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Abstract    
Direct sampling of building wastewater has the potential to enable “precision public health”             
observations and interventions. Temporal sampling offers additional dynamic information that          
can be used to increase the informational content of individual metabolic “features”, but few              
studies have focused on high-resolution sampling. Here, we sampled three spatially close            
buildings, revealing individual metabolomics features, retention time (rt) and mass-to-charge          
ratio (mz) pairs, that often possess similar stationary statistical properties, as expected from             
aggregate sampling. However, the temporal profiles of features—providing orthogonal         
information to physicochemical properties—illustrate that many possess significantly different         
feature temporal dynamics (fTDs) across buildings, with rapid and unpredictable deviations from            
the mean. Internal to a building, numerous and seemingly unrelated features, with mz and rt               
differences up to hundreds of Daltons and seconds, display highly correlated fTDs, suggesting             
non-obvious feature relationships. Data-driven building classification achieves high sensitivity         
and specificity, and extracts building-identifying features with unique dynamics. Analysis of           
fTDs from many short-duration samples allows for tailored community monitoring with           
applicability in public health studies.  
 
Wastewater sampling presents a means to monitor the general health 1, chemical exposure2,3, and             
size4 of a population in a rapid and noninvasive manner. Many studies have been performed at                
wastewater treatment plants (WWTPs), as these sites are relatively easy to sample, and yield              
aggregate information on large populations, e.g. from an entire city2. As an example of the               
correlations that can be captured by such studies, an increase in antipsychotics, antidepressants             
and other therapeutic drugs was observed in wastewater between 2010 and 2014 in Athens,              
Greece during a time of significant economic turmoil in the country5. Given the proper sampling               
and analysis methods, wastewater can provide meaningful, community-specific public health          
information. 

Most wastewater epidemiology and metabolomics studies have focused on the aggregate           
chemical load on large populations, typically using targeted metabolomics to acquire highly            
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sensitive, context-specific information about select small molecules present at WWTPs. City-           
and country-wide studies have focused on monitoring licit 5,6 and illicit drugs 7–9, including sports             
doping agents10,11, and have used these results to estimate public drug consumption 12. Targeted             
applications have ranged from monitoring stress-related molecules 13, plasticizers3,14, and         
pesticides2 to metabolites associated with alcohol 15 and tobacco 16; general population          
biomarkers17; and the environmental release of pharmaceuticals 18. In addition to chemical           
identification, wastewater metabolomics can also be used to estimate population size19,20.           
However, aggregate analysis of large populations potentially misses public health-relevant          
information on temporal dynamics and sub-population characteristics.  

There are multiple ways to incorporate temporal information in wastewater metabolomics           
that depend on sampling methods and location. One common route is to collect many composite               
samples, often over 24 hours, via extended continuous sampling 4,21,22. This route is logistically             
easier, as it only requires a single site. However, the temporal component provides an averaged               
signal, even with multiple single day composite samples. An alternative is to perform             
close-to-source, periodic grab sampling or short continuous sampling without combination 23. The           
second route often requires multiple locations and high sampling frequency (hourly to daily or              
near-daily), necessitating a large number of samples. Extensive sampling is required to alleviate             
the problem of signal noise and stochasticity associated with short sampling of small             
populations. However, a significant benefit of this approach is that it provides a precise temporal               
snapshot of the molecules present at a given time and, with longitudinal samples, temporal              
dynamics with minimal signal averaging. This sampling may provide information on individual            
contributions to community wastewater, and when compositional shifts or chemical exposure           
events occur.  

We conducted a multi-month, untargeted metabolomics analysis of wastewater from          
three individual buildings to understand the information contained in high temporal resolution            
sampling of small populations. To study the temporal resolution needed to characterize a small              
population, we performed near-daily sampling for one month, followed by roughly biweekly            
sampling over two months from a multipurpose-use building (Building 1) and two residential             
buildings (Buildings 2 and 3). While through-time statistical values (mean intensities) of the             
features showed minimal differences between buildings, analysis of feature temporal dynamics           
(fTDs) uncovered extensive differences. Temporal feature clustering and modeling, internal to           
each building, revealed numerous groups of shared fTDs that often displayed random but large              
intensity fluctuations. These dynamics would likely be unobserved or averaged out using            
alternative sampling approaches. Similarity of fTDs suggested links from putative metabolites to            
unknowns as well as between features with drastically different mz and rt values, both within and                
across buildings. To extract additional building-distinguishing information, we trained         
interpretable machine learning (ML) models using daily feature profiles. Extending and           
generalizing our analysis methods, we found additional fTDs that correlated with those of select              
putative molecules, suggesting features for follow-up analysis.  
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Results 
1. Traditional statistical approaches do not capture the full temporal differences between            
buildings 
Feature summary statistics (mean and standard deviation through time of feature ion intensities)             
provide a simple method to conceptualize and coarsely categorize feature stability. This            
stratification allows one to triage the features according to the research question of interest.              
Using this approach, we identified stable and unstable features that were generally similar             
between buildings. Further subcategorization and analysis of the unstable features revealed           
unique day-to-day dynamics, suggesting that summary statistics do not fully capture temporal            
dynamics that are essential components of a small population’s wastewater metabolome. 
 
1.1. Longitudinal multi-month sampling allows for temporal variation-based feature grouping 
We observed two distinct groups of features during multi-month sampling of three spatially close              
buildings: temporally stable, and temporally unstable. Sampling occurred over three months,           
with the most dense sampling (multiple times per week) occurring in the first 3 weeks, followed                
by sampling approximately 1–2 times per week for the remainder of the period (Figure 1A).               
Liquid chromatography mass spectrometry (LCMS) produced 1440 features, only days for which            
LCMS data from all three buildings was available were used in subsequent analysis. The features               
were separated by through-time standard deviation; values < 3 were considered stable, and ≥ 3,               
unstable. The majority of stable features were stable in all three buildings (61% of              
features—Figure 1B). Similarly, though to a lesser extent, 40% unstable features were unstable             
across buildings, but larger fractions were uniquely unstable in one or two buildings (Figure 1B).               
A fraction of features were putatively identified at minimum reporting standard24 levels 2 or 3,               
while most were unidentified (level 4, see Methods for definitions). 

Untargeted metabolomics revealed numerous putative human and human-associated        
small molecules, both in the stable and unstable categories, that displayed a range of              
through-time mean intensities, standard deviations, and building-to-building variability. We         
observed several chemicals and common metabolic products of human activity, including           
metabolites from caffeine metabolism (xanthine-based metabolites 25), dietary tryptophan        
processing (indoxyl sulfate26) as well as expected urinary metabolites (urate27,          
phenylacetylglutamine28, and 2-hydroxyethanesulfonate 29—Figure 1C). The majority of these        
metabolites were stable in all three buildings, with the exception of indoxyl sulfate, which was               
unstable across all three buildings. Putative drug-related metabolites displayed increased feature           
instability and primarily consisted of acetaminophen metabolites plus possible drugs for restless            
leg syndrome (ropinirole) and low blood pressure (midodrine). Putative artificial sweeteners           
(acesulfame and saccharin) appeared stable across the three buildings, but chemicals naturally            
found in humans as well as in many health and cosmetic products (pantothenate (vitamin B5)               
and its precursor pantothenol—Figure 1C) displayed high variability. A large number of the             
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drug- and cosmetic-related features appeared unstable in many buildings, particularly in Building            
1.  

Through-time statistical analysis suggested that individual features often appeared at          
similar mean intensities for all three building-to-building comparisons—especially the stable          
features. Linear relationships were observed for feature intensity comparisons between all           
buildings (R=0.94, 0.89 and 0.95 for the Building 1-to-2, 1-to-3 and 2-to-3 comparisons,             
respectively—Figure 1D). While the high correlations were calculated using all features, the            
unstable features were more dispersed, and minimally correlated, between buildings. Assuming           
consistent ionization across samples, this suggests that many features exist at comparable            
average concentrations in buildings with different populations.  
 
1.2. Few temporally stable features are statistically different between buildings 
Only 16 stable features were present at significantly different mean levels between the three              
buildings (false discovery rate, FDR, corrected Kruskal-Wallis, KW, P-value < 0.00001).           
Relative to Building 1, the majority of features appeared at lower mean intensities in Building 3,                
while those in Building 2 appeared at higher levels (Figure 2A). Of the 16 significant features, 13                 
were observed at higher levels in Buildings 2 and 3 relative to Building 1, in contrast to the                  
general feature trends (Figure 2B). Unlike manually searching for specific metabolite types,            
statistical analysis found the urine metabolite 2-hydroxyethanesulfonate and sweetener saccharin          
among the handful of significant features (Figure 2C). Few commonalities were observed            
between these features as they appeared across a wide range of mz, rt, and intensity values from                 
less than five to near 25.  
 
1.3. Unstable features can be further split into three dynamics-based classes 
Temporal analysis of the unstable features suggested three general temporal profiles, providing a             
more fine-grained classification, and a means for conceptualizing their dynamics (Figure 2D,            
Table S3). Class 1 contained features with a through-time median intensity less than five, with               
random spikes to higher intensity values. This class included metabolites that are typically             
observed at low levels in wastewater, but that are occasionally present at high levels. Class 2                
unstable metabolites possessed high through-time intensity levels, and at least one, often            
unpredictable, spike that surpassed the largest ion intensity in all the stable features (≳ 26). Class                
2 not only possessed allantoin, but also putative glycine conjugated cholic acids (Figure 2D,              
middle panels). Class 3 was comprised of features possessing mid-level log intensities with             
occasional, unpredictable dips in intensity to a (near) zero value. Representative examples of this              
class included indoxyl sulfate and fatty acyl (butyl) carnitines (Figure 2D, right panels).             
Temporal analysis departs from using solely through-time statistical parameters to describe a            
time-series; using only three simple groups of feature temporal dynamics (fTDs) highlighted            
significantly different profiles—this prompted a more comprehensive dynamics analysis. 
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2. Characterizing and modeling the dynamics of individual buildings with clustered fTDs 
Temporal analysis supplied a more nuanced view of the features, and thus buildings, than binary               
stability types. Unsupervised clustering revealed a large diversity of dynamics in a community’s             
wastewater metabolome. Two modeling approaches illuminated the importance of using many           
short-duration samples to capture rapid fluctuations and a community’s chemical output at a             
given time. Fitting clusters with a Gaussian process (GP) suggested that time points supplied              
little information on each other. In addition, theoretical waste mixing showed substantial            
decreases in feature intensity dynamics when only a small number of additional waste streams              
were combined.  
Differences between buildings were further highlighted by focusing on the temporal profiles of             
putative classes of molecules related to metabolism and lifestyle.  
 
2.1. Clustering fTDs uncovers groups of features with highly similar temporal dynamics 
K-means clustering of individual building features displayed several prominent families that           
differed between buildings. One hundred clusters were used to group z-normalized features,            
providing highly similar intracluster dynamics, mostly within the range of -1 to 1 (Figure 3A).               
The high temporal sampling revealed that many clusters exhibited sudden, single-day spikes or             
drops in intensity (Figure 3A, dark blue and red regions). Additionally, many days displayed              
cross-cluster intensity correlations; for example in Building 1, on October 6th the top 8 clusters               
showed similar intensities, and on Saturday, December 16th the majority of clusters demonstrated             
a general drop in intensity for many features. When comparing across the three buildings, no               
obvious trends were observed in terms of mean cluster dynamics, which varied between             
buildings. The majority of clusters in all buildings were composed of features spanning a large               
range of mz and rt values (Figure 3A purple and green columns). Additionally, a relatively small                
number of temporal profiles (~50 clusters) accounted for 74–81% of the buildings’ features             
(Figure S1).  

GP cluster modeling displayed minimal day-to-day predictive power, and rapid reversion           
following large deviations from the mean. As a previous 24-hour metabolomics analysis23            
demonstrated strong diurnal patterns in wastewater, we used a small length scale parameter for              
the GP. Using a conservative 3-hour length scale, information decayed rapidly, providing no             
day-to-day predictive power. With this length scale, the GP models showed a rapid             
mean-reverting tendency following large perturbations, accompanied by increased predictive         
uncertainty (Figure 3B). GP modeling demonstrated the importance of high-frequency sampling           
and indicated that the biweekly sampling likely missed significant wastewater dynamics.  
 
2.2. Theoretical waste stream mixing suggests dynamics are lost with a small number of              
additional sources 
The rapid and unique fluctuations observed in single-building, 3-hour samples were lost under             
simulations of slightly longer sampling periods, or upon combination with relatively few            
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additional wastewater sources. We combined and clustered the data from the three buildings with              
a desired number of modeled waste streams, with each cluster fit by a GP (see Methods).                
Repeating this protocol with different numbers of combined waste streams suggested that major             
cluster dynamics are dampened when as few as tens of waste streams are combined, and lost                
with more than 50 (Figure 4). GP modeling of the combined data suggested that the GP                
uncertainty rapidly drops as additional waste streams are mixed. Under our modeling            
assumptions, features will be found at their expected values with high probability and minimal              
day-to-day variation (Figure 4A–E). To measure how the differences between clusters decrease            
with additional waste streams, we calculated the summed all-to-all cluster mean Euclidean            
distance. This demonstrated that cluster differences are effectively lost when waste from 50–100             
sources is merged (Figure 4F). Molecules that are rarely observed or that come from a small                
number of sources may still display significant dynamics; however, the majority of features will              
generally be observed at statistical averages. This underscores the importance of short, upstream             
collection to obtain relevant public health information.  
  
2.3. Frequent sampling allows for tracking dynamics of human-related metabolite groups 
The three buildings displayed different dynamics for specific human metabolic and           
health-related putative metabolite classes. Metabolite groups studied included        
glucuronide-modified compounds30, caffeine-related metabolites 25, biologically modified      
acetaminophen31, along with glucoside conjugated molecules (Figure 5, Figure S2, and Table S4             
for full names). These human-associated putative groups, possessed diverse temporal dynamics           
in each group and building. For instance, many of the features showed large changes across               
buildings; however, the days on which the specific dynamics occurred differed for each given              
putative metabolite. Within each building, select putative metabolites from each group displayed            
similar temporal dynamics, perhaps due to similar biochemical processing (e.g. different           
metabolites of acetaminophen). However, not all temporal profiles in a group were always             
similar, for instance the October levels of many glucuronides and caffeine metabolites displayed             
pronounced differences. While the ability to identify additional features is required for larger,             
targeted chemical tracking, this analysis highlighted the potential of high-frequency wastewater           
sampling to monitoring groups of health and lifestyle-related compounds. 
 
3. Dense temporal data draws new feature correlations 
Analyzing individual fTDs within and between buildings allows comparison of          
building-to-building similarity or lack thereof. To do so requires calculating feature similarities            
using through-time distance measurements. These measurements reveal feature correlations,         
something not necessarily possible with single time point measurements.  
 
3.1. Different buildings show few similar fTDs while many are correlated within a building  
A large number of highly similar fTDs were observed internal to buildings but almost no               
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similarities were observed between buildings. To study the similarity between z-normalized time            
series, we analysed a set of time series at different Euclidean distances (Figure 6A). This led us                 
to set two similarity cutoff thresholds; 1.5 for high stringency and 2.82 for low stringency. A                
histogram of distances between all time series (an all-to-all comparison), displayed an increased             
number of similar time series within each building, while between buildings there were few              
similar time series up to a Euclidean distance of ~2.5 (Figure 6B). The high intrabuilding zero-                
distance bin primarily corresponded to distances calculated between a feature and itself, plus a              
small number of very similar features. For the different comparisons, the majority of similar time               
series belonged to pairs in which both features had high average intensities; few belonged to               
pairs in which one feature had low average intensity, possibly due to instrumental noise (Figure               
S3 and S4). This observation suggested that high similarity between fTDs did not arise from               
comparisons to normalized background or noise features.  

Further analysis on the large number of similar fTDs within a building, revealed that              
many of the feature pairs (at the high stringency cutoff) possessed large differences in mz and rt                 
(Figure 6C, Figure S5A for complete range). A 2-D histogram of only those feature pairs that                
differed by at least 30 s in rt showed that many of the shared temporal dynamics differed by                  
30–100 s and 0–100 Da. A large number of feature pairs corresponded to mz and rt differences                 
much greater than 100 s and 100 Da; overall, feature similarities were observed across the full                
mz and rt domains (Figure S5A). A comparable, but more populated, 2-D histogram was              
obtained with the low stringency similarity cutoff (Figure S5B and C).  

The distance between a feature and its corresponding feature across buildings (a            
one-to-one comparison) demonstrated that only a few features (36, 27 or 45) possessed similar              
temporal dynamics between buildings, even at the more inclusive low stringency cutoff (Figure             
6D). This analysis revealed that the majority of features displayed markedly different temporal             
dynamics, as the median distance was larger than five for each comparison.  

 
4.  Machine learning classifies buildings and finds building-specific features dynamics 
Orthogonal to the approach of section 3, the complete feature profile of a single day provides a                 
means for isolating community-specific feature information. Using an alternative objective—in          
this case, robust, across-day building classification—with simple machine learning models, it is            
possible to extract features with unique building-to-building temporal patterns.  

 
4.1. Single day feature profiles allow for building classification and find building-specific fTDs 
L1-regularized logistic regression (L1-LR) and random forest (RF) models provided high           
classification performance and revealed building-differentiating features. We used a         
one-versus-the-rest approach for model training, for which each input corresponded to all feature             
values from a single day. Importantly, we used standardized log-transformed features intensities,            
not temporal z-normalized values. Receiver operating characteristic (ROC) area under the curve            
(AUC) analysis demonstrated high building classification AUC for all three comparisons with            
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L1-LR models (0.934 ± 0.068 mean and standard deviation of 50-fold repeated model training,              
Figure 7A). The RF model performed slightly worse (AUC=0.893 ± 0.075, Figure S6), but              
provided additional insight from the set of features used.  

Features that were used in at least 40 of the independent L1-LR models and that               
possessed an average importance value greater than 0.005 across all 50 RF models demonstrated              
unique building dynamics. Four such feature time series are depicted in Figure 7B, of which               
three were highlighted by alternative methods (2-hydroxyethanesulfonate, pantothenol and         
ropinirole). The urine-related metabolite 2-hydroxyethanesulfonate and pantothenol both        
displayed lower ion intensity levels in the multipurpose-use Building 1 than in the residential              
buildings; similarly 6-keto-decanoylcarnitine, a urine metabolite used in non-muscle invasive          
bladder cancer diagnostic models32, was mostly absent in Building 1 but appeared at high levels               
in the other two (Figure 7B). Beyond these four, many of the important metabolites were either                
stable and statistically significant between buildings, or possessed alternative unstable metabolite           
class labels (Tables S5 and S6). This minimally biased data-driven modeling, largely            
recapitulated the findings of traditional statistical and temporal analyses, and discovered           
additional building-unique metabolite dynamics.  
 
5. Grouping temporally similar features suggests targets for follow-up studies 
We extracted additional features that were temporally related to the set of metabolites identified              
by our analyses. We grouped features temporally similar to each of the select metabolites for all                
three buildings, and analysed between-building, feature-pair cluster co-occurrences. This directly          
suggested features, and possibly hypotheses, for specific follow-up experiments, and may           
comment on shared controlling processes (chemical, biological, etc.) that govern feature           
dynamics.  
 
5.1 Intrabuilding temporal similarity and interbuilding co-clustering link possibly unrelated          
features 
Analyzing the ‘important features’ (IFs, Tables S2-5) highlighted by our methods, we found that              
there were numerous, likely unrelated features within buildings that were highly correlated to the              
IFs. The IFs included the ML model features, putatively named metabolite groups, select             
unstable features, statistically significant stable features, and the urine, drug, sweetener, and            
cosmetics-related features. Metric multidimensional scaling (MDS) of the groups of features           
sharing fTDs with the IFs showed varying levels of clustering and co-clustering (Figure 8).              
Because many features were shared among multiple clusters, but only assigned to the largest,              
many groups displayed overlap in this two-dimensional space. Similar to other methods, MDS             
revealed that many features and putative metabolites with significantly different mz and rt values              
grouped with some of the most prominent IFs, many of which are believed to be human-related                
(Figure 8D). The clusters suggested unknown features that may originate from the same source,              
for which additional analysis is needed for identification.  
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Between buildings we observed many co-clustered sets of features, despite most           
co-clustered features possessing different dynamics in each building. Using the intrabuilding           
K-means clusters, we found intersecting sets of features between pairs of buildings as well as               
between all three buildings (Figure S7). Again, this revealed groups of features with significantly              
different mz and rt values and that co-clustered in either two or all three buildings. The                
co-clustering of specific feature groups across buildings, despite building-specific temporal          
dynamics (Figure 6D), lends additional credence to the observed associations. Co-clustering           
across buildings, along with MDS analysis, highlighted numerous correlations between          
seemingly unrelated features, suggesting specific compounds or unidentified mz and rt pairs for             
follow-up analysis. Thus fTD analysis may further our understanding of specific chemicals (e.g.             
pesticides or drugs) by suggesting other small molecules that would otherwise appear unrelated,             
but that may have been introduced into the waste stream by similar controlling processes. 
 
Discussion     
Previous temporal studies of wastewater metabolomics have examined seasonal variation 33 or           
larger, aggregated populations at multiple time scales (often 24-hour aggregates), using           
downstream wastewater treatment plant (WWTP) sampling 16,34–36. Here, we demonstrated the          
utility of short duration, high frequency (daily) direct building sampling to understand            
through-time statistical properties, individual feature temporal dynamics (fTDs), and clusters of           
temporally related features of single-building wastewater. Adding this temporal component,          
without significant wastewater aggregation, may benefit future wastewater metabolomics studies          
by revealing community-specific metabolite dynamics and the daily burden of environmental           
pollutants, drugs, or lifestyle-related small molecules. Longitudinal sampling uncovered highly          
dynamic and unique building profiles that would be lost with WWTP-based sampling 23 or by              
sampling over longer time periods. Along with building-specific information, we presented a            
series of methodological techniques that provide orthogonal and overlapping information for the            
analysis of longitudinal untargeted wastewater metabolomics. We highlight several main          
findings: the importance of temporal data collection, the utility of untargeted metabolomics for             
community monitoring, data-driven methods for information extraction, and the importance of           
direct, building sampling. 

Temporal data acquisition, in combination with clustered feature modeling and time           
series comparisons, provides information not available from stationary statistical properties          
alone. fTDs show that features may possess similar through-time mean intensities in different             
buildings, but with different temporal dynamics. These building-specific fluctuations may          
provide information on health-related events, given additional chemical identification. In light of            
the high level of feature spiking and subsequent rapid mean reversion, it is likely that this study                 
was not sampled at a high enough frequency for much of its duration. As expected due to                 
different individuals generating waste within and across days, autocorrelation drops rapidly           
(even with a time lag of one) for the five largest clusters in each building, indicating minimal                 
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information transfer between time points and in line with the results of the Gaussian process               
modeling (Figure S8). Frequent sampling may help explain select feature dynamics. For            
example, recreational drugs may be used at higher frequency on weekends rather than weekdays;              
thus, one might expect higher intensities on weekends. This suggests that future studies should              
sample daily and—in certain circumstances—multiple times per day, requiring additional device           
engineering for fully automated sampling, unlike the current manual process. Finally, the            
importance of short, high-frequency sampling can be seen in our theoretical waste stream mixing              
analysis, which suggested that much of the dynamics information is lost with the addition of only                
a few additional waste streams.  

An unanticipated finding from this temporal analysis was that numerous features display            
highly similar temporal dynamics within buildings. While many of these feature pairs correspond             
to different adducts or isotopes, a large number appear to be attributable to different metabolites,               
as their masses and retention times can differ by hundreds of Daltons and seconds (Figures 6C, 8                 
and Figure S7). Specifically, focusing on highly correlated fTDs offers a means to discover new               
molecules (or features) linked to other molecules, events, or processes with known sets of              
features. Whether or not all of these features correspond to real metabolites, this information is               
readily supplied by fTDs and suggests perhaps non-obvious connections. In short, this approach             
may act as a hypothesis-generating method while also providing information about daily            
metabolite usage or exposure.  

Untargeted metabolomics represents an information-rich method to monitor a         
community’s health and behavior. We putatively identified a host of human-related metabolites,            
most notably related to drugs, cosmetics, and food. For these, we observed that many features               
displayed similar intensities through time, but that their stability was frequently different across             
buildings. This unexpected observation of correlation between features’ mean intensities          
between buildings resulted in only a small handful being statistically significant. Yet this small              
number appeared to provide important, building-specific information (Figure 2C). Further, the           
buildings displayed a general trend in terms of overall intensity levels, with most intensities              
being higher in Building 2 than Building 1, and most in Building 1 being higher than those in                  
Building 3 (Figure 2A)—likely reflecting the number of individuals using the toilet during the              
sampling period. While providing the potential for significant public health information, this            
method is limited by the ability to chemically identify each of the features observed. In addition,                
the use of only a single MS ionization mode and LC column type prevented a more complete                 
report on the small molecule output of the buildings. These limitations warrant additional studies              
to expand feature-to-metabolite naming along with the use of select standards to validate putative              
metabolites.  

A data-driven approach, based on classifying buildings using the features of a single day,              
recovers many of the features identified as important in other types of analysis, but also provides                
additional metabolites and features for follow up. Importantly, it extracts information relevant to             
each of the buildings in a minimally biased manner. The machine learning (ML) models we used                
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found features in a manner complementary to the other presented methods, and demonstrate that              
it is possible to classify which building generated a specific, single-day waste profile. In addition               
to finding most of the 16 statistically significant features, the models also found features that               
belong to multiple classes of metabolite dynamics. For instance, 6-keto-decanoylcarnitine was           
important for building classification and was found to be unstable in Buildings 1 (class 1) and 2                 
(class 3), but stable in Building 3 (Tables S5 and S6). Our methods suggest a workflow for future                  
temporal studies with the specific aim of public health monitoring. For instance, given data from               
well characterized control buildings and a new building of interest, using ML models and fTD               
clustering may help identify and track the dynamics of compounds in target communities. 

Although direct building sampling was not the specific focus of this study, it was critical               
for this work, and our findings support the applicability of this technique for community-specific              
wastewater epidemiology. Most small-population studies have focused on targeted methods for           
measuring various drugs, with minimal temporal information 10,37. Our recent 24-hour study           
likewise demonstrated the utility of upstream sampling, but of larger populations23.           
Single-building sampling minimizes the amount of time—and thus sample         
degradation—between sample generation and collection. This may address a potential source of            
uncertainty and error in WWTP-based measurements of population size or monitoring of illicit             
drug consumption38–41. Likewise, direct building sampling bypasses the issue of wastewater           
mixing or of occasional septage pumping into WWTPs, which may obfuscate fTDs or bias              
monitoring 1. Thus, applications of the presented sampling method may include estimating           
population sizes and per capita feature values, and monitoring sporadic features. 

High frequency, close-to-source sampling may, however, pose an ethical quandary. As            
the size of the population decreases, so does the anonymity of the results. For this reason,                
community-specific research must be conducted in such a way that personal health information             
remains confidential, and minimal negative consequences are experienced by the community           
under study42.  

  
Conclusion 
Understanding and monitoring community health is a challenging but important problem for            
which longitudinal, untargeted metabolomics of single-building wastewater may prove         
beneficial. We demonstrate several methods to analyze such temporally resolved measurements,           
including through-time statistical properties, comparing feature temporal dynamics (fTDs) via          
Euclidean distance-based similarity metrics, and machine-learning modeling for feature         
extraction. Temporal analysis commonly shows that features undergo unpredictable and dramatic           
dynamics. We find that proximal buildings do not share common fTDs, while in contrast, a large                
number of similar features are found within each building. We putatively identify and track the               
dynamics of small molecules, compare them between buildings, and propose numerous links            
between features and metabolites that differ significantly in retention time and mass-to-charge            
ratio. These observations suggest that longitudinal studies, using daily sampling, can provide            
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insight beyond the statistical averaging inherent to bulk wastewater sampling. We suggest that             
even higher frequency sampling, using additional analytical techniques, will only further           
improve our ability to provide important and actionable community-specific public health           
information.  
 
Methods    
Sample collection 
Samples were collected from street-level manholes located outside of three buildings: one            
multipurpose-use building (Building 1), and two residential buildings (Buildings 2 and 3). We             
used a commercial peristaltic pump (Boxer) to continuously collect wastewater samples for 3             
hours starting from 9:00 AM for Building 1 and 8:00 AM for Buildings 2 and 3. The peristaltic                  
pump was programmed to pump wastewater at a rate of 5.55 mL/min over a 3-hour period into a                  
1 L polycarbonate bottle (Thermo Scientific) stored on ice, for total volume of 1 L of                
wastewater. 100 mL of each sample were then filtered separately through a 0.2 μM PTFE               
membrane filter (Millipore) using a glass filtration apparatus (Glassco) to remove bacteria and             
debris. All filtration glassware and polycarbonate bottles were acid washed with hydrochloric            
acid and autoclaved prior to filtration. The filtrate was collected in amber glass vials, the pH was                 
adjusted to between 2 and 3, and stored at -80 C, all in less than 2 hours post sampling.   
 
Liquid chromatography-mass spectrometry 
10 μl of sample was analyzed via LCMS using a Vanquish ultra-performance liquid             
chromatography system coupled to an Orbitrap Fusion Lumos (Thermo Scientific) via a heated             
electrospray ionization (ESI) source. Data was collected in negative ionization mode with            
data-dependent secondary mass spectra (MS/MS) obtained via high-energy collisional         
dissociation (HCD, mass resolution 15,000 and collision energy of 35 arbitrary units, automatic             
gain control, AGT, of 5.0e4 and max injection time, IT, of 22 ms). The full MS resolution was                  
120,000 at 200 mz with an AGT target of 4.0e5 and a maximum IT of 50 ms. The quadrupole                   
isolation width was set at 1.0 m/z. ESI was carried out at a source voltage of 2600 kV for                   
negative ion mode with a capillary temperature of 350   C, vaporizer temperature of 400   C,               
and sheath, auxiliary, and sweep gases at 55, 20, and 1 arbitrary units, respectively. 

Chromatographic separation was performed on a Waters Acquity HSS T3 column (2.1 ×             
100 mm, 1.8 μm) equipped with a Vanguard pre-column and maintained at 40   C. The column                
was eluted with (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile at a flow                   
rate of 0.5 mL min-1.The gradient started at 1% B for 1 min, ramped to 15% B from 1–3 min,                    
ramped to 50% from 3–6 min, ramped to 95% B from 6–9 min, held until 10 min, ramped to 1%                    
from 10–10.2 min, and finally held at 1% B (total gradient time 12 min). Run order was                 
randomized over two batches of samples with pooled quality control samples run intermittently             
(every 6 or 7 samples) along with MilliQ water blanks to account for the general background of                 
solvent system and mass spectrometer.  
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Data processing 
Python 3.6.5 with scikit-learn version 0.19.1 as well as R 3.5.1 were used for processing and                
analysis. Following data acquisition, all data files were converted to an open source file format               
(.mzML) via a custom wrapper (msconvert_ee.py) of the program MSConvert in the            
ProteoWizard suite43. All files were then processed as a single batch with a custom python               
wrapper script (full_ipo_xcms.py) of both IPO 44 and then subsequent XCMS 45 processing. The            
parameters for XCMS were: CentWave (ppm=10, peakwidth=(5,15), snthresh=(100),        
prefilter=(4,10,000), mzCenterFun=wMean, integrate=2, mzdiff=-0.005, noise=50,000),     
ObiwarpParam (binsize=0.1, response=1, distFun=cor_opt, gapInit=0.3, gapExtend=2.4,      
factorDiag=2, factorGap=1), PeakDensityParam (bw=10, minFraction=0.05, minSamples=1,      
binSize=0.002, maxFeatures=50), mode (negative). In addition to aligning and extracting peak           
information, this program automatically extracted all MS/MS spectra and saved as a separate             
.mgf file for use in the metabolite naming pipeline.  

All features were binary log transformed following the filling of empty values with one.              
The data was corrected for run order using the local (two closest run order-flanking quality               
control, QC, samples) and global (all) QC feature values where the normalized feature intensity              
was calculated with the following formula: 

1) X  X  (R/C)( ′ =  *   
Here corresponds to the corrected value, the input feature value, the global average of X ′       X      R      
the feature over all QC sample and the local feature QC average. All samples were corrected       C           
in this way.  

Next, features with pooled sample coefficient of variance in excess of 0.3 were removed              
from further analysis. All samples were then blank subtracted (mean blank intensity for each              
feature) and resulting values less than 0 were set to 0. Finally, only features for which the cross                  
building sum of log intensities was greater than 100 were kept as the remainder likely belonged                
to background signals. 
 
Putative metabolite identification 
For ease of figure presentation when named features or lists thereof exceeded defined sizes, the               
name was replaced with ‘Name too long – See SI’ or ‘Many primary mz matches – See SI’ for                   
which each mz-rt tuple can be mapped to names in the supplementary information and              
corresponding table. Minimum reporting standard level 2 corresponded to a feature’s secondary            
mass spectrum matched to an in silico fragmentation spectrum plus database mass match, level 3               
was purely a database mass match and level 4 was unknown 24. Given only putative identification               
throughout, all names should be interpreted with caution. 

Identification was automated using custom python scripts, outlined in the supplementary           
information and associated Github pages. It performed a primary mass-to-charge look up of the              
exact mass accounting for multiple possible adducts and isotopes ([M] -, [M-H] -, [M+Cl-] -,            
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[M-H-H2O] -, [2M-H] -, [M-2H+Na +] -, [M-2H+K +] -, [M+(1–3) 13C-H] -) in four databases:        
MetaCyc46, the Human Metabolite DataBase (HMDB) 47, the Chemical Entities of Biological           
Interest (ChEBI)48, and LIPID MAPS49. For this lookup, a parts per million (ppm) error tolerance               
of 10 was used, we did not consider names associated with ppm error values > 5 to be real and                    
discounted them for all analysis, this represented an identification level of 3. Following this              
matching, the named features with associated ppm error and adducts or isotopes were ranked              
according to a heuristic order of likelihood of being observed (see SI for ordering). Given               
equally ranked adducts or isotopes, priority was given to the chemicals with the lowest ppm               
error. The second part of the naming was to perform in silico fragmentation matching using               
MetFrag50,51 on all ions with secondary mass spectra (MS2) that were extracted during the initial               
XCMS feature extraction. For this, individual MetFrag programs were run in parallel on MS2              
scans (on up to three different MS2 for the precursor ion), for all of the following parent ion                  
possibilities: [M] -, [M-H] -, [M+Cl-] -, [M-H-H2O] -, [2M-H] -, [M-2H+Na +] -, and [M-2H+K +] -. The          
MetFrag outputs for each parent ion were combined and ranked in order of MetFrag probability,               
these names were then matched to the primary mass-named metabolites with matches being             
given the highest ranking in terms of metabolite identification (level 2). Following naming, some              
putative labels were removed, specifically those with select elements, polymers or ‘R-groups’ (SI             
section 1 and Table S1). 
 
Statistical analysis 
Multiple comparison tests of feature intensity differences between more than two buildings were             
done with the non-parametric Kruskal-Wallis test followed by Benjamini-Hochberg FDR          
correction (scipy.stats.kruskal, statsmodels.stats.multitest.multipletests). For stationary statistical      
significance an FDR corrected P-value of less than 0.00001 was used. Linear regression on mean               
feature values and the associated correlation constants were extracted using scipy.stats.linregress.  
 
Feature time series summary statistics 
Through-time mean log intensity and standard deviation values were calculated for all features in              
each building individually. Features with a standard deviation ≥ 3 were labeled unstable, and              
stable otherwise. Given these labels, building overlap analysis was performed using venn3 and             
venn3_circles (matplotlib_venn) for which all building overlaps were retained. To determine           
feature color in Figure 1D, a feature was considered to be stable between the compared buildings                
if it was stable in either (colored blue). 

To classify the unstable features, the following tests were performed. First, if any log ion               
intensity value exceeded the highest value observed in the stable metabolites the feature was              
grouped into class 2. Next, the median intensity for the time course was calculated, those < 5                 
were placed into class 1. The remaining features were labeled class 3 which corresponded to               
generally stable and medium to high intensities with the occasional, but significant downward             
intensity drops. 
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Temporal feature profile analysis—building clustering 
All features were z-normalized through time (temporal mean subtracted and divided by the             
standard deviation) and each building was clustered by K-means clustering          
(sklearn.cluster.KMeans) using 100 clusters with all other parameters kept to their default values.             
Each feature was mapped to its corresponding mz and rt value for plotting as well as being                 
grouped by cluster size. Mean cluster values were extracted for each of the clusters and used to                 
train a GP regression model (sklearn.gaussian_process.GaussianProcessRegressor,      
alpha=0.0001) using a radial basis function kernel with a 0.125 length_scale parameter mixed             
linearly with a constant kernel with noise corresponding to the mean standard deviation of              
elements of the cluster (sklearn.gaussian_process.kernels.RBF and .ConstantKernel       
respectively).  
 
Waste stream simulations and mixing analysis 
To match experimental data as accurately as possible, for each waste stream simulation we              
sampled 100 cluster means for the 16 days using a Cauchy distribution (scipy.stats.cauchy,             
loc=0, scale=0.3, size=1 and resampled if a value greater than 3.5 was obtained). We then               
sampled the number of intensity spikes (positive and negative) for the new wastestream from a               
Gaussian distribution (random.gauss, mean=0, standard deviation=1) and took the absolute value           
of the integer representation. We then randomly determined which days would have the spikes              
and the number of cluster across which this spike would occur (they normally occured over               
many clusters in one day) using 20% of the number of clusters (20) times the absolute, integer                 
value of a Gaussian of 0 mean and unit standard deviation. The exact clusters with the spiking                 
dynamics were probabilistically determined for each day independently using a decreasing           
exponential probability (0.002+e-i, where i is the cluster rank), the clusters were looped over              
(from largest to smallest) with a value in [0.0, 1) randomly chosen, if the value was less cluster’s                  
probability threshold it was included in the spiking cluster. This was repeated until the total               
number of spiking clusters was satisfied. For these linked clusters, the mean values were              
resampled from the original cauchy distribution but forced to be between 1.75 and 3.  

Many of the non-spiking feature intensities were similarly conserved across clusters. For            
this we sampled the number of days with ‘correlated’ features using the absolute integer value of                
a Gaussian with 0 mean and 3 for its standard deviation. The number of correlated clusters was                 
performed as before but with a multiplicative factor of 70%; days of correlation were then               
probabilistically chosen according with 0.002+0.8e-0.8i representing a cluster’s probability being          
included (this spreads the probability out over more clusters, especially to the smaller ones). For               
these clusters, new means were chosen from the original cauchy distribution but forced into the               
range of being less than 1.75.  

Finally, once all cluster means were sampled, 1440 features were drawn (with cluster             
sizes proportional to the average cluster size in the three real buildings) using a Gaussian               
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distribution with the cluster mean for each cluster and a scale of 0.3. All values were forced to be                   
less than 3.2 as intensities of this magnitude were rarely if ever observed in the three real data                  
sets.  

For mixing, this waste stream profile generation process was repeated a select number of              
times. For all numbers of mixed waste streams, the three real buildings were mixed at random                
percentages with the simulated data to create a single mixed data set which was then clustered                
with K-means (100 clusters), and each cluster fit with a GP. The calculation of the all cluster                 
mean to all cluster mean distance was performed using the distance_matrix function and then              
summed. To get statistical parameters for this process, the analysis was repeated 10 times to               
calculate a mean and standard deviation for each number of waste streams mixed.  
 
Temporal feature profile analysis—inter and intra building feature analysis 
Time series distances were calculated via a Euclidean distance metric          
(scipy.spatial.distance.euclidean). All-to-all feature distance matrix calculation within and        
between buildings was performed using scipy.spatial.distance_matrix while the one-to-one         
distance of each feature to the corresponding feature in the other building using the euclidean               
function. For the all-to-all, feature pairs that met the similarity cutoff of either 1.5 or 2.82 were                 
kept and further analyzed for both rt and mz difference between features. 
 
Machine learning model training and analysis 
L1-LR and RF models were built to predict which building a single day-feature profile belonged               
to (sklearn.ensemble.RandomForestClassifier, and sklearn.linear_model.LogisticRegressionCV    
with the ‘saga’ solver). To gain statistics on model performance, each was trained 50 times on                
random, full data shuffles (sklearn.utils.shuffle). For each data shuffle, the days were randomly             
split 75:25 into train and test splits respectively. The log ion intensity data training split was                
standardized (sklearn.preprocessing.StandardScaler), and the test data transformed. Internal cross         
validation (3-fold) on the training split was performed internal to the LogisticRegressionCV class             
while the number of trees for the RF was set to 1000 requiring no cross validation. Following                 
training, all models were evaluated on the fully held out test set. ROC-AUC analysis was               
performed for each separate model (using sklearn.metrics.roc_curve and .auc) during the testing            
phase. For the 50 models built, the feature coefficients of the L1-LR models or the feature                
importances from the RF were averaged. To isolate unique building features, averaged features             
that had non-zero feature coefficients in at least 40 of the L1-LR models and an averaged feature                 
importance in the RF models of > 0.005 were extracted.  
 
‘Important’ feature and cross building analysis 
Temporal similarity values were calculated between all features to the IFs (all features from              
Tables S2-5) in each building separately using a Euclidean distance metric. Many features             
possessed a distance < 1.5 to multiple IFs and were counted for the size of each IF’s group. After                   
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calculating the size of each group, all features were then only assigned to the largest group they                 
belonged to and those with sizes greater than 20 for Building 1 and 2 or 5 for Building 3 were                    
input to metric MDS (sklearn.manifold.MDS).  

To find features that co-clustered between buildings, the cluster memberships for all            
buildings were fully compared, including between all three buildings. If the set of features in the                
intersection of either 2 or 3 clusters (each from different buildings) was > 5, the cluster pair                 
overlap of features was kept. A cluster pairing was only further analyzed if the difference in                
minimum and maximum rt was greater than 30 s.  
 
Data Availability 
Packaged data set files along with XCMS processed data tables (.csv files) will be deposited in                
Zenodo upon publication.  
 
Code Availability 
All code (.sh, .py, .R and .ipynb) to replicate the results of this paper will be on the following                   
Github repositories upon publication: https://github.com/ethanev/Metabolite_lookup and      
https://github.com/ethanev/temporal_wastewater 
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Figure 1. Multi-month sampling reveals numerous temporally stable and unstable features           
that generally possess comparable mean intensities across buildings. (A) Sampling timeline           
across three months for all buildings with sampling days filled with color. (B) Breakdown of the                
stable (through-time standard deviations < 3) and unstable metabolites and their overlap across             
the three buildings. (C) Average through-time mean log intensities and standard deviations of             
select features that were mapped to putative metabolites (level 2 identification); panel displays a              
selection of metabolites related to human activity, drugs, vitamin B5, and sweeteners. (D)             
Average through-time mean log intensity comparisons between all combinations of the three            
buildings. Red dots represent unstable features; blue dots represent stable features in at least one               
building.  
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Figure 2. Only 16 out of 1142 stable features are statistically different between buildings,              
and unstable features display three temporal classes. (A) Average log intensity comparison of             
all stable features across buildings. Purple (orange) lines depict features at a lower (higher)              
intensity in Building 1 relative to the other building, larger absolute intensity differences             
correspond to darker lines. (B) Comparisons for stable features that are also statistically             
significant between buildings (FDR-corrected KW test, Q < 0.00001). (C) Violin plot of all 16               
significant features depicting building-to-building differences and distributions. Names are levels          
2 and 3 putative identifications (names ending with an ^ are level 3; see Table S2 for full names).                   
Right column, associated Q-values. (D) Unstable features show three classes: class 1 features             
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(left column) possess median log intensities < 5; class 2 features (middle column) show intensity               
spikes greater than the largest value recorded for all stable features (~26); and class 3 features                
(right column) were the remaining features that generally displayed mid-level intensities with            
occasional, rapid decreases (see Table S3 for names). 
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Figure 3. Individual buildings possess unique fTDs with most dynamics governed by a few              
clusters and rapid deviations from the mean. (A) Summary of all building data sets using only                
shared sampling days. Gray columns show the 100 clusters, with individual box heights             
corresponding to cluster size. The 16 red and blue columns depict single-day, z-normalized log              
intensities for each feature (individual rows) for the three buildings; purple and green columns              
show feature mz and rt respectively. Color keys shown above the plots. (B) Average cluster               
values (teal points) for the three largest clusters for each building, with each cluster fit to a GP.                  
Model standard deviation in gray.  
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Figure 4. Large feature deviations from the mean are lost with the addition of relatively               
few waste streams. (A–E) Mixing of building waste with 0–50 additional simulated waste             
streams, with clustering and GP fitting (see Methods). The two largest clusters are plotted, with               
their standard deviations in gray. (F) Plot of the sum of Euclidean distances between all pairs of                 
cluster centers for a given number of mixed buildings. Error bars represent the standard deviation               
following 10 repeats. 
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Figure 5. High temporal sampling allows for monitoring putative metabolite levels and            
dynamics in a building-specific manner. Z-normalized time courses of (A)          
glucuronide-related, (B) caffeine-related, and (C) acetaminophen-related putative metabolites        
across the three buildings. See Table S4 for all putative identifications. 
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Figure 6. Many features display highly similar dynamics within, but not between buildings,             
with a large number being unrelated in mass and retention time. (A) Example distance plots               
for z-normalized data for distances of ~1, 3 and 5. (B) Histogram of all-to-all feature Euclidean                
distance calculations for different building pairs. (C) Within-building two dimensional          
histograms of all-to-all feature comparisons for which the Euclidean distance was < 1.5 and the               
difference in retention time was > 30 s, plotted versus the feature pair’s delta mz (y-axis). (D)                 
Box plot of Euclidean distances between identical features across different buildings. The gray             
region holds all features below a distance of 2.82. 
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Figure 7. Single-day feature profiles allow accurate building classification and uncover           
features with building-specific fTDs. (A) ROC-AUC plot (true positive versus false positive            
rate) for the three one-versus-the-rest building comparisons, using individual days as data points             
with associated ion intensities as features. AUC plots and scores come from 50x repeated model               
training on randomized train-test data splits. (B) Putative identification (level 2) and log ion              
intensity time courses of four select, high-importance metabolites (see Methods) that contribute            
to model performance. 
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Figure 8. MDS analysis finds many putative metabolites or features that are temporally             
similar to select important features. MDS analysis of (A) Building 1, (B) Building 2, and (C)                
Building 3 feature groups with > 20 (A and B) or > 5 (C) similar features (as defined by                   
intrabuilding feature-to-feature distance calculations). The ‘important features’ (IFs), to which          
distances from all other features were calculated, originated from the machine learning models,             
stability types, and other putatively named metabolites. Colors correspond to features that            
possess a Euclidean distance < 1.5 and group together. IFs are shown with numbers and large                
circles, and are labeled in (D). All names are level 2 identifications, unless ending with an ^                 
corresponding to level 3 identification with ppm error.  
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