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ABSTRACT 

Subtyping of tumor transcriptome expression profiles is a routine 

method used to distinguish tumor heterogeneity. Unsupervised 

clustering techniques are often combined with survival analysis to 

decipher the relationship between genes and the survival times of 

patients. However, the reproducibility of these subtyping based 

studies is poor. There are multiple reports which have conflicting 

subtype and gene-survival time relationship results. In this study, 

we introduce the issues underlying the lack of reproducibility in 

transcriptomic subtyping studies. This problem arises from the 

routine analysis of small cohorts (< 100 individuals) and use of 

biased traditional consensus clustering techniques. Our approach 

carefully combines multiple RNA-sequencing and microarray 

datasets, followed by subtyping via Monte-Carlo Consensus 

Clustering and creation of deep subtyping classifiers. This paper 

demonstrates an improved subtyping methodology by investigating 

pancreatic ductal adenocarcinoma. Importantly, our methodology 

identifies six biologically novel pancreatic ductal adenocarcinoma 

subtypes. Our approach also enables a degree of reproducibility, via 

our pancreatic ductal adenocarcinoma classifier PDACNet, which 

classical subtyping studies have failed to establish. 
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1 INTRODUCTION   

Subtyping of tumoral transcriptomic expression data is a key 

method in cancer informatics. These studies involve division of 

heterogeneous tumour populations into clinically and biologically 

distinct subtypes. Tumour tissues, from the same location, that 

appear morphological similar may have significantly different 

molecular features. This may attribute to variable responses to 

therapy and clinical outcomes. Once molecular subtypes of a cancer 

are defined, they can guide the use of therapies and treatment 

options, within trials and clinically.   

Tumoral subtypes are usually distinguished by employing 

unsupervised consensus clustering techniques on expression 

datasets. After clustering, these subtypes are typically biologically 

validated via Kaplan-Meier survival analysis. This infers how 

expression changes and analogous subtypes affect the treatments 

and progression of cancer.  

There are several gene expression based subtyping studies that 

cover a range of cancer types. However, a bottleneck here is the 

inconsistency between studies. Different cohorts and clustering 

techniques can produce very different subtyping results. Reports on 

the clustering of epithelial ovarian cancer have distinguished 4 to 6 

subtypes [2,12,29,32]. Similarly, colorectal cancer has been 

classified into 3 to 6 subtypes [10]. Pancreatic cancer has been 

considered to comprise of 2 to 6 subtypes [[1,3,5,21,34,38]]. 

With the multiple inconsistencies in consideration, the current 

framework of subtyping needs developing further. There are two 

main weaknesses in the majority of subtyping studies. These stem 

from the use of small cohorts (<100 samples) and the use of 

unsupervised consensus clustering techniques, usually non-

negative matrix factorisation (NMF), to distinguish subtypes. 

The issue with using small cohorts is that each subtype may only 

be made up of a few stable samples, meaning only a few samples 
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‘fit’ into the cluster. Sample stability is indicated by silhouette 

widths, these values are a measurement of how similar a sample is 

to its own cluster compared to other clusters. It is clear clusters 

made up of only a few samples with a silhouette width >0.5 (out of 

1) would not represent a population accurately. It is unlikely that 

analysing expression data of small cohorts will accurately 

distinguish rarer subtypes. Dieci et al’s study on breast cancer [4] 

demonstrated that rare subtypes of breast cancer exist with distinct 

molecular profiles and responses to treatment. It is clear that more 

comprehensive subtyping studies must be conducted in order to 

improve precision medicine treatment decisions.  

The main problem with traditional consensus clustering techniques 

is that they are prone to discovering false positives. In other words, 

they may indicate the incorrect number of clusters (K). The false 

positive issue rises from three main weaknesses. The first two 

weaknesses arise from issues of the clustering techniques. 

Traditional consensus clustering has an inability to reject the null 

hypothesis that K=1; and is subject to the inherent stability bias, 

defined as the tendency of cluster stability to increase as the number 

of clusters increases (and as the number of samples per cluster is 

reduced). The third issue originates from the RNA sequencing data 

itself. This sequencing data has a negative binomial distribution. 

Pacheco et al. [22] distinguished that negatively binomial 

distributed data can be classified into varying clusters of various 

sample sizes, and this dramatically alters performance on cluster-

level t-tests. The traditional clustering techniques will fail to 

account for the over-dispersion of RNA-seq expression data. For 

example, the popular NMF clustering technique has been reported 

to produce mixed results that deviate depending upon the starting 

point [8].  

Stemming from the traditional subtyping study design issues, there 

are reports on inconsistencies existing between studies. There is a 

challenge in reproducing clusters from the same datasets using 

different techniques. John et al., [40] displayed reproducibility 

issues in 5 cancer NMF based subtyping studies, using their novel 

clustering technique Monte Carlo Consensus Clustering (M3C).  

Despite these clear reproducibility issues, there have been no 

attempts to directly address them. There are three key 

improvements that can be implemented to remove the bottleneck of 

the current gene expression subtyping pipeline. The first is to 

increase the number of patients involved in each study, which 

should include incorporating multiple international cohorts and 

increasing the number of samples per cluster. The second is to 

perform a more robust subtyping method, which rejects the null 

hypothesis that K=1, and accounts for the inherent stability bias. 

The third is to build classifiers based upon the subtyping 

annotations, which to an extent would allow subtyping of ‘new’ 

samples being added to a cohort post clustering.  

In this study we employed our enhanced subtyping methodology 

on a pancreatic cancer dataset. Specifically, we focused on the 

pancreatic ductal adenocarcinomas (PDAC) subtype expression 

profiles, derived from tumor biopsies. 

We created the largest open source transcriptomic pancreatic ductal 

adenocarcinoma dataset to date (1013 patients) by combining open 

source microarray and RNA-Seq datasets (Table 1). This addresses 

one of the main challenges when subtyping small cohorts, sample 

bias. This is a clear problem with PDAC cohorts as 80% of 

individuals are diagnosed at late stages [17]. Small cohorts 

typically capture late stage PDAC, and as previously mentioned 

cannot form accurate and stable clusters. 

To distinguish subtypes, we employed John et al’s novel M3C 

algorithm [40]. This technique is an improvement from traditional 

clustering techniques as it both allows rejection of the null 

hypothesis that there is only one subtype and removes the inherent 

stability bias.  

As well as removing the small cohort issue and clustering problems, 

we performed the standard subtype clinical and biological 

validation. This was addressed via a Kaplan-Meier survival 

analysis and differential expression (DE) analysis.  

The last step was our novel use of subtype annotations to build a 

deep learning classifier PDACNet. The creation of tumoral subtype 

classifiers is ideal for reproducing subtyping results on other 

tumoral cohorts.  

2 METHODS  

We developed the largest open source transcriptomic pancreatic 

ductal adenocarcinoma dataset (section 2.1) and created a novel 

pipeline for gene expression subtyping (section 2.2).  

2.1 PDAC Dataset Creation 

To create this large data set of PDAC expression values, we 

gathered data from a variety of repositories. These repositories 

included the International Cancer Genome Consortium (ICGC, 

www.icgc.org), the Cancer Genome Atlas (TCGA, 

http://cancergenome.nih.gov/), and Pubmed’s Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). This dataset 

was created by combining 11 publicly available PDAC Microarray 

datasets, and 3 RNA-sequencing datasets derived from solid tumor 

biopsies (Table 1). The 11 publicly available Microarray datasets 

were merged by matching gene IDs and then batch corrected via 

ComBat [15], resulting in a dataset of 710 PDAC samples. The 

same technique was used for the 3 RNA-Sequencing datasets, 

forming a dataset of 303 samples. The RNA- Sequencing dataset 
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was then normalized to the Microarray dataset, using feature 

specific quantile normalization [6,7]. Principal Component 

Analysis (PCA) score plots and Scree Plots, for Microarray and 

RNA data set integration are in Appendix Figures 1 and 2. 

 

 

Table 1 Sources of data. All data used in this study 

2.2 Subtyping Pipeline  

The subtyping approach encompasses 4 key components. 1) 

Clustering with M3C, 2) Biological validation via Kaplan-Meier 

survival analysis, 3) Differential Expression and Gene Set 

Enrichment Analysis, 4) Subtype Classifier Creation. 

2.2.1 Clustering  

Detailed by John et al., (2018) [40], the improvements of the M3C 

algorithm are all based upon the use of Monte-Carlo simulations. 

These are used to create a reference matrix. In brief, the simulations 

run multiple PCAs, whereby a random scores matrix of the nth 

simulation is generated, and the eigenvector matrix is calculated. 

The simulated PCA random scores matrix and eigenvector matrix 

is then multiplied. These calculations are then repeated for the 

defined number of simulations. This results in a reference matrix 

that captures the associations between samples, but without the 

‘real’ clusters.   

 

This reference data set is then passed into the consensus clustering 

algorithm, as well as the original input data, and the two results are 

compared. The final output of M3C is essentially an improved 

consensus clustering result, that accounts for the null distribution 

(reference matrix).  

 

In short, clustering finds samples of similarity and places them into 

groups without any similarity overlap between groups. The 

consensus clustering combines resampling with clustering, and 

integrates all the results from the various runs, in one final cluster 

result.  

 

There are multiple different clustering and consensus clustering 

algorithms. The M3C algorithm calculates a novel metric, the 

Relative Cluster Stability Index (RCSI), obtained from real and 

simulated proportions of ambiguously clustered (PAC) scores. The 

RSCI provides a more accurate representation of stability across the 

distribution of K, as the inherent stability bias is accounted for (See 

Figures 1A and 1C). The p-values for each k value are derived by 

comparing the simulated reference consensus clustering results and 

the real results. If these p-values are significant, then the null 

hypothesis that K=1 (95% confidence interval) is rejected. In other 

words, unlike the typical consensus clustering methods, the M3C 

technique allows rejection of the hypothesis that there are no 

subtypes. In this study, M3C's default clustering loop was 

employed, partitioning around medoids (PAM) with Euclidean 

distance, with 100 iterations. 

2.2.2 Biological validation via Kaplan-Meier survival 

analysis 

Out of the expression cohort of 1013 individuals there were 303 

patients with corresponding clinical data available. The Kaplan–

Meier technique was employed, which calculates median survival 

(the shortest time at which the survival probability drops to 50% 

or lower) as described by Goel et al. [9], and the difference was 

tested using the log-rank test. P-values of less than 0.05 were 

considered statistically significant. This was conducted using the 

survival R package and plotted with the survminer package [31] . 

2.2.3 Differential Expression 

The differential expression analysis was conducted, comparing one 

subtype to all other subtypes. The limma package ‘lmFit’ [24] 

function was used to calculate the fold changes and p-values of all 

genes. These are calculated by employing multiple linear models, 

on log-transformed expression data, for each comparison. To 

conduct these comparisons, multiple least squares regressions were 

employed. These can compare each subtype versus all other 

subtypes. 

 

2.2.4 Subtype Classifier 

  

A deep learning subtype classifier was created to enable the subtype 

identification of ‘novel' PDAC expression samples. This classifier 

was built by employing the R version of the H2O package ‘autoML' 

function on the 500 most variable genes of the 1013 sample dataset. 

Reference  Number of 
Samples  

Source  

Microarray 

Collinson et al., [3] 27 Collinson 

Ishikawa et al., [13] 49 GSE1542 

Liadaki et al., [19] 39 GSE1571 

Sandhu et al., 
[25,26] 

49 GSE60980 

Janky et al., [14] 118 GSE62165 

Yang et al., [37] 69 GSE62452 

Moffit et al., [21] 145 GSE71729 

Guttman et al., [11] 80 GSE8591 

Lunardi., [20] 53 GSE55643 

Zhang et al.,  45 GSE28735 

Wood et al., [28] 36 GSE1615 

RNA 

TCGA 183 tcga (April 
2019) 

Bailey et al., [1] 69 Bailey et al  

Kirby et al., [15] 51 GSE79670 
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This dataset was randomly partitioned by 1/7th into training and 

test sets. The ‘autoML' function is used to create multiple models 

fully automatically. This technique was set to generate 100 

classification models, which included random forest models, 

XGBoost, deep learning, and stack ensemble models. The model 

with the lowest mean per class error rate (lowest average subtype 

identification error), a random grid search deep learning model, 

was selected as ‘PDACNet'. 

 

In brief, the deep learning subtype classifier is comprised of one 

hidden layer of 500 neurons that learns through the activation 

method known as rectifier with dropout (input dropout ratio = 0.15, 

output dropout ratio = 0.4), with hyperparameters optimised with 

random grid search (epochs = 46.44). For further details of the deep 

learning model, see PDACNet file available at the GitHub link in 

the Data Availability section.  

 

  

 

 

 

3 RESULTS 
The results derived from analysis of the large PDAC cohort of 1013 

patients. Principle Components Analyses Score and Scree plots 

(Appendix Figures 1 & 2). In Appendix Figures 1 and 2 there is an 

increase in variability in components 1 and 2, corresponding to the 

RNA sequencing and microarray data sets. 

 

3.1 M3C Identifies Six Clusters of PDAC 

  

We employed M3C on the dataset of 1013 patients, which resulted 

in 6 well-defined clusters.  

  

The PAC score plot (Figure 1A) displays a sharp spike at K=6, 

suggesting this is the optimal number of clusters. However, as with 

the CDF plot, the inherent stability bias can be seen here as it 

naturally tends towards lower values as K increases. Importantly, 

the traditional PAC score and Cophenetic coefficient plots cannot 

reject the null hypothesis K=1.  

  

The Cumulative Distribution Function (CDF) plot (Figure 1B), is a 

plot of the consensus matrices. The optimal value of K is the one 

with the flattest curve. Of note, in the CDF plot there is a noticeable 

bias of traditional consensus clustering techniques. This bias is 

based on the increase in stability as K increases for any given 

dataset.  

  

The M3C approach outputs a Relative Cluster Stability Index 

(RCSI), which accounts for both PAC scores and simulated 

reference PAC scores. The RSCI is an improved metric for 

determining optimal K as it eliminates the inherent stability bias. 

Figure 1 M3C Identification of 6 PDAC Clusters. A) PAC scores display a sharp downward spike at K=6. B) CDF plot shows 

flattening of the consensus index curve as K increases. C) RSCI shows a sharp upward spike at K=6.  D) Plot of the  P-values over 

K=0:10. 
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The RSCI peaked at K=6, confirming there are 6 clusters (Figure 

1C).  

  

As part of M3C analysis a beta p-value distribution is calculated. 

This is used to reject the null hypothesis that K=1. If none of the P-

values are significant over a logical distribution of K values, the 

null hypothesis is accepted. In this case, ranks 5:8 were of 

significance. The value of K=6 was accepted. A Pearson's 

correlation was employed to check that these 6 clusters were not 

unfairly biased to the initial data sets, we also identified which 

proportions of the 14 datasets/batches the 6 subtypes comprise of. 

Appendix: Figure 3 and Table 3). Out of the 1013, 1002 samples 

fitted into the 6 clusters. 

 

A direct comparison between the traditional NMF clustering 

technique and the M3C clustering technique was also employed on 

the pancreatic cancer cohorts from Collisson et al., [3] and Bailey 

et al., [1] (Appendix Figures 4 & 5). The PAC scores plots indicate 

that there are 3 and 4 clusters respectively, matching the results 

documents in their respective papers. However, for both studies, 

the RSCI metric would indicate that there are 4 and 8 clusters. 

Furthermore, the corresponding p-value distributions, with no 

significant values (>alpha=0.05), suggest that the clusters identified 

here are not particularly strong, hence the issues with 

reproducibility of these clusters. 

3.2 Clinical Validation of PDAC subtypes 

 

From the merged dataset of 1013 samples, there are 303 samples 

with corresponding clinical data. The subtype labels and associated 

overall survival information were used to perform survival 

analysis. Figure 2A shows the consensus matrix of the 6 distinct 

subtypes. Figure 2B, a heatmap of the 2000 most variable genes, 

displays distinct expression profiles for each subtype. Figure 2C is 

PCA score plot (Components 1 &2), of the six subtypes, whereby 

subtypes 5 and 6 have the most overlap. Figure 2D displays the 

Kaplan-Meier curves. While this was not significant, P-value= 

0.063, there is a clear trend that subtype/cluster 5 has the poorest 

survival outcome, and cluster 3 has the highest number of 

individuals at risk at time 0.  

Figure 2 Clinical Validation of PDAC subtypes. A) Consensus matrix for the 6 distinct subtypes. B) Heatmap of the 2000 most variable 

genes, displaying distinct expression profiles for each subtype. C) PCA score plot (Components 1 & 2) of the 6 subtypes, subtypes 5 

and 6 have the most overlap. D) Kaplan-Meier curves showing differing survival trends for the identified subtypes P-value= 0.063. 
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3.3 Functional Identification of PDA subtypes: 

Differential Expression and Literature Comparisons 

Differential expression analysis revealed distinct expression 

profiles for each subtype. Appendix Table 1 displays the 5 genes 

with the most significantly altered expression levels in each 

subtype. Full list of subtype specific genes is available at the 

GitHub link in the Data Availability section, as 

‘PDAC_Subtype_Specific_Genes.csv’). 

3.4 Subtype Classifier: Selection  

In this study, 100 machine learning-based classifiers were created. 

Importantly the goal of this component was to create a well-

performing subtype classifier without the need for expert parameter 

tuning knowledge. H2O's autoML function is one of the simplest 

ways to do this, the minimal required inputs of the function are; an 

input training and test set, with outcome variable defined. Out of 

the 100 classifiers, the classifier with the lowest mean per class 

error was selected to be further analysed (PDACNet). Notably the 

logarithmic loss result is greater than 1, this combined with the low 

mean per class error indicates that the model is highly confident 

about an incorrect subtype classification. Table 2 displays the 

results of the top 5 classifiers, ordered by the mean per class error. 

Appendix Table 2 displays the prediction errors when the 

PDACNet was applied on the test set, the partitioned 1/7th of the 

1002 samples that fitted into one of the 6 clustes . For full 

information regarding parameters of the deep learning model that 

has the lowest mean per class error, see the PDACNet file available 

at the GitHub link in the Data Availability section. The important 

takeaway here is that subtype classifiers can enable the subtype 

classification on ‘novel’ PDAC expression samples/cohorts that are 

outside of this study. This enables all the improvements from the 

information captured by the large cohort and application of M3C to 

be transferred over when trying to distinguish the subtypes of only 

a few samples. Applying a subtyping technique to a few samples or 

a small cohort would provide poorly clustered results.   

4 DISCUSSION 
This work describes an improved workflow for gene expression 

subtyping studies. This workflow includes rapid creation of 

expression datasets from both RNA-Sequencing and Microarray 

datasets. These large datasets can then be subtyped using M3C, 

which as previously mentioned removes the inherent stability bias 

and can disprove the null hypothesis that K=1. Biological and 

clinical validation can be employed by a) Distinguishing 

differentially expressed genes in each subtype, b) Distinguishing 

distinct survival times via survival-analysis. Lastly, classifier  

creation with subtype annotations is a novel way to mimic an 

unsupervised subtyping study on distinct datasets.  

 

 

4.1 Alternative Methods to Increase Cohort Size  

This study focused on a dataset of 1013 PDAC patients, whereby 

expression data was derived cancer tissue. However, there are 

multiple studies which have included expression values from tissue 

and other sources e.g. tumour derived cell lines. While this may 

increase the statistical power, and robustness, there are reports 

which indicate not all tumoral cell lines accurately represent solid 

tumours. This issue was first distinguished in a lung cancer 

subtyping study, whereby out of the 11 cell lines representing lung 

adenocarcinomas, none of them formed clusters with tumoral 

adenocarcinomas [33].   

 

Along the lines of including samples from other sources, other 

studies have focused on specific cancers, and not a specific type of 

histopathology. For example, Bailey et.al., [1] performed a 

subtyping study on six histopathological types of pancreatic cancer. 

This included: pancreatic adenocarcinomas, adenosquamus, acinar 

cell carcinoma, intraductal papillary mucinous neoplasm, and four 

other rare pancreatic tumours. However, as indicated by the 

silhouettes the sample with the highest stability in their cluster 1 

was Acinar cell carcinoma, and in cluster 3 was an adenosquamous 

carcinoma. Similarly, all 11 intraductal papillary neoplasms were 

unstable with silhouette widths < 0.1. It appears to identify subtypes 

accurately on one histopathological type at a time. Intentionally or 

unintentionally subtyping (through pathological identification 

errors) different histopathological tumours may also be 

contributing to the challenge of reproducing subtyping results. 

 

 

Table 2 The top 5 Subtype Classifiers. Ordered by the mean per 

class error. The top model is 

‘DeepLearning_Drid_Search_Model_1’ 

Model id Mean per 

Class error 

Log 

Loss  

Root mean 

standard error  

DeepLearning_Grid_S
earch_Model_1  

0.140 1.09 0.385  

DeepLearning_Grid_S

earch_Model_8  

0.146 1.52 0.380  

Stacked_Ensemble_ 

Best_Of_Family  

0.157 0.452 0.355 

Stacked_Ensemble_ 
All_Models  

0.161 0.526 0.404  

DeepLearning_Grid_S

earch_Model_8 

0.173186 1.03 0.390 
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4.2 Molecular Discussion of Subtypes 

 

Class 1 included AOX1, FLRT2, SLC1A2, GAMT and KCNJ5. 

AOX1 is known for being the precursor of a xenobiotic 

metabolising enzyme, and Sigruener et al., [28] has previously 

proven downregulation in pancreatic cancer, with its cellular 

functions revolving around lipid efflux and phagocytosis in 

hepatocytes. Expression of KCNJ5 has also previously been shown 

to be downregulated in PDAC compared to controls [30]. This gene 

is known of the potassium inwardly rectifying channel family.  

 
Interestingly, classes 2 and 3 appear to have the same 5 genes that 

have the most significantly altered expressions. In class 2 they are 

upregulated and in class 3 they are downregulated. GAMT which 

has altered expression in classes 1, 2, and 3 is known to be involved 

in p53-dependent apoptosis and is particularly important for cell 

apoptosis and survival under nutrient deficient conditions [39]. 

P2RX1 gene is the precursor of an ATP-gated nonselective ion 

channel [16]. NUCB2 has been reported to inhibit apoptosis of 

pancreatic cells. 

 
In class 4 EPB41L4B is the most significant gene, this plays a role 

in the proliferation of epithelial cells and matches reports of its 

downregulation in PDAC [35].  In class 5, the most differentially 

expressed gene AP1M2 has also been previously reported to be 

differentially expressed in PDAC stromal tissue [23]. 

 

A study by Zhao et al. [38] also identified 6 PDAC subtypes. 

Interestingly their gene expression analysis was not too dissimilar 

to this study. They displayed a subtype with carbohydrate 

metabolism gene expression alterations, such as ALDOB, CA2, 

NPC1L1 and PGC. Another subtype identified by Zhao et al, 

appeared to have more alterations in Cell proliferation and 

epithelium-associated genes, such as CCNB2, CDKN2A, SFN, 

UBE2C, SPRR3, DHRS9 and CRABP2. GREM1, MFAP5, 

COL12A1, COL10A1, COL8A1 and other collagen or ECM-

related genes. They also identified a subtype with Immune related 

genes alterations such as CCL, CCR7 and CD gene families. 

Neuroendocrine-associated genes such as PAX6, IAPP, G6PC2, 

ABCC8 and ZBTB16 are highly expressed in another subtype. 

Lastly, Zhao et al. identified a subtype with multiple gene alteration 

differences involved in lipid and protein metabolism CLPS, 

PLA2G1B, CEL, ALB, CPA1, CPB1, CTRL, SLC3A1, PRSS3 and 

ANPEP. Whilst Zhao’s study was rather comprehensive with their 

gene set enrichment analysis, the original differential expression 

was based upon inherent differences between subtypes, an 

alternative approach would compare subtypes to healthy controls. 

In this case comparing gene expression profiles here is a challenge 

and would require full data sets of expressed genes to be available. 

 

Overall, differential expression genes are to be expected all have 

either a function relating to increased cancer likelihood or be 

attributed dysfunctional pancreatic cells (e.g GAMT and its 

relationship with p53, and P2RX1 and its ion channel dysfunction).  

4.3 Overview   

 

To enable the use of our classification on new cohorts we made a 

subtyping classifier, based upon a large multi-centred dataset. 

Unlike traditional classification studies, whereby the typical aim is 

to discover a series of predictive biomarkers, the goal of the 

classifier creation was to: a) facilitate our subtyping of PDAC on 

novel cohorts, b) Develop a pipeline that could be easily applied on 

a different expression cohort, of a different cancer, in a matter of 

hours (hence no manual fine tuning of parameters in this case). 

Despite our creation of the multi-centred dataset and M3C results, 

RSCI and p-value for 6 clusters, it is still possible that the clusters 

do not fit all PDAC individuals. Hence the classifier could possibly 

misidentify rare PAC types. Ideally with the widening access of 

sequencing technologies, our study will be repeated with a larger 

cohort resembling the PDAC population more accurately. 

 

As well as advances in the amount of expression data available, 

there will likely be advances in available associated omics data. 

Expression data does not capture the effects tumoral mutations 

have on downstream functionality. In other words, a gene could be 

highly expressed but downstream non-functional. There are 

multiple data sources which could combine with mRNA-

expression data to improve subtyping information capacity. Kuijer 

et al., [18] suggested that somatic mutation-based subtyping can 

provide novel insights. Typically, clinical trials use single gene 

mutations as guidelines. Unique patterns of somatic mutation 

information combined with mRNA expression subtyping may 

provide an extra layer to identify individuals who will respond 

optimally (and individuals who will not respond) to certain 

treatments. The iCluster algorithm was built to identify novel 

subtypes by integrating DNA copy number changes and gene 

expression, which has distinguished novel subtypes in lung and 

breast cancer [27]. Notably iCluster has been applied to a cohort of 

363 pancreatic hepatocellular carcionmas[36], identifying 3 

subtypes. However, iCluster is based upon K-means clustering, 

which is also subject to the inherent stability bias. Perhaps, the 

addition of a reference matrix and Monte-carlo simulations to K-

means clustering could be an integral step in this case.  

5 CONCLUSION  

In conclusion, we have developed a novel approach to subtyping 

expression data. This includes the generation of large cohorts, use 

of M3C, DE analysis, and classifier creation. Importantly, our 

robust distinction of six PDAC subtypes has set a benchmark for 

future PDAC subtyping studies. This could be a foundation to 

discovering novel PDAC personalized therapies and improving 

survival time predictions.  
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MATERIAL & DATA AVAILABILITY:  

All data, including the 1013 patient cohort, relevant scripts and 

PDACNet is available at:  

https://github.com/KristoferLintonReid/Enhanced-Cancer-

Subtyping-  
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Figure 1 Combined RNA-Sequencing Data Score and Scree Plots (Components 1 &2). A) Score plot before ComBat bath correction. 

B) Scree Plot Pre-ComBat batch correction.  C) Score Plot of ComBat corrected RNA-Seq Data. D) Scree Plot of ComBat corrected 

data.  
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Figure 2 Combined Microarray Data Score and Scree Plots (Components 1 &2). A) Score plot before ComBat bath correction. B) Scree 

Plot Pre-ComBat batch correction.  C) Score Plot of ComBat corrected Microarray Data. D) Scree Plot of ComBat corrected data. 
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Figure 3 Pearson’s Correlation between batches and M3C distinguished clusters. t= -1.1188, p= 0.2635, cor= -

.003535712. There is slight negative correlation, however not significant.   
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logFC 

AveExpr 

(log) t P.Value adj.P.Val B 

CLASS 1 

AOX1 -0.2697102765 7.383402014 -24.71732052 1.05E-105 6.97E-102 230.3889938 

FLRT2 -0.2343510896 7.422330274 -23.15971162 2.18E-95 7.27E-92 206.7464655 

SLC1A2 -0.2736117953 7.197830691 -22.22002319 2.94E-89 5.22E-86 192.7045101 

GAMT -0.1698139592 7.439118734 -22.21577758 3.13E-89 5.22E-86 192.6414979 

KCNJ5 -0.2170978977 7.268332395 -21.5335573 7.79E-85 9.93E-82 182.5707715 

 

CLASS 2 

GAMT 0.139585 7.439119 21.22054 7.79E-83 5.20E-79 177.955 

P2RX1 0.200646 7.318828 20.76559 6.02E-80 2.01E-76 171.3457 

NUCB2 0.134035 7.564929 19.83386 4.11E-74 9.14E-71 157.9919 

RBPJL 0.240064 7.297063 19.44479 1.04E-71 1.73E-68 152.4936 

S100A6 -0.11722 7.674083 -19.4097 1.71E-71 2.28E-68 152.0004 

  

logFC*(-) 

     

CLASS 3 

GAMT -0.13959 7.439119 -21.2205 7.79E-83 5.20E-79 177.955 

P2RX1 -0.20065 7.318828 -20.7656 6.02E-80 2.01E-76 171.3457 

NUCB2 -0.13403 7.564929 -19.8339 4.11E-74 9.14E-71 157.9919 

RBPJL -0.24006 7.297063 -19.4448 1.04E-71 1.73E-68 152.4936 

S100A6 0.117216 7.674083 19.40973 1.71E-71 2.28E-68 152.0004 

 

CLASS 4 

EPB41L4B -0.19721 7.449825 -19.9049 1.49E-74 9.93E-71 158.9589 

RAB31 0.120711 7.595502 19.19366 3.60E-70 1.20E-66 148.9385 

CDH11 0.14974 7.544486 18.75932 1.57E-67 3.50E-64 142.9014 

NUCB2 -0.13217 7.564929 -17.9862 6.68E-63 1.11E-59 132.3218 

RBPJL -0.23903 7.297063 -17.8049 7.87E-62 1.05E-58 129.8736 

 

CLASS 5 

CPA2 -0.38955 7.48819 -22.2839 1.13E-89 7.55E-86 193.6168 

PLA2G1B -0.3834 7.50473 -22.0594 3.22E-88 1.07E-84 190.2892 

CTRB2 -0.30308 7.595823 -22.007 7.01E-88 1.56E-84 189.5151 

CEL -0.38869 7.446912 -21.8277 1.00E-86 1.68E-83 186.8672 

CUZD1 -0.34999 7.43262 -21.3858 6.87E-84 9.16E-81 180.3775 

 

CLASS 6 

AP1M2 -0.1625 7.441295 -20.5203 2.12E-78 1.41E-74 167.7724 

EPCAM -0.15343 7.670752 -20.1773 2.99E-76 9.99E-73 162.8536 

ATP1B1 -0.1353 7.716065 -19.1836 4.15E-70 9.21E-67 148.8091 

PLS1 -0.20998 7.52294 -19.0886 1.58E-69 2.63E-66 147.4828 

CDS1 -0.19613 7.441095 -18.9602 9.53E-69 1.27E-65 145.6956 

Table 1 Top 5 Significantly Differentiated Genes of Each Subtype.   
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 Class1 Class2 Class3 Class4 Class5 Class6 Error Rate 

Class1 36 0 3 0 8 1 0.25 12/48 

Class2 0 20 5 1 0 0 0.230769 6/26 

Class3 2 3 87 7 4 0 0.15534 16 / 103 

Class4 0 0 7 45 2 4 0.224138 13 / 58 

Class5 1 0 2 1 39 0 0.093023 4/43 

Class6 0 0 0 4 1 18 0.217391 5/23 

Totals 39 23 104 58 54 23 0.186047 56 / 301 

Table 2 Performance of the Top Classification Model. A total error of 0.186047, at a rate of 56/301. 

 

 

 

 

01. Class 1 has the highest error of 0.25 
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 Proportion of 

Batches in 

Class 1 (%)  

Proportion of 

Batches in 

Class 2 (%)  

Proportion of 

Batches in 

Class 3 (%)  

Proportion of 

Batches in 

Class 4 (%)  

Proportion of 

Batches in 

Class 5 (%)  

Proportion of 

Batches in 

Class 6 (%)  

Batch 1 0 1 5 4 2 0 

Batch 2 2 0 9 9 0 0 

Batch 3 2 6 3 2 3 12 

Batch 4 5 9 4 5 5 5 

Batch 5 12 13 12 12 13 8 

Batch 6 4 11 6 2 12 12 

Batch 7 20 16 12 12 15 17 

Batch 8 5 9 9 7 10 5 

Batch 9 6 5 5 8 5 3 

Batch 
10 

5 5 4 2 7 7 

Batch 
11 

5 4 2 5 5 1 

Batch 
12 

7 6 9 3 7 8 

Batch 
13 

21 16 16 19 16 17 

Batch 
14 

8 2 5 10 1 4 

Table 3 Proportion of batches in each subtype 
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Figure 4: M3C algorithm applied to the cohort form Bailey et al. [1]. A) PAC scores display a sharp upwards spike at K=3, and a slight arch at K=4. 

B) CDF plot shows flattening of the consensus index curve as K increases. C) RSCI shows a sharp downwards spike at K=4. D)Plot of the P-value 

distribution over a logical distribution of K values. Here, none of the ranks are significant.  
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Figure 5: Collisson’s Cohort M3C Results. M3C analysis applied to the cohort from Collisson et al., [2]. A) PAC scores display a sharp 

upwards spike at K=3, and a slight arch at K=4. B) CDF plot shows flattening of the consensus index curve at K increases. C) RSCI shows 

a sharp downwards spike at K= 4 and 7, with arching between K=5:8. D) Plot of the P-values over a logical distribution of K values. None 

of the ranks were above the significance threshold.   
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