
 

 

Estimating the effective sample size in association studies of quantitative traits 
Andrey Ziyatdinov 1, Jihye Kim1, Dmitry Prokopenko2,3, Florian Privé4, Fabien Laporte5, Po-Ru 
Loh6,7, Peter Kraft1 and Hugues Aschard1,5 

1) Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; 2) 
Genetics and Aging Unit and McCance Center for Brain Health, Department of Neurology, 
Massachusetts General Hospital, Boston, MA, USA; 3) Harvard Medical School, Boston, MA, USA; 4) 
National Centre for Register-Based Research, Aarhus University, Aarhus, 8210, Denmark; 5) Centre de 
Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France; 6) 
Division of Genetics, Department of Medicine,Brigham and Women’s Hospital and Harvard Medical 
School, Boston, MA, USA; 7)Program in Medical and Population Genetics, Broad Institute of MIT and 
Harvard, Cambridge, MA, USA. 
 

Abstract 

The effective sample size (ESS) is a quantity estimated in genome-wide association studies (GWAS) 
with related individuals and/or linear mixed models used in analysis. ESS originally measured relative 
power in family-based GWAS and has recently become important for correcting GWAS summary 
statistics in post-GWAS analyses. However, existing ESS approaches have been overlooked and based 
on empirical estimation. This work presents an analytical form of ESS in mixed-model GWAS of 
quantitative traits, which is derived using the expectation of quadratic form and validated in extensive 
simulations. We illustrate the performance and relevance of our ESS estimator in common GWAS 
scenarios and analytically show that (i) family-based studies are consistently underpowered 
compared to studies of unrelated individuals of the same sample size; (ii) conditioning on polygenic 
genetic effect by linear mixed models boosts power; and (iii) power of detecting gene-environment 
interaction can be substantially gained or lost in family-based designs depending on exposure 
distribution. We further analyze UK Biobank dataset in two samples of 336,347 unrelated and 68,910 
related individuals. Analysis in unrelated individuals reveals a high accuracy of our ESS estimator 
compared to the existing empirical approach; and analysis of related individuals suggests that the loss 
in effective sample size due to relatedness is at most 0.94x. Overall, we provide an analytical form of 
ESS for guiding GWAS designs and processing summary statistics in post-GWAS analyses.  

Introduction 

Genome-wide association studies (GWAS) have identified thousands of genetic variant-trait 
associations, improving our understanding of genetic architecture of complex traits and diseases1. 
Most GWAS use linear regression performed in a sample of unrelated individuals, because statistical 
tests are computationally fast and have well-known analytical properties2. Importantly, 
post-processing methods based on GWAS summary statistics also assume a linear regression data 
model. These post-GWAS methods, including meta-analysis3, fine-mapping4, partitioning heritability5,6 
and polygenic risk prediction7, are valuable resources to follow up GWAS findings and gain insights 
about the genetic architecture. However, one needs to estimate the effective sample size (ESS) to 
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correct for potential sample relatedness and/or account for linear mixed models used to generate 
summary statistics4,5. Some methods recognized the problem of ESS estimation and incorporated 
data-driven approaches to handle ESS4,5. Ignoring the correction by ESS can produce misleading 
results such as overestimation of heritability enrichment5 and inaccurate fine-mapping of causal 
variants4.  

Nowadays, modern cohorts consist of combined samples of unrelated and related individuals, for 
instance UK Biobank8, that poses a challenge to both GWAS and post-GWAS analyses. In the GWAS 
context, linear mixed moles (LMM) have been established as an effective alternative to linear 
regression (LR) performed on a subsample of unrelated individuals: LMM can be applied to the whole 
sample (related individuals retained)9, account for family or cryptic relatedness (control of spurious 
associations)10 and condition on the polygenic signal (power gain)11. Despite these well-known 
advantages of using LMM in GWAS11, works on optimizing computational algorithms and determining 
analytical properties remain an active area of research9,11–13. Here we are interested in an analytical 
expression for power of LMM association tests and their relative performance against LR. For ease of 
interpretation we use the ESS multiplier, defined as a ratio of the non centrality parameters (NCP) 
between the two tests and served as a measure of relative power14. We define a baseline scenario: 
testing the genetic effect on a quantitative trait by LR in a sample of unrelated individuals. The NCP for 
LR is known to be directly proportional to the sample size and the variance explained by genetic 
variant2. We next can derive the NCP for a variety of scenarios using LMM tests and analytically 
compare them to the baseline. 

The scope of scenarios covered in this work is limited to three particular comparisons, which were 
previously discussed but, in our opinion, require an additional analytical revision in terms of relative 
power. These scenarios represent different study designs (unrelated/related individuals), association 
models (LR/LMM) and parameters of interest (marginal genetic/gene-environment interaction effects). 
First, we aim at providing an analytical solution to quantify the impact of having related rather than 
unrelated individuals in a sample9,15. Intuitively, having related individuals results in lowering the 
power, as related pairs harbor overlapping phenotypic and genetic information15. Related works 
provided an analytical solution of ESS only for special cases such as sibling pairs16. Second, we revisit 
the impact of using LMM in association study of unrelated individuals, where the polygenic signal is 
modeled as a random effect via the genetic relationship matrix. Previous works were focused on the 
distribution of test statistic2,11 and proposed to estimate ESS empirically using top statistic5,9. Third, 
we tackle association studies of gene-environment interactions17 and examine how family 
resemblance in related individuals affects the power of detecting interaction effects using LMM. 
Related works empirically evaluated different family-based designs to improve power18,19, but the 
complete analytical derivation for interaction test statistic is available only for LR applied to unrelated 
individuals17. 

This work presents a formal framework to compare the relative performance of different LMM 
association tests in respect to the baseline LR test. The manuscript is organized as follows. We first 
derive approximations of NCP for LMM tests and use them to further derive the ESS multiplier. We 
then demonstrate the validity of our multiplier through extensive simulations and real data analysis in 
UK Biobank8. We point out factors that influence the relative power: family structure, variance 
explained by LMM components such as heritability, and distribution of environmental exposure when 
testing for gene-environment interactions. 
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Methods 

Linear models 

We consider a linear mixed model (LMM) and derive the Wald test statistic of association between a 
genetic variant and a quantitative trait. We further derive the linear regression (LR) statistic as a 
special case of LMM statistic. 

Let denote  is the number of individuals,  is the number of genetic variants,  is a  vector ofN M y ×1N  
trait,  is a  matrix of genetic variants and  is a  vector of the genetic variant tested,W ×MN w ×1N  
i.e. a column in . We assume that the vector  and the columns in matrix  are standardized toW y W  
have zero mean and unit variance, and there are no other covariates. We then model  by ay  
multivariate normal distribution. 

 ∼N (wβ, )  (1)y Σy  

where  is the standardized effect size of variant , and  is the  covariance matrix ofβ w ≡cov(y)Σy ×NN  
trait across  individuals.N  

If the covariance matrix  is known,  can be estimated using Generalized Least Squares (GLS)20,21.Σy β  

Then the Wald statistic is defined as , and it is compared to  distribution under the null/var(β)s = β̂
2 ˆ χ2

1  
hypothesis of no association, . Thus, the LMM statistic is expressed as follows12,20,21.β = 0  

  (2)β̂LMM = w Σ yT
y
−1

w Σ wT
y
−1  

ar(β )   (3)v ˆ
LMM = 1

w Σ wT
y
−1  

  (4)sLMM =
w Σ wT

y
−1

(w Σ y)T
y
−1 2

 

The LR statistic has a simpler form compared to Equations (2)-(4), considering that  and  isIΣy = σr
2 w  

standardized ( ) and assuming , as the vector  is standardized and the variancewwT = N ≈1σr
2 y  

captured by genetic variant is negligibly small. 

  (5)β̂LR = w yT
w wT  

ar(β )   (6)v ˆ
LR = σ2

r
w wT ≈ 1

N  

  (7)sLR = σ w w2
r

T
(w y)T 2

≈ N
(w y)T 2

 

 

Testing gene-environment interaction 

To study the gene-environment interaction effect on quantitative trait , the linear model in Equationy  
(1) is expanded by including two  vectors: one vector  of environmental exposure, and another×1N d  
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vector  of gene-environment interaction obtained by element-wise multiplication of the two≡wv * d  
vectors  and .w d  

 ∼N (wβ τ δ, )  (8)y + d + v Σy  

where ,  and  denote the effect sizes of genetic variant, exposure and interaction, respectively.β τ δ  
We again assume that all the three vectors of covariates are standardized to have zero mean and unit 
variance, and there are  no other covariates. 

Under an assumption that two random variables of genotype and environmental exposure are 
generated independently, the standardized interaction effect  can be evaluated independently fromδ  
the two main effects  and  17 . Thus, the test statistic for gene-environment interaction looks theβ τ  
same as in Equations (2)-(7) with replacement of  by .w v  

  (9)δ̂LMM =
v Σ vT

y
−1

v Σ yT
y
−1

 

ar(δ )   (10)v ˆ
LMM = 1

v Σ vT
y
−1  

  (11)siLMM =
v Σ vT

y
−1

(v Σ y)T
y
−1 2

 

 

Estimating trait covariance 

The covariance structure of  is generally unknown, but Equations (1) and (8) can be extended toy  
further specify covariance components. The expression for  can be written as follows.y  

β   (12)y = w + ∑
m

k=1
rk + e  

where  vectors of random effects, , and residual errors, , are assumedm ∼N (0, R )rk σ2
k k ∼N (0, I)e σr

2  
mutually uncorrelated and multivariate normally distributed. The covariance of each vector of 
random effects is parametrized with constant matrix   and scaled by the scalar parameter ,Rk σ2

k  
referred to as variance components. Marginalizing over vectors of random effects from Equation (12) 
gives a multivariate normal distribution of  with covariance given as follows.y  

R I  (13)Σy = ∑
m

k=1
σ2
k k + σr

2  

Both fixed effect  and variance components  and , are model parameters. Varianceβ σ2
k σr

2  
components are typically estimated by restricted maximum likelihood (REML)22, because the REML 
approach produces unbiased estimates by adjustment for the loss in degrees of freedom due to the 
fixed effect covariates. To compute the association test statistic in Equations (4) and (7), we replace 
the true trait covariance by its estimate. 

R I  (14)Σ̂y = ∑
m

k=1
σ̂2
k k + σ̂r

2  
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 Relative Power and Effective Sample Size 

Under the alternative hypothesis, the non-centrality parameter (NCP) quantifies the statistical power 
for a given effect size .β  

CP /var(β)  (15)N β = β2 ˆ  

ower (χ |1, CP )  (16)P β = 1 − F 2
1,1−α,0 N β  

where  is the type I error rate,  is the cumulative distribution function for theα (χ |df , CP )F 2 N  
non-central  distribution with  degrees of freedom and non-centrality parameter . Theχ2 fd CPN  
quantity  is the inverse of F or the quantile of the non-central  distribution.χ2

df ,1−α,0 χ2  

To introduce the concept of relative power and effective sample size (ESS), consider two association 
study designs based on unrelated individuals and related individuals in families. Both studies have the 
same sample size N, and one is interested to know which design is more powerful to detect a genetic 
variant with effect size . For two association models, LR for unrelated individuals and LMM forβ  
related individuals, we derive the ratio of the two corresponding NCPs as defined in Equations (3) and 
(6) 

  (17)γβ = NCP β,LR

NCP β,LMM =
β /var(β )2 ˆ

LR

β /var(β )2 ˆ
LMM ≈ N

w Σ wT
y
−1

 

This ratio , the ESS multiplier, is a measure of relative power and, by default, gives the ratio of theγβ  
sample sizes needed for two study designs to yield the same variance of estimate15. Note that the ESS 
multiplier is similar to the asymptotic relative efficiency of two tests, say one likelihood to another, for 
measuring a parameter : it is given by the ratio of the inverse asymptotic estimates for the varianceθ  
of  14. In this work we aim to simplify the numerator part of ratio  and propose(θ )√N ˆ − θ γβ  
approximations, as described in the next section.  

Alternatively, an empirical estimator of the ESS multiplier, , can be used when the analytical form ofγe  
multiplier is unknown. An empirical solution has been proposed using test statistics at a subset of 
variants with the strongest association5,9. Consider two association studies in a sample of unrelated 
individuals, one being performed with LR and the other one with LMM. We  derive the ratio of statistics 
computed by LMM and LR at  top associated variants, for example, at genome-wide significantM t  
variants based on LMM results. The empirical multiplier  for these variants has the following form.γe  

 (18)  γe = 1
M t

∑
M t

i=1
( s2

LR,i

s2
LMM ,i)   

We note that the choice of top variants is subjective and, more importantly, the empirical multiplier 
takes average over ratios between association statistics rather than standard errors. The premise of 
this approach is based on the assumption that the estimated effect sizes at the top variants for LR and 
LMM are approximately the same and therefore cancel out in the ratio. When this assumption holds, 
the two estimators,  and , are equivalent.γe γβ  
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 Approximations 

Given the definition of the NCP in Equation (15), we compute the expected variance of the effect size 
estimate in Equation (3) by averaging  over genetic variants , in order to obtain anΣ wwT

y
−1 w  

analytical approximation for the NCP and power to detect a given effect size . A similar computationβ  
is performed for NCP and power to detect gene-environment interaction effect size  by averagingδ  

 over interaction variables . In particular, we  approximate quadratic forms from LMMΣ vvT y
−1 v  

association models,  and , by their mean values, considering  and  as vectors ofΣ wwT
y
−1 Σ vvT y

−1 w v  
random variables and  as a constant matrix of linear transformation.Σy

−1  

First, we introduce the covariance matrix of genetic variant, , that convey genetic≡cov(w)Σw  
relatedness or pedigree structure of individuals. For unrelated individuals,  is the identity matrix.Σw  
For related individuals in families,  is the expected kinship matrix, , and is determined fromΣw Σw = K  
pedigree information. 

Second, we note that the covariance matrix of gene-environment interaction variable, , can≡cov(v)Σv  
be derived from  through the vector of environmental exposure, , given in Equation (8). Briefly,Σw d  
we replace definition of  through element-wise multiplication of vectors  and  and introduce av w d  
matrix . Treating the matrix  as constant and  as a random vector, we obtainiag(d)E = d E w  

. Next, we simplify the last expression by taking into account that the matrix  isov(Ew) Σ Ec = E w
T E  

diagonal. Defining a new  

matrix  and using the Hadamard product operator ( ), we obtain the final form of .D ° Σv  

E iag(d)  v≡w w  D E   Σ Σ E ∘Σ    (19) = d * d = E i,j = Ei,i j,j v = E w
T = D w  

While the case of unrelated individuals with  is trivial and gives , we denote aΣw = I iag(D)Σw = d  
special kinship matrix  for related individuals when .KD Σw = K  

∘K  (20)KD = D  

A numerical example of matrices , ,  and  for nuclear families and binary exposure isE D K KD  
provided in Supplementary Material. 

Third, we approximate quadratic forms by their expected values. If  is a vector of random variablesX  
with mean  and (nonsingular) covariance matrix , then the quadratic form is a scalar randomμ Σ  
variable with mean expressed as follows. 

(X AX) r(AΣ) Σμ  (21)E T = t + μT  

The variables  and  are standardized to have zero mean, then we obtain approximations.w v  

Σ w≈E(w Σ w) r(Σ Σ )  (22)wT
y
−1 T

y
−1 = t y

−1
w  

Σ v≈E(v Σ v) r(Σ Σ ) r(Σ (D∘Σ ))  (23)vT y
−1 T

y
−1 = t y

−1
v = t y

−1
w  

Fourth, we consider several LMM-based scenarios with particular structure of covariance matrices ,Σy  
 and  (see Tables 1 and 2). For each of these scenarios we propose further approximations ofΣw Σv  
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Equations (22) and (23) using known relationships between the trace operator and eigen-value 
decomposition outlined in Supplementary Material. 

Scenarios 

We consider four GWAS scenarios to compare their relative power (Tables 1 and 2). Scenarios differ by 
study design, whether the data is collected for genetically unrelated or related individuals in 
families15. Additionally, studies of unrelated individuals vary by association models, LR or LMM. When 
analyzing unrelated individuals using LMM and testing for marginal genetic effect, we limit our 
comparisons to LMM with a single random effect, which is either a grouping factor, e.g. household, or 
a polygenic effect with genetic relationship matrix (GRM)11. In all scenarios, the vector of trait  isy  
standardized, so that the sum of variance components in  (scalars ) is equal to 1. The parameterΣy σ2

*  
 denotes the additive heritability in family-based study. The other similar parameter  stands forσ2

a σ2
g  

the heritability explained by genetic variants in study of unrelated individuals. 

Table 1: Scenarios and covariance matrices for testing marginal genetic effect. 

Scenario  Model 
Study design 
(Individuals) 

Σy   = KΣw  

Unrelated  LR  Unrelated  Iσr
2   I  

Families  LMM  Related  K Iσ2
a + σr

2   K  

Unrelated+Grouping  LMM  Unrelated  F Iσf
2 + σr

2   I  

Unrelated+GRM  LMM  Unrelated  G Iσ2
g + σr

2   I  

 

Table 2: Scenarios and covariance matrices for testing gene-environment interaction effect. 

Scenario  Model 
Study design 
(Individuals) 

Σy   ∘KΣv = KD = D  

Unrelated  LR  Unrelated  Iσr
2   iag(D)d  

Families  LMM  Related  K K Iσ2
a + σ2

ai I + σr
2   ∘KD  

Unrelated+Grouping  LMM  Unrelated  F Iσf
2 + σr

2   iag(D)d  

Unrelated+GRM  LMM  Unrelated  G G Iσ2
g + σ2

gi I + σr
2   iag(D)d  

 

Data simulations 

In simulations, we generate a quantitative trait from a multivariate normal distribution with variance 
components specified in Tables 1 and 2. In power analysis testing marginal genetic effect, we draw β  
so that the genetic variant explains  of trait variance. In power analysis testing.1%≈ 0  
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gene-environment interaction effect, we draw  so that the (standardized) gene-environmentδ  
interaction term  explains  0.1% of trait variance (standardized main genetic and environmental≈  
effects each explains 0.1% of trait variance). See Supplementary Material for more details. 

In simulations of related individuals, we generate data for nuclear families with 2 parents and 3 
offspring, if not specified otherwise. Accordingly, the kinship matrix  is added as a component of K Σy  
for controlling the family structure in trait covariance. A special matrix  is also included in  whenK I Σy  
testing for gene-environment interaction23. Note that matrices  in Equation (19) and in ref.23KD K I  
are different, although both are derived from the kinship matrix  and realized exposure variable. InK  
simulations of unrelated individuals with a grouping factor, each group consists of 5 individuals. Thus, 
the variance-covariance matrix, , is a Kronecker product of block and diagonal matrices, whereF  
each block matrix is a  matrix of ones.×55  

Analysis of UK Biobank  

In analysis of 336,347 UK Biobank unrelated individuals, we perform two LR- and LMM-based GWAS 
and then estimate the ESS multiplier between the two studies (rows 1 and 4 in Table 1). We follow a 
computationally efficient approach of low-rank LMM24–26, where LMM has a single random genetic 
effect with genetic relatedness matrix (GRM) constructed on a subset of top 1,000 SNPs, as described 
in another UK Biobank application26. These 1,000 SNPs are selected from top clumped LR associated 
SNPs using plink 2.0 (r2 <0.1)27. The analysis is restricted to 336,347 British-ancestry unrelated 
individuals passing principal component analysis filters and having no third-degree or closer 
relationships8; 619,017 high-quality genotyped autosomal SNPs with missingness <10% and minor 
allele frequency (MAF) >0.1%9; six anthropometric traits, body mass index (BMI), height, hip 
circumference (HIP), waist circumference (Waist) and waist-to-hip ratio (WHR). To account for 
population structure, 40 principal components (PC) are included as covariates. Note that the 
performed low-rank LMM GWAS is not the most optimal strategy11, but it is sufficient to compare the 
relative performance of ESS multipliers.  

In analysis of 68,910 UK Biobank related individuals, we select 40,231 related pairs with at least the 
second-degree relatedness to compute the ESS multiplier (rows 2 in Table 1). Kinship coefficients are 
empirically estimated from genotype data and allow to further split related pairs into categories 
(monozygotic twins, parent-offspring, full siblings and second-degree relatives), as described in ref. 8 
and summarized in Supplementary Table S1.  

Efficient computation   

Computation of quantities in Equations (22) and (23) requires inverting the trait covariance matrix Σy
−1

. This is prohibitive in  large datasets, so we developed several solutions to mitigate the computational 
burden. When   is dense in analysis of unrelated individuals, we follow the low-rank LMM approachΣ 

y  
implemented in a specially developed R package (github.com/variani/biglmmz). Our package is built 
on the R packages bigstatsr and bigsnpr with statistical methods for large genotype matrices stored 
on disk28. When   is sparse in analysis of related individuals, we apply special linear algebraΣ 

y  
methods for sparse matrices implemented in the R package Matrix; this approach was recently 
proposed for biobank-scale association studies29. In both analytical derivations and analysis of 
family-based data, we exploit the block structure of kinship matrices  when it is possible. 
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Results 

Analytical estimators for the effective sample size multipliers 

We analytically derived , the ESS multiplier of LMM against LR across the four scenarios describedγβ  
in Table 1. Recall a genetic variant  with effect  on a quantitative trait  with covariance matricesw β y  
of trait and genetic variant  and , respectively. Using approximations given in Equation (22)Σy Σw  
(Methods), the relative power between LR and LMM tests can be approximated as follows: 

CP tr(Σ Σ )  (25)N β,LMM ≈ β2
y
−1

w  

  (26)γβ ≈ N
tr(Σ Σ )y

−1
w  

Expanding Equation (26) for each scenario in Table 1 and using components of  and the form of Σy Σw

, we next obtain (see Supplementary Material): 

(Families)   (27)γβ = N
tr((σ K+σ I) K)2

a
2
r

−1

= ∑
N

i=1

λi
K

σ λ +σ2
a i

K 2
r

 

(Unrelated rouping)   (28)γβ + G = N
tr((σ F+σ I) )f

2 2
r

−1

= ∑
N

i=1

1
σ λ +σf

2
i
F 2

r
 

(Unrelated RM )   (29)γβ + G = N
tr((σ G+σ I) )2

g
2
r

−1

= ∑
N

i=1

1
σ λ +σ2
g i

G 2
r

 

The multiplier for Families can be further simplified, for example, for related-pairs designs. If  is thes  
number of related pairs within each family and r is the relatedness, then we obtain (see 
Supplementary Material): 

(Related pairs)  (30)  γβ = s
1 ( rs+1−r

(rs+1−r)σ +σ2
a

2
r

+ (s−1)(1−r)
(1−r)σ +σ2

a
2
r
)   

Finally, we similarly derived the NCP parameter for power to detect gene-environment interaction 
effect  (Table 2). Given that the covariance matrices of trait and interaction variable are  andδ Σy  

, respectively, and the matrix  is defined in Equation (18), we obtain the approximation:∘DΣv = Σw D  

CP tr(Σ (Σ ∘D))  (31)N δ,LMM ≈ δ2
y
−1

w  

  (32)γδ ≈ N
tr(Σ (Σ D))y

−1
w°  

We also validated our approximations in Equations (25) and (31) through simulations (see 
Supplementary Figures S1-5). 
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Testing marginal genetic effect  

Power loss in related individuals  

We examined the relative power for scenario Families (Table 1) by varying the heritability parameter 
. The multiplier for Families is strictly lower than 1 at all values of heritability except extremeσ2

a γβ  
values of 0 and 1 (blue lines on Figure 1a-b). The amount of power loss also depends on the structure 
of the matrices  and . For example, the kinship matrix K for nuclear families with largerΣy Σw = K  
number of offspring leads to a greater loss, as  K becomes more dense (Supplementary Figure S6). 
Similarly in studies of related pairs, monozygotic twin pairs show the power loss up to 50%, while 
decrease in power for pairs of siblings or cousins is moderate (Supplementary Figure S7).  

The performance of multiplier for scenario Families is quantitatively described by formula in Equation 
(26), in which the trace operator is applied to product of two matrices  and . To gain anΣy

−1 Σw = K  
intuition about the power loss for Families, we depict the covariance matrices  and at = 0.5Σy Σw σ2

a  
(Figure 1c). Off-diagonal non-zero entries of  (the double kinship coefficient, 0.5) are always lowerΣw  
than matched off-diagonal entries of  (0.5*  < 0.5), that explains why the multiplier is smallerΣy σ2

a  
than one. 

Power gain by reducing residual variance 

We varied the amount of variance explained by grouping factor ( ) for scenario Unrelated+Groupingσf
2  

(Table 1) and observed the change in relative power.  In contrast to Families, the gain in power for 
Unrelated+Grouping compared to Unrelated is consistent and increases as more variance is explained 
(green lines on Figure 1a-b). The observed increasing trend trivially follows from Equations (26) and 
(28) if one considers the trace operation and takes into account that . Thus, havingr(Σ Σ )t y

−1
w Σw = I  

individuals genetically unrelated ( ) and explaining additional variance by a random effect isΣw = I  
equivalent to a reduction in residual variance by including covariates, for example, using dummy 
variables from the grouping factor in scenario Unrelated+Grouping.   

We further note that two scenarios Unrelated+Grouping and Unrelated+GRM (Table 1) are 
conceptually identical, because individuals are genetically unrelated. This implies that the observed 
trends on Figure 1 for Unrelated+Grouping are directly transferable to Unrelated+GRM. We confirmed 
this statement by simulations for Unrelated+GRM (Supplementary Material). 

Modest power gain by low-rank LMM in UK Biobank unrelated individuals 

Applying low-rank LMM to 336,348 UK Biobank unrelated individuals, we achieved a modest power 
gain with the maximum of 1.2x for height (Figure 2). Apart from boosting power, we revealed a high 
accuracy of our analytical multiplier  compared to the empirical multiplier . To get the true valueγβ γe  
of multiplier, we used the observed ratio of squared standard errors from LR and LMM tests (dark grey 
bars on Figure 2a but not on Figure 1b). We next compared the two multipliers  and  andγβ γe  
observed that  the multiplier  (red bars) accurately approximates the observed ratio (Figure 2a).γβ  
The empirical multiplier  (beige bars on Figure 2b but not on Figure 2a), which is based on ratios ofγe  
test statistics rather than standard errors,  consistently underestimates the same observed ratio for all 
six traits (Figure 2b). The downward bias of  is in agreement with our results on simulated data forγe  
Unrelated+GRM scenario (Supplementary Material). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 4, 2020. ; https://doi.org/10.1101/2019.12.15.877217doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.15.877217


 

 

 

 

Small power loss in UK Biobank related individuals  

We obtained estimates of the ESS multiplier for several groups of  UK Biobank related pairs:γβ  
monozygotic twins, parent-offspring, full siblings and second-degree relatives. All together for 68,910 
close relatives of up to the second degree, the maximum drop in the effective sample size 0.94 was 
observed at heritability = 0.54. Considering the impact of relatedness in the whole UK Biobankσ2

a  
sample, the multiplier 0.94 in related individuals is scaled to 0.99 in a combined sample of unrelated 
and related individuals. We also report minimum values of the multiplier stratified by groups of 
related pairs in Supplementary Table 2 and Supplementary Figure S8.  

Testing gene-environment interaction effect 

Power gain or loss depends on realized environmental exposure and variance 
components 

We explored the power gain for Families and Unrelated+Grouping scenarios over the baseline 
Unrelated when testing gene-environment interaction effect (Figure 3). The frequency of binary 
exposure was fixed to 0.6 for all three scenarios, but for Families we fixed the exposure status in such a 
way that two parents were unexposed and three offspring were exposed. Figure 3a-b shows that the 
ESS multiplier for Unrelated+Grouping and Families is always greater than 1 and increases as more 
variance is explained. This positive trend would remain for Unrelated+Grouping and Unrelated+GRM 
scenarios with other realizations of exposure, as the residual variance is simply reduced and 
individuals are unrelated. Contrary to Unrelated+Grouping and Unrelated+GRM, the power gain for 
Families was achieved through a particular realization of exposure and covariance matrices  andΣy  

, as shown on Figure 3c.Σv  

We next explored in more depth the relative power for Families as a function of exposure realization 
and interplay between covariance matrices  and (Figure 4). In particular, we considered allΣy Σv  
possible realizations of binary exposure within families and also varied the composition of variance 
components in  while fixing the total genetic variance, = 0.5. When theK K IΣy = σ2

a + σ2
ai I + σr

2 σ2
a + σ2

ai  
structure of is fully defined by the kinship matrix K ( , Figure 4, left panel), the multiplier isΣy σ2

ai = 0  
greater than 1.2 for all realizations of exposure and the most power gain 1.38 is achieved when all 
offspring are either exposed or unexposed. With increasing contribution of the environmental kinship 
matrix  into the structure of ( or = 0, Figure 4, middle and right panels), the multiplierK I Σy σ2

ai = σ2
a σ2

a  
is getting closer to 1 and stands below 1 at = 0. That occurs  because the covariance matrices σ2

a Σy  
and become similar in their structure that leads to power loss. This phenomenon is similar to theΣv  
analysis of Family scenario when testing marginal genetic effect (Figure 1, Supplementary Figures 
S6-8). 

 

Conclusions 

Linear mixed models are increasingly used in genome-wide association studies. While of great benefit, 
the inference of mixed model parameters are more computationally and analytically complex than for 
standard linear regression models. To address analytical complexities specific to power, we derived 
the formula for NCP of mixed-model association tests, which is  similar to NCP of linear regression 
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(proportional to the sample size and variance captured by genetic variant), but it also incorporates 
trait covariance and genetic relatedness matrices. We further introduced the ESS multiplier, defined 
as a ratio between NCPs of two tests,  and showed its performance in quantifying the relative power 
across common GWAS scenarios. 

Compared to related works9,11, we shifted the focus of our analysis from distribution of test statistics 
to distribution of standard errors of estimated effect sizes. While modeling distribution of statistics 
allows to distinguish confounding from polygenicity30 and informs partitioning of heritability6, errors 
terms are directly linked to the effective sample size and power. We covered common GWAS scenarios 
in our unified analytical framework, considering family-based studies as well as studies of unrelated 
individuals under association models with genetic or non-genetic random effects. Additionally, our 
analytical derivations were naturally extended to studies of gene-environment interactions.   

Improving power of detecting gene-environment interaction by optimization of family-based designs 
is an attractive research area17–19. We confirmed our hypothesis that study designs can be leveraged to 
increase power due to particular interplay between relatedness structure and realized environmental 
exposure. We showed a particular case of power gain in simulated nuclear families with exposed 
offspring and unexposed parents. These results suggest that exposures collected in cohorts with 
related individuals can be assessed in terms of gain or loss  in power before conducting actual GWAS 
screening of gene-environment interactions. 

There are still a number of methodological issues arising in GWAS that are also relevant to our work. 
Incomplete population stratification by PCs is documented for height in UK Biobank data analysis29,31, 
and our multiplier can be affected by this phenomenon through the covariance matrices used to 
calculate ESS. In our UK Biobank analysis we noticed small discrepancies between estimates of the 
multiplier and observed ratios of squared standard errors. Furthermore, if variance components are 
misspecified, the distribution of test statistics can be inflated making power analysis invalid, 
especially in studies of related individuals10. Also, we limited our analytical derivations to quantitative 
traits, and future work is warranted to extend our results to binary traits under the liability threshold 
model32–34.  

Overall, the proposed multiplier informs GWAS study designs in terms of power. Post-GWAS analyses 
need to consider reporting the effective sample size in summary statistics using our analytical form of 
multiplier. 
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Figures 

 

Figure 1: Relative power of detecting marginal genetic effect . (a) The ESS multiplier  is less β  γβ  
than one for Families and greater than one for Unrelated+Grouping compared to the baseline 
scenario Unrelated. The amount of variance explained by random effect ( or ) varies from σ2

a  σf
2  

0% to 100%. (b) The power of detecting increases with the sample size at different rates for β  
Unrelated, Families and Unrelated+Grouping. The random effect and genetic variant explain 
50% and 1% of trait variance, respectively. (c) The covariance matrices of trait and genetic 
variant  and ( used to compute ) are depicted when  50% of trait variance is explained Σy  Σw  γβ  
by random effect.     
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Figure 2: The analytical multiplier (red bars) is compared to empirical estimators based on γβ  
(a) ratios of squared standard errors and (b) ratios of squared test statistic. Association studies 
of six anthropometric traits are performed using LR and low-rank LMM in 336,347 UK Biobank 
unrelated individuals. Empirical estimators are computed using either all 1,000 variants 
selected for  low-rank LMM (dark grey bars) or a subset of 1,000 selected variants (significant in 
LMM, PLMM < 1×10 -5, and nominally significant in LR, P LR < 0.05) (beige bars). Heights of dark grey 
and beige bars represent mean values, while error bars range from 1st to 3rd quartiles. 
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Figure 3: Relative power of detecting gene-environment interaction effect . The frequency ofδ  
binary exposure is 0.6;  the exposure status is fixed for Families, unexposed two parents and 
exposed three offspring. (a) The ESS multiplier  is greater  than one for both Families and γδ  
Unrelated+Grouping compared to the baseline scenario Unrelated. The amount of variance 
explained by random effects ( +  or ) varies from 0% to 100%. (b) The power of σ2

a  σ2
ai  σf

2  
detecting increases with the sample size at different rates for Unrelated, Families andδ  
Unrelated+Grouping. The random effects and genetic variant explain 50% and 1% of trait 
variance, respectively. (c) The covariance matrices of trait and interaction variable  and ( Σy  Σv  
used to compute ) are depicted when  50% of trait variance is explained by random effects. γδ  
Colored gradient in entries of matrices denote quantitative differences for positive values, while 
grey-colored entries correspond to negative values. The ratio between  and is fixed to 0.1; σ2

ai  σ2
a  

both genetic and environmental variables also explain 1% of trait variance in addition to 1% of 
interaction variable. 
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Figure 4: Relative power of detecting gene-environment interaction effect in nuclear families δ  
under different simulation settings. The ESS multiplier  is analytically computed (i) for all γδ  
possible realizations of a binary exposure within a nuclear family with 2 parents and 3 offspring 
(dots in each panel) and (ii) for different ratios between  and  (three panels).  The amount σ2

ai  σ2
a  

of trait variance jointly explained by random effects  and is fixed to 50%. The largest two σ2
ai  σ2

a  
values of multiplier on left and middle  panels correspond to exposure realizations of exposed 
offspring/unexposed parents and exposed parents/unexposed offspring.  
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