB1, NF-YC, and SHR were also predicted to co-regulate GRN modules in both 543 

emerging nodules and emerging lateral roots (Table 1). Soybean ANT ortholog was the regulator 544 

with the highest score in our analysis (0.8) and was predicted to co-regulate ten target genes 545 

specifically in emerging nodules. Its targets included ATCSLA09, ALDH2C4, GCL1 (GCR2-546 

LIKE 1), AAP6, and auxin-responsive protein. A maximum of 51 co-regulated target genes were 547 

predicted for a C3H TF regulator (enriched in both EN and ELR) by all three modes. Most of the 548 

target genes such as glycosyl hydrolase family protein, CYCA1;1 (Cyclin A1;1), zinc finger 549 

(C3HC4-type RING finger), CDKB1, CMT3 (chromomethylase 3); DNA (cytosine-5-)-550 

methyltransferase, calmodulin-binding protein-related, CYC1BAT; cyclin-dependent protein 551 

kinase regulator, mitotic spindle checkpoint protein, putative (MAD2), ATARP7 (Actin-Related 552 

Protein 7); structural constituent of cytoskeleton, kinesin motor protein-related, and CDC20.1; 553 

signal transducer, were high scoring target genes. 554 

 555 

GO enrichment analysis of genes involved in EN and EN-ELR GRNs showed significant 556 

enrichment of regulation of a cell cycle, movement of a cell or subcellular component, 557 

microtubule-based movement, cell division, and cell cycle biological process. (Supplementary 558 

Table S10). This is consistent with biological processes known to occur early during lateral 559 

organ development. Cis-regulatory motif GACCGTTA was enriched in the EN related GRN 560 

regulated by a Myb/SANT TF (Supplementary Table S10). 561 

 562 

Similarly, MN-GRN involved in mature nodule development was enriched with meristem 563 

initiation and growth. Nine TF regulators belonging to GRAS (scarecrow-like transcription 564 
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factor 6, SCL6), LBD41 (LOB Domain-Containing Protein 41), AP2 domain-containing 565 

transcription factor TINY, NUC (nutcracker); nucleic acid binding, bZIP5 (Arabidopsis thaliana 566 

basic leucine-zipper 5), FRU (FER-Like Regulator Of Iron Uptake), RR18 (Arabidopsis 567 

Response Regulator 18), a Myb/SANT-like DNA binding protein, and a SCREAM-like protein 568 

appear to co-regulate GRN modules late during nodule (MN) development. Among these TFs, 569 

LBD41 had the highest score (0.77). LBD41 was predicted to co-regulate 38 target genes, among 570 

which PDC2 (pyruvate decarboxylase-2) had the highest normalized score (0.7). Other targets 571 

included PSAT, SRO2 (similar to rcd one 2), MEE14 (maternal effect embryo arrest 14), zinc 572 

finger (AN1-like), SNF2, trehalose-6-phosphate phosphatase, hypoxia-responsive family protein, 573 

bHLH, wound-responsive family protein, and ASP1 (Aspartate Aminotransferase 1) with 574 

normalized score > 0.5 (Figure 7). Arabidopsis LBD41 is associated with hypoxia response and 575 

multiple targets predicted for the soybean ortholog of LBD41 in MN were also associated with 576 

hypoxia (51). Nodule oxygen concentrations are highly regulated to enable the proper 577 

functioning of the oxygen-sensitive nitrogenase enzyme complex. It is tempting to suggest that 578 

soybean LBD41 might play a role in regulating response to hypoxia in MN. The Arabidopsis 579 

orthologs of SCL-6 a key regulator in MN, play a role in shoot branching by regulating axillary 580 

bud development (52). We had previously suggested that nodules and shoot axillary meristems 581 

require a similar hormone balance during development. It is possible that some developmental 582 

pathways such as those regulated by SCL6 are shared between these organs. Similarly, the role 583 

of Arabidopsis NUTCRACKER protein required in periclinal cell divisions (53), that of FRU in 584 

uptake of iron (54), and RR18 in positive regulating cytokinin activity (55) are all consistent with 585 

biological processes observed in MN tissues (56, 57). GO enrichment analysis for MN-GRN 586 

genes showed enrichment of specification of axis polarity, adaxial/abaxial axis specification, 587 

meristem initiation, meristem growth and regulation of meristem growth (Supplementary Table 588 

S10). While these processes are known to occur in mature nodules, TFs associated with these 589 

processes had not been identified previously. Genes involved in MN-GRN had significant 590 

enrichment (P-value ≤ 0.05 FDR) for cis-regulatory motifs GGGCCCAC, ACCG and TGTCGG 591 

in their upstream regulatory regions. These are likely to be regulated by TCP, AP2 and B3 TFs 592 

respectively (Supplementary Table S10). The study has revealed potential TFs associated with 593 

different functions in nodule development.  594 

 595 
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Data availability 596 

Gene expression data used to construct gene regulatory networks are available in NCBI Gene 597 

Expression Omnibus (GEO), accession number GSE129509. Raw data files are available in 598 

NCBI’s Sequence Read Archive (SRA) and can be accessed via links available at the GEO 599 

record URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129509. 600 
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Figures legends 774 

Figures  775 
 776 

Figure 1. Schematic representation showing our workflows for prediction of regulator 777 

transcription factors (TFs) and their Gene Regulatory Networks (GRNs) for root lateral organ 778 

development in soybean.  779 

 780 

Figure 2. Transcription factor (TF) families enriched in specific root lateral organs. Bar graphs 781 

indicated the number of family members enriched in nodules (blue) or lateral roots (orange). TF 782 

annotations are based on Plant Transcription Factor Databases (PlantTFDB). Asterisks indicate 783 

TF families that were significantly enriched either in nodule or lateral root (Fisher’s exact test; P 784 

< 0.05).  785 

 786 

Figure 3. Optimization of QUBIC parameter. Relationship between QUBIC’s consistency 787 

parameter “c” (tested from 1 to 0.6) and the number of target transcription factors (TFs) included 788 

in bicluster (BC) versus the size of the BC (total number of genes). Each block denotes –c value, 789 

TF included in BCs, and total number of genes at that “c” value. The optimal “c” value selected 790 

for final analysis is highlighted. 791 

    792 

Figure 4. Distribution of Lemon-Tree scores of true and random regulators for root lateral organ 793 

development in soybean. Histogram shows the distribution of score for true and randomly 794 

assigned regulator from Lemon-Tree mode I (orange) and mode II (green) produced network. 795 

Arrows indicate the minimum and maximum scores from each category with values in 796 

parenthesis. 797 

 798 

Figure 5. Overlap and differences among outputs from the three different network approaches. 799 

(A) Transcription factors (TF) predicted as regulators from three different network approaches. 800 

(B) Regulatory interactions predicted by three different network approaches. Numbers in center 801 

indicate the number of potential regulators (in A) and interactions (in B) recovered by all the 802 

three different approaches playing role in root lateral organ development in soybean. 803 

 804 
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Figure 6. Figure showing consensus 182 co-regulatory interactions predicted and recovered by 805 

three different modes chosen in this study. Nodes in diamond denote regulator transcription 806 

factors (TFs) and circles denote predicted target genes. Edges denote the normalized score of 807 

interaction calculated by all three different modes. Broader the edges, higher the interaction 808 

score.  809 

 810 

Figure 7. Heat map showing normalized expression from varied samples of root lateral organ 811 

development in soybean for regulator transcription factors (TFs) and their co-regulatory target 812 

genes in consensus network predicted by three different modes chosen in our study. Row 813 

annotation for 21 regulator TFs and their co-regulatory partners are shown in different colors. 814 

  815 
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 816 

Table1. List of transcription factors predicted as regulator by all three workflows used in our 817 

study.  818 

21 TFs IDs TF annotation Enrichment (log2 fold 

change) in each organ 

EN MN ELR YLR 

Glyma03g27050 AP2 domain-containing protein (TINY)  2.32   

Glyma17g08380 ARR18 (RESPONSE REGULATOR 18)  2.96   

Glyma11g04920 AtbZIP5 (basic leucine-zipper 5)     

Glyma13g39650 FRU (FER-LIKE REGULATOR OF IRON 

UPTAKE) 

 1.8 -1.74 -3.04 

Glyma03g03760 GRAS TF; scarecrow-like 6 (SCL6)  2.29 1.22  

Glyma19g06280 LBD41 (LOB DOMAIN-CONTAINING 

PROTEIN 41) 

 1.19   

Glyma06g44080 NUC (nutcracker)  1.53   

Glyma03g34730 Putative transcription factor  2.49   

Glyma01g32130 Unknown protein  2.45 -0.87  

Glyma06g05170 AP2; ANT (AINTEGUMENTA) 1.42 -2.23   

Glyma09g07990 AtGRF5 (GROWTH-REGULATING FACTOR 5) 3.34    

Glyma02g40400 Transcriptional factor B3 family protein 2.76    

Glyma14g38460 AtbZIP52 (basic leucine zipper 52) 1.51  1.25  

Glyma16g01296 C3H 2.01  2.17  

Glyma05g22460 SHR (SHORT ROOT) 1.78  1.55  

Glyma06g08660 PC-MYB1 1.4  1.42  

Glyma11g37130 NFYC 3.57  1.49  

Glyma11g20490 ARF10 (AUXIN RESPONSE FACTOR 10)   1.91 2.7 

Glyma06g20400 bHLH family protein   2.35  

Glyma10g06080 ARF16 (AUXIN RESPONSE FACTOR 16)     

Glyma19g36571 AUX/IAA-ARF complex     

 819 

 820 
 821 
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