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Abstract

Reproducible, understandable models that can be reused and com-
bined to true multi-scale systems are required to solve the present and
future challenges of systems biology. However, many mathematical mod-
els are still built for a single purpose and reusing them in a different con-
text is challenging. To overcome these challenges model quality needs to
be addressed at the (software-)engineering level. Instead of just declaring
standard modeling languages, researchers need to be aware of the char-
acteristics that make these languages desirable and they need to utilize
them consistently. We therefore propose a list of required characteris-
tics and provide guidelines how to incorporate them in a model: In our
opinion, a modeling language used for models in systems biology should
be modular, human-readable, hybrid (i.e. support multiple formalisms),
open-source, declarative, and allow to represent models graphically. We
demonstrate the benefits of these characteristics by translating a mono-
lithic model of the human cardiac conduction system to a modular version
and extending it with a trigger for premature ventricular contractions.
For this task we use the modeling language Modelica, that has all the
aforementioned characteristics, but is not well known in systems biology.
Our example illustrates how each characteristic can have a substantial
effect on the quality and reusability of the resulting model. Together
they facilitate and simplify the creation and especially the extension of
the modular model. We therefore recommend to consider these guidelines
when choosing a programming language for any biological modeling task.
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1 Introduction
As the understanding of biological systems grows, it becomes more and more
apparent that their behavior cannot be reliably predicted without the help of
mathematical models. In the past, these models were confined to single phe-
nomena, such as the Hodgkin-Huxley model of the generation of neuronal ac-
tion potentials [1]. They have served their purpose up to a point where now
it is necessary to take into account the upward and downward causations that
link all levels of organization in a biological system from genes to proteins to
cells to tissue to organs to whole organisms, populations and ecosystems [2].
These causations span effects on multiple scales of space and time that need to
be included in models. This can be achieved by two different approaches. A
micro-level model combines thousands of individual homogeneous submodels to
reach the next higher scale. This approach requires a vast amount of comput-
ing power and is therefore usually limited to span a distance of only two scales.
More wide-spanning multi-scale models can be achieved by the multi-level ap-
proach that combines both macro- and micro-level descriptions of a system by
different models [3]. While micro-level parts of such a model may look as de-
scribed above, the macro-level parts feature heterogeneous descriptions of sub-
systems and their high-level interactions. For this approach, a wide variety of
techniques exist that reduce the computational complexity of resulting models
[4]. While both approaches require the reuse of existing models, the multi-level
approach additionally involves the combination of independently designed mod-
els. These models may even use different modeling formalisms, thus forming a
multi-class model [5].

The first step in building a model consisting of several submodels is to re-
generate the individual submodels from the literature. This can already be a
challenge due to several issues with reproducibility in systems biology includ-
ing incomplete model descriptions, errors in formulas, availability of the code
or missing descriptions of experiment setup or design choices [6, 7]. As an ex-
treme example, Topalidou et al. report requiring three months to reproduce a
neuroscientific model of the basal ganglia [8].

We experienced similar reproducibility issues first-hand when we translated
the Seidel-Herzel model (SHM) of the human baroreflex to the modeling lan-
guage Modelica [9, 10]. Even though we could reach out to the author of the
model to obtain his original implementation in C, the translation process was
still quite challenging. The C code was monolithic and imperative in nature,
describing calculation steps instead of mathematical relations and containing
details that where not described in the corresponding PhD thesis. We had to
carefully extract the meaning of each line of code in order to build a modular
declarative version that produced the same simulation results. However, when
we wanted to extend the model with a trigger for premature ventricular con-
traction (PVC), it turned out that even the Modelica version was not suitable
for reuse. In fact, the component that described the cardiac conduction system
remained monolithic and lacked a graphical representation, which made it hard
to identify the equations and variables that would have to be changed. From
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this example, it becomes apparent that issues with reproducibility and reuse
reach down to the engineering level. The modeling language and the design
principles applied to the construction of a model can facilitate or hamper fur-
ther use. This also holds for the aforementioned case of Topalidou et al., since
the original model was implemented in Delphi, which is also an imperative lan-
guage that is not well suited for mathematical modeling [8].

Even though the need for guidelines on the engineering level is apparent,
most publications about model quality and best practices for reproducibility
and reusability do not address it. Instead, existing approaches broadly fall
into three (overlapping) categories. They tend to focus on a) biological va-
lidity [11–16], b) high-level choices of modeling formalisms and techniques [17–
19], or c) model documentation, annotation and distribution [7, 20, 21]. When
modeling languages are discussed, it is in the form of stating accepted standard
languages. Both COmputational Modeling in BIology NEtwork (COMBINE)
[20] and Minimal Information Required In the Annotation of Models (MIRIAM)
[22] suggest to use CellML and systems biology modeling language (SBML), but
neither go into detail which characteristics make these languages more desirable
than other choices. Our previous example of the translation of the SHM shows
that using a suitable language is a necessary but not sufficient criterion for the
model to actually be reusable. Additionally these languages cannot cover all use
cases, especially for multi-class models that combine entirely different model for-
malisms that may not even be representable in a single language [7]. Researches
will always need guidelines to choose between different language candidates and
to write model code that actually uses the desirable characteristics of the cho-
sen language.

In recent years there has been increasing interest to apply techniques from
software engineering (such as unit testing, version control, or object-oriented
programming) to modeling in systems biology [23–25]. Hellerstein et al. even go
so far to suggest that systems biologists should rethink the whole modeling pro-
cess as “model engineering” [23]. To date they are the only authors that we are
aware of who actually give explicit guidelines for how to write model code (e.g.
they suggest to use human-readable variable names). In this paper we expand
on the idea of model engineering in two ways. First, we propose a list of desir-
able characteristics that make a model language suitable for building reusable
multi-scale models. Second, we give guidelines how these characteristics can be
exploited to increase the code quality and thus reproducibility and reusability
of a particular model.

To demonstrate the reasoning behind those characteristics and their benefits
in a concrete example we use the language Modelica. Modelica is an open-
source declarative modeling language primarily used in engineering [26]. There
are other languages with similar properties, such as MATLAB (https://www.
mathworks.com/products/matlab.html), SBML [27], CellML [28] and Julia
[29] (which we discuss in detail in the supplement), but in our opinion Modelica
implements the required characteristics to the fullest extend. Additionally, it
will be interesting to investigate Modelica in this context since it is not well
known in systems biology.
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To give an application example of our guidelines we transform the aforemen-
tioned monolithic model of the human cardiac conduction system into a modular
structure and show that this version can easily be extended by a trigger for
PVCs. Finally this example is utilized to reflect on the choice of language char-
acteristics and the impact that a modeling language can have on the usefulness
of the model.

2 Results
2.1 Required characteristics for a modeling language for

systems biology
The following characteristics were developed from our personal experience with
Modelica and the SHM and/or from literature review. Each characteristic will
be introduced with arguments for its usefulness, a brief set of guidelines how it
may be applied to full effect and references to other authors that advocate this
feature.

Modular In order to replace parts of a model, they have to be identified in
the code. The modeling language should make this as easy as possible,
using separable components with clear interfaces. Modularization (and
information hiding) are reliable tools to handle complexity in large soft-
ware projects, so it is reasonable to expect that they will also be able to
manage the complexity of biological systems. One could even make the
case that modularization is the only way to handle this complexity since
monolithic models will become unmaintainable quite fast. Even the Guy-
ton model, which is probably among the most complicated monolithic
models in systems biology, tries to explain the circuits by grouping them
in (unfortunately tightly coupled) modules [30].
Guidelines: Modules should be small enough to be understandable at
first glance, but still self-contained. If a formula or concept is used mul-
tiple times in a model, it should be defined as a module once and then
referenced (in software engineering this concept is called DRY for “don’t
repeat yourself”). Modules should have clearly defined interfaces that ex-
plicitly state possible connection points to the outside world. If possible,
each module should be tested individually (this is called a “unit test” in
software engineering).
References: There is a general consensus that multi-scale modeling re-
quires some form of modularity for hierarchical composition [25, 31–35].
More specifically, Hellerstein et al. and Mulugeta et al. both suggest that
object-oriented programming might be an especially promising way to im-
plement modularity [23, 24].

(Human-)readable Models may not be reused or reproduced in the same lan-
guage in which they are originally written. Therefore the code should be
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expressive enough that one can extract the relevant mathematical defini-
tions without detailed knowledge about the tools that are associated with
the modeling language. Additionally, the more readable the code is the
more likely a reader may spot errors that can be corrected before or after
publication.
Guidelines: Variables and parameters should have speaking names in-
stead of single-letter identifiers. They should also be documented with a
short sentence that explains their meaning. The number of variables per
equation should be kept low, complex formulas should be split up. Opti-
mizations and workarounds that are not intuitive should be documented
in the code.
References: As mentioned in the introduction, Hellerstein et al. also
advocate for speaking variable names [23].

Hybrid A language is hybrid if it supports multiple language formalisms and
thus multi-class models. The most common form of hybrid models and
languages cover both continuous ordinary differential equations (ODEs)
and discrete events, but other combinations are possible. It is important
to note that we do not argue that a modeling language should support as
many formalisms as possible, but rather a combination of formalisms that
go well together. If other formalisms are required, the language should
rather aim to allow coupling of models across languages with standardized
interfaces such as the functional mock-up interface (FMI) [36, 37].
Guidelines: A model should clearly indicate which variables are discrete
and which are continuous. Event triggers that define the transition be-
tween discrete and continuous parts of the model should be examined and
tested with extra care.
References: In their 2017 review Bardini et al. argue that multi-scale
models in systems biology in general should strive towards a hybrid ap-
proach [2].

Open-source As a prerequisite for reproducibility and collaboration, models
and simulation tools need to be accessible for everybody. In particular the
hurdle to run a quick simulation of a model to determine its usefulness for
a specific task should be as low as possible. An openly accessible model
definition also means that readers can offer feedback and corrections to
improve the model quality.
Guidelines: Readers of a paper should be able to download the model
code and to simulate it with open-source tools. The download should
also include explicit licensing information. The model repository should
include everything necessary to reproduce plots and other results of the
corresponding paper. It should also be under version control and include
a human-readable changelog. Other researchers should be able to point
out and suggest corrections.
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References: Many large projects and databases such as Physiome [16],
the virtual liver network [38], Plants in silico [31] and SEEK [21] al-
ready provide open-source implementations of models. Mulugeta et al.
also specifically advocate for more version control and changelogs (in the
form of e-notebooks) [24].

Declarative The mathematical formalism for biological models is complicated
enough. A modeling language should not require the adaptation of the
model to the execution logic of the language, obscuring the original defi-
nition. Instead, the language should adapt to the model if it is presented
in a clean mathematical formulation. This way the code can focus on ex-
pressing meaning rather than structure, which facilitates understanding.
One aspect of this is also that the language should allow the declaration
and automatic checking of proper units for variables and parameters.
Guidelines: Models should follow strict mathematical rules to fit nicely
into the chosen formalism. If a model needs workarounds, it may be
worthwhile to revisit design choices and check the mathematical soundness
of the model. In our own experience we found that most workarounds
could be removed and the resulting model behaved more soundly and was
easier to understand.
References: Few researchers in systems biology make the distinction
between imperative and declarative languages explicitly. Loew & Schaff
mention that the language that they chose for the Virtual Cell environment
is declarative, but do not go into detail why this is important [39]. Zhu
et al. state that declarative languages are desirable, because it allows to
describe the biological processes “in a natural way” [40].

Graphical Discussing or even just understanding a model is difficult if the
model is only described in the form of code or mathematical equations.
This is especially true when the input of domain experts is required, who
are not computer scientists or mathematicians. For this purpose most pa-
pers in biology use some kind of diagram to transport the general structure
of the model in a graphical way. The modeling language should therefore
provide a way to describe the model with similar diagrams. This is more
effective if the diagram is directly coupled to the model equations to en-
sure that the graphical documentation always stays up to date when the
code changes. However, fully automated diagrams tend to degenerate to
an unstructured graph composed of hundreds of nodes with cryptic vari-
able names. The modeler should therefore be able to manually alter at
least some aspects (such as the positioning of elements) of the diagram.
Guidelines: All interactions between the individual modules in a model
should have a graphical representation in the corresponding diagram.
Each diagram should only have a few components. If it becomes too
crowded some components should be grouped together to form a hier-
archical structure. Each individual component in the diagram should be
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represented with an intuitive symbol that either corresponds to the ap-
pearance or function of its biological equivalent.
References: The Physiolibrary is a Modelica library for physiological
models that has graphical representations for each component [41]. Pro-
MoT is a modeling tool that allows to compose modular models in a
graphical way [33]. Alves et al. compare 12 different simulator tools, giv-
ing higher ratings to those that have graphical representations for model
components [42].

2.2 Modularizing a model of the human cardiac conduc-
tion system increases understandability

The Seidel-Herzel model (SHM) describes the autonomic control of the heart
rate in humans at a high level of abstraction [9]. It can be classified as a hy-
brid (discrete and continuous), deterministic, quantitative, macro-level model.
Henrik Seidel developed and implemented it in his PhD Thesis using the pro-
gramming language C. In a previous paper we translated it to Modelica [10].
All effects in the model are described on the organ level, including a blood
pressure curve generated by the pumping of the heart; the Windkessel effect of
the expanding arteries dampening the initial rise in blood pressure; the arte-
rial baroreceptors generating a neural signal depending on the absolute value
and the increase in blood pressure; the autonomic nervous system emitting
norepinephrine and acetylcholine as hormone and neurotransmitter based on
signals from the baroreceptor and the lungs; and the cardiac conduction system
with the sinoatrial node (SA node) as main pacemaker and the atrioventricular
node (AV node) as a fallback system.

In the following, only the conduction system is examined. It takes an input
signal from the SA node (based on norepinephrine and acetylcholine concentra-
tions) and includes the refractory behavior of the SA node1 limiting the max-
imum signal frequency, the delay between a signal from the SA node and the
actual ventricular contraction, and the AV node generating a signal if no signal
has been received for a given period of time. In the original model, these effects
where tightly coupled within a single piece of code comprising five parameters,
13 variables, and 12 equations—not counting additional parameters and vari-
ables for initial conditions. We found that this complexity makes it hard to
understand and modify the model, which is why we translated it into a modular
structure using Modelica.

The modular version separates the code into three components RefractoryGate
, Pacemaker and AVConductionDelay. These components are connected via
an unifying interface using a base class UnidirectionalConductionComponent
that takes a Boolean signal as an input and produces a Boolean output. These
inputs and outputs are only true for the exact point in time where a signal is

1Seidel probably meant to include the refractory behavior of the ventricles and not the
SA node. The actual implementation, however, checks the refractory state before the delay
between SA node and ventricles is applied.
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issued (i.e., they behave as Kronecker deltas). For the RefractoryGate, the
output equals the input except that after each signal there is a time period
T_refrac in which incoming signals are ignored. The Pacemaker lets incoming
signals pass through but also issues a signal on its own when the output has
been silent for the duration of its period T. The AVConductionDelay delays an
incoming signal by a duration that depends on the elapsed time since the last
output signal has been issued. To give an example of the Modelica syntax, the
resulting code for RefractoryGate looks as follows:

model RefractoryGate
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
parameter Modelica.SIunits.Time t_first = 0;
parameter Modelica.SIunits.Period T_refrac = 1;
Boolean refrac_passed = time - pre(t_last) > T_refrac;

protected
Real t_last(start=t_first, fixed=true);

equation
outp = inp and refrac_passed;
when outp then

t_last = time;
end when;

end RefractoryGate;

To explain the interaction between the described models, a graphical repre-
sentation is introduced for each component. As seen in Figure 1 we chose an
open garden gate for the refractory gate, a metronome for the pacemaker and
an hourglass for the delay. The components are simply connected in order with
the exception that the reset of the pacemaker component is only triggered if the
signal also passed the refractory component. This structure deviates from the
original SHM because the refractory behavior is situated at the AV node instead
of the SA node. Additionally, the delay component models the complete delay
from the SA node to the ventricles but is actually applied after the components
for the AV node. To remain closer to physiology, one could split the delay com-
ponent into two delays—one before and one after the AV node—and similarly
add another refractory gate for the SA node. However, we will show in the fol-
lowing sections that this simplified structure closely replicates the behavior of
the SHM.

2.3 The modular model behaves similar to the original
version

Although the modular version of the conduction model covers the same phys-
iological effects as the original version, the implementation differs not only in
structure but also in the mathematical representation. The original model used
the elapsed time since the last contraction as a reference for the refractory pe-
riod and the pacemaker effect of the AV node instead of the elapsed time since
the last sinus signal was received. This means that the duration of the refractory
period needs to be adjusted. In the old model, the performed check was whether
t− (tsinus + Tdelay) < Trefrac where t is the current time stamp, tsinus is the time
stamp of the last sinus signal, Tdelay is the duration of the delay and Trefrac is
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cc

AVN

Figure 1: Diagram of the modular conduction model with symbols for the
components. From left to right: Pacemaker for the pacemaker effect of the
AV node, RefractoryGate for the refractory behavior of the AV node and
AVConductionDelay for the combined delay between the SA node and the ven-
tricles. The C in a black box indicates that the main variable of the component
is held constant while the stopwatch symbol for the delay should indicate that
the duration is time-dependent. Components have their input on the left, their
output on the right and the pacemaker has the additional reset input at the
bottom.

the refractory period. Since the check is now whether t− tsinus < T ′
refrac one can

deduce that if the same behavior is desired, T ′
refrac should equal Trefrac + Tdelay,

that is Trefrac must be increased by the average delay duration. The pacemaker
component does not have to be changed at all, because although the pacemaker
signal is delayed, the pacemaker clock is also started earlier. Effectively the de-
lay duration is added and then subtracted from the resulting time stamp of the
next contraction.

Figure 2 shows a comparison of the resulting RR values (i.e. the time passed
between two contractions) for both models with input of varying frequency. For
the most part both versions behave identically. Only when the sinus cycle length
drops below the refractory period you can see a difference in the plots. In these
areas the RR values of the modular model fluctuate with a higher amplitude
and lower frequency compared to the original SHM.

2.4 Extending the modular model with a trigger for pre-
mature ventricular contractions is easy

To show that the modular structure and the language Modelica facilitate reuse
and extension we added a trigger for premature ventricular contractions (PVCs)
to the model. PVCs arise if some part of the ventricular tissue generates a
signal without stimulation from the AV node. This can happen in a healthy
individual, but the heart rate response to such an ectopic beat can be used as
a risk indicator during pathological conditions. [43].

An ectopic beat in the ventricles leads to a stimulation of the AV node
that travels back upwards to the SA node either cancelling out an oncoming
downward signal or (in rare cases) resetting the clock of the SA node. Therefore,
the correct way to model a PVC would be to include components that are
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Figure 2: Comparison of the RR values of the original conduction model (or-
ange) and the modular version (blue). The plot was obtained with an artificial
sinus signal that switches its cycle duration every ten seconds according to the
following schedule: 1 s, 3 s, 0.05 s, 0.8 s, 0.2 s, 1.8 s. This schedule was chosen
to cover a large range with different cycle durations that are a) below the re-
fractory period of the AV node (0.2 s, 0.05 s), b) above the refractory period,
but below the pacemaker period of the AV node (0.8 s, 1 s), or c) above the
pacemaker period (3 s, 1.8 s). The schedule is not in any particular order so
that both reactions to a sudden increase and a sudden decrease in sinus fre-
quency can be observed. Only the cycle durations of 0.05 s and 0.2 s produce
qualitative differences.

bidirectional.
To keep it simple, the unidirectional components are used and it is assumed

that a PVC will always reset the pacemaker and refractory time of the AV node
but never reach the SA node. We modeled this by extending the components
RefractoryGate and ConductionDelay with a “reset” input similar to the one
that already exists for the Pacemaker component.

With these changes, there could still be two beats arbitrarily close to each
other when a PVC is triggered right after a normal beat. Therefore we also
modeled the refractory behavior of the ventricles themselves. The only change
needed for this was the addition of a second instance of the already existing
RefractoryGate component that receives input from the PVC trigger and the
delay component (combined with a logical OR). The output of this additional
component was used to ensure that the reset of the AV node would only happen
if the PVC actually did trigger a contraction. This was achieved by an additional
logical AND gate with input from the PVC signal and the contraction output.
A graphical representation of the resulting model can be seen in Figure 3.

2.5 The PVC extension shows plausible results
The behavior of the resulting model is shown in Figure 4. For a normal sinus
rhythm of 75 bpm the model behaves as expected. When a PVC happens while
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cc

pace_av refrac_av delay_sa_v refrac_v

AVN

Figure 3: Diagram of the PVC model. The components are the same as
in Figure 1 with additional components and connections highlighted in blue:
reset inputs, second RefractoryGate (right) for the refractory period of the
ventricles, two logical OR gates and one AND gate. The letters on the outside
of the rectangle represent the connections of the model to the outside world:
the input from the SA node (S), the output to the ventricles (V) and the trigger
signal for PVCs (PVC).

a beat is delayed, it replaces the normal beat, leading to one RR interval that
is shorter than normal followed by one interval that is larger than normal by
the same magnitude. The same behavior can be observed for a PVC happening
directly before a sinus signal is issued. A PVC that follows a normal beat within
the ventricular refractory period is completely ignored and a PVC right between
two normal beats leads to two RR intervals that are shorter than normal since
all three beats (two normal, one ectopic) lead to a contraction.

To test the behavior of the AV node in the presence of ectopic beats the
experiment was repeated without any sinus signal. Here, the behavior is the
same for PVCs while an AV signal is delayed, during the ventricular refractory
period and directly before an AV signal. A PVC right between two normal beats
does not result in two reduced RR intervals but in one reduced and one increased
interval. This is due to the reset of the pacemaker clock that will issue the next
signal after the pacemaker period has passed. This signal has to travel through
the delay component which increases the interval duration.

3 Discussion
The separation of the model of the human cardiac conduction system into indi-
vidual components with a clear interface required structural changes. Therefore,
before discussing the impact of our language and design choices on the un-
derstandability and reproducibility of the model, possible implications for its
accuracy need to be addressed.

The simulation of the modular model shows a similar but not identical behav-
ior with respect to the original version. Increased amplitude and lower frequency
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Figure 4: RR intervals of the modular model with PVCs with a) a normal sinus
rhythm of 75 bpm and b) without sinus signal. Part c) shows the location of the
ectopic beats in the normal cycle duration. PVCs are triggered with different
prematurity: Pa while a signal is delayed, Pb within the ventricular refractory
period, Pc just between two beats, Pd just before a beat would be triggered by
the SA or AV node.

of RR fluctuations during very fast sinus rhythms are explained by the use of
the average delay duration to adjust the refractory period of the AV node in
the modular model. In the original model the delay duration Tdelay varies over
time. As shown in the results, this variable also plays a role in the check for the
refractory period, making the effective duration of the refractory period itself
time-dependent. It is not clear if this behavior is intentional in the SHM or if it
is a side effect of other design choices. If this behavior is desired, it can be emu-
lated in the modular version by making the variable T_refrac in the component
RefractoryGate time dependent much like the duration in ConductionDelay.
Physiologically the refractory period indeed changes when the sinus frequency
is increased, but the effect is a decrease instead of an increase as in the mono-
lithic model [44]. It can therefore be said that the modular design both helps
identifying plausibility issues and can be more easily adapted to the biological
reality.

The PVC model also behaves as expected. In the simulation with a sinus
frequency of 75 bpm the stimulations very close to a sinus signal effectively
replace that signal, leading to a short coupling interval and a long compensatory
pause. Stimulations during the refractory period are correctly ignored and a
stimulation between two sinus signals is just treated as an additional contraction,
leading to a series of two subsequent RR intervals that are shorter than the
sinus cycle length. The third RR interval is also a little bit shorter than normal,
because although the cycle length has not changed the sinus signal immediately
after the PVC has an increased delay duration shifting it closer to its successor.
In the simulation without a sinus signal, the only qualitative difference can be
observed in the case of an additional signal in between two AV node signals.
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The first RR interval is reduced, but the second interval is actually increased.
Physiologically this can be explained by the signal of the PVC traveling upwards
stimulating the AV node in the same way a signal from the sinus node would
do. The next contraction can therefore only happen after the normal AV cycle
length and the delay duration has passed.

With the question of the validity of the example models out of the way, the
focus can now return to our initial research question to assess how the modular,
readable, hybrid, open, declarative and graphical nature of Modelica (or similar
languages) helped in the modeling process.

Modular We have shown that extending the modular model to simulate PVCs
was quite simple. Using the component diagram as a basis, the discus-
sion about where to include the trigger signal for an ectopic beat became
much easier than with the tightly coupled model. When we originally tried
to implement the same extension in the monolithic version, we found it ex-
tremely hard to pinpoint the lines of code that would need to change. Now,
with the modular version, the question was not “Which variables do I have
to change?” but “Which influence does a PVC have on physiological com-
ponent X?”. The discussion shifted from technological considerations to
physiological ones. Those were again followed by technological questions,
since at the end some variables had to be changed and introduced, but
due to the separation in small components each change only required the
review of a few lines of code. In fact, the code for the RefractoryGate
could be reused by simply adding another instance of this component to
represent the refractory period of the ventricles. In the original model,
several variables and equations would have to be added, making the al-
ready complicated system almost unmanageable.
This becomes even more apparent if we consider a bidirectional conduc-
tion model, which is probably only feasible using a modular structure.
Extending each component with an additional input and output in the
opposite direction is very possible, if one only has to consider one effect at
a time. The diagram view would even require less changes, mainly dou-
bling each connection line between two subsequent components. Doing the
same for the original model in C or even the non-modular version in Mod-
elica would increase the amount of variables and equations substantially
and, therefore, further diminish the already low readability and instead
introduce multiple possible sources for errors that would be hard to track
down.

(Human-)readable The code of the models presented in this paper needed
little additional words for explanation. We think that readers that are
not familiar with Modelica will also be able to understand the general
idea, since the code directly represents meaningful concepts with little
additional clutter. The same could probably not be said about a piece of
C-code or an XML file generated by an SBML tool. In fact, the required
explanatory words can be put in the code by using documentation strings
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that can be attached to models, variables, parameters and even individual
equations and that can be interpreted by graphical tools.

Hybrid The example model is (almost) purely discrete. This does not allow us
to showcase the hybrid nature of Modelica directly. However, since this
model of the cardiac conduction system has been developed as a replace-
ment of the original, it can be integrated into the full SHM, which also has
continuous variables, by simply changing the name of the referenced sub-
model from MonolithicConduction to ModularConduction. We could
also show that although Modelica is not purely built for discrete model-
ing, formulation of discrete events requires little effort. You only have to
be careful to use pre() when you are referencing the value of a variable
before an event.

Open-source Since Modelica is an open-source language with open-source
tools, the reader can try out the models discussed here at https://
github.com/CSchoel/shm-conduction. You simply have to download
the latest release from the Github repository, download and install Open-
Modelica and load the models using the “Load library” option in the “File”
menu. With JModelica there also exists a second free compiler that also
offers optimization features [45]. If you want to combine Modelica mod-
els with models written in different languages, this may be possible using
the FMI specification, that was developed for Modelica but is now used
by many other free and commercial modeling tools [36, 37].

Declarative The separation of models into components with clear interfaces
enhances the benefits of a declarative language. Subjecting the component
interfaces to strict mathematical rules makes existing design flaws appar-
ent. The original model contained some design choices that were probably
taken because they were convenient for programming, but they showed to
be harmful for understanding and maybe even for the physiological plau-
sibility of the model. For example, the original model mixed variables that
represent actual signals and time stamp variables that schedule signals
for the future (see Supplementary Figure 1). An incoming sinus signal
was first translated to a scheduled contraction time which then would
only take effect if there was not already a contraction that was sched-
uled to happen before the current signal. Upon the actual contraction, a
scheduled time for a contraction triggered by the AV node was calculated.
To comprehend these formulas a context switch from the physiological
meaning to the technical representation is required. Another hurdle for
understanding the model is the unclear causality. In the SHM every effect
is triggered by the contraction, even if there is no actual signal feedback
from the ventricles to the AV node on a physiological level (unless in the
case of an ectopic beat). By separating the model into smaller physiolog-
ically meaningful modules with a unified interface the Modelica compiler
automatically hinted at these concerns, e.g. because variables where miss-
ing. A correct implementation was easier when the different effects where
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clearly separated.

Graphical The diagrams in Figure 1 and 3 not only help to understand the
model at first glance, but they can also be defined as part of the Modelica
code by an annotation() statement. This allows for building more com-
plex models or small test cases using drag and drop in a graphical tool
like OpenModelica [46]. The connections between the model components
are not arbitrary, but are closely tied to the semantics of the model.

To sum up, we could show that using a language that is modular, readable,
open-source, declarative, hybrid and graphical directly benefits the modeling
process and leads to models that are both more understandable and easier to
reuse and extend.

At this point we have to note that it is not necessary to use Modelica to gain
these benefits. Modelica is one language among several choices, some of which
are presented in the supplement, that realize our requirements to a great extent.
What makes Modelica interesting is that it is tested and proven in an industrial
setting, but only little known in systems biology. However, similar results could
also be achieved using CellML or MATLAB with the Simulink environment and
the Simscape language. For example, one downside of Modelica in contrast to
CellML is the mostly missing support for partial differential equations (PDEs).

In general it can be said that in order to build reusable multi-scale, multi-
level and multi-class models, one needs to be careful to chose a language that
can handle the complexity of their models. It is, however, not sufficient just
to chose a language that is suitable in principle. Researchers must be aware
of the beneficial characteristics of the language and must be able to utilize
them consistently. We all have to think as (software-)engineers and not only
implement models for a single purpose, but as reliable part of a solution for
larger challenges.

4 Methods
4.1 Material
We used Mo|E version 0.6.3 [47] to write the code of our models and OpenMod-
elica version 1.13.0 [46] as well as Inkscape version 0.91 (https://inkscape.
org/) to add the component icons. OpenModelica was also used for all simula-
tions. In the following we will show and explain our Modelica code for the models
and simulations. To keep it short, we do not show the code of the original mono-
lithic version and of the graphical annotations. They can be found in Supple-
mentary Listing 1–26 and at https://github.com/CSchoel/shm-conduction.

4.2 Modular conduction model
The first part of the modular model of the human cardiac conduction system
is the interface component UnidirectionalConductionComponent that serves
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as a base class for all other components. It defines the input and output con-
nectors inp and outp, which are Booleans that are wrapped in a custom type
InstantSignal to indicate that they behave as Kronecker deltas:

type InstantSignal = Boolean(quantity="InstantSignal");
connector InstantInput = input InstantSignal;
connector InstantOutput = output InstantSignal;

partial model UnidirectionalConductionComponent
InstantInput inp "input connector";
InstantOutput outp "output connector";

end UnidirectionalConductionComponent;

The RefractoryGate has already been shown in the results section. The
component passes on its input signal as output signal, but only when the elapsed
time since the last signal left the component is larger than the refractory period:

model RefractoryGate
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
extends SHMConduction.Icons.Constant;
parameter Modelica.SIunits.Time t_first = 0;
parameter Modelica.SIunits.Period T_refrac = 1;
Boolean refrac_passed = time - pre(t_last) > T_refrac;

protected
Real t_last(start=t_first, fixed=true);

equation
outp = inp and refrac_passed;
when outp then

t_last = time;
end when;

end RefractoryGate;

The function pre() is used here to denote the value right before an event
instead of the value right after the event.

The Pacemaker model propagates incoming signals, but also adds an own
signal if there was no input for a certain period of time. Additionally it has to
be considered that during the refractory period incoming signals are ignored
entirely and therefore should not reset the timer of the pacemaker. To ac-
complish this an external reset signal is added that will only be triggered if the
signal passes not only the pacemaker but also the subsequent RefractoryGate
component. The pacemaker component itself only resets when a spontaneous
output signal is generated to maintain the invariant that the output signal will
not be true for a prolonged period of time:

model Pacemaker
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Metronome;
extends SHMConduction.Icons.Constant;
InstantInput reset "resets internal clock";
parameter Modelica.SIunits.Period T = 1 "pacemaker period";
InstantSignal spontaneous_signal = time > pre(t_next)

"signal generated spontaneously by this pacemaker";
protected

discrete Modelica.SIunits.Time t_next(start=T, fixed=true);
equation

outp = inp or spontaneous_signal;
when spontaneous_signal or pre(reset) then

t_next = time + T;
end when;

end Pacemaker;
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The ConductionDelay model puts incoming signals on hold and releases
them after a certain time has passed. Physiologically the duration of the delay
for each signal depends on the time that has passed between the last signal
leaving the component and the current input signal. The original model silently
assumed that there will never be a second input signal while a signal is put on
hold. Therefore this assumption is kept, but made more explicit by using the
helper variable delay_passed in the when condition:

partial model ConductionDelay
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Hourglass;
discrete Modelica.SIunits.Duration duration;
discrete Modelica.SIunits.Period T(start=0, fixed=true)

"time between last output and following signal";
discrete Modelica.SIunits.Time t_last(start=0, fixed=true)

"time of last output";
discrete Modelica.SIunits.Time t_next(start=-1, fixed=true)

"time where next output is scheduled";
Boolean delay_passed(start=false, fixed=true) = time > t_next

"if false, there is still a signal currently put on hold";
equation

outp = edge(delay_passed);
when inp and pre(delay_passed) then

T = time - pre(t_last);
t_next = time + duration;

end when;
when outp then

t_last = time;
end when;

end ConductionDelay;

Note that this is only a partial model that does not specify the behavior of
the variable duration. This allows to separate the general delay logic from the
physiological equation for the AV node which is modeled in the AVConductionDelay
:

model AVConductionDelay
extends ConductionDelay;
parameter Modelica.SIunits.Duration k_avc_t = 0.78;
parameter Modelica.SIunits.Duration T_avc0 = 0.09;
parameter Modelica.SIunits.Duration tau_avc = 0.11;
parameter Modelica.SIunits.Duration initial_T_avc = 0.15;

initial equation
duration = initial_T_avc;

equation
when inp and pre(delay_passed) then

duration = T_avc0 + k_avc_t * exp(-T/tau_avc);
end when;

end AVConductionDelay;

The model ModularConduction combines the components using connect
() equations to connect the input and output variables. These equations are
represented as lines in the graphical representation:

model ModularConduction
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Heart;
RefractoryGate refrac_av(T_refrac=0.364);
Pacemaker pace_av(T=1.7);
AVConductionDelay delay_sa_v;
discrete Modelica.SIunits.Period T(start=initial_T, fixed=true);
discrete Modelica.SIunits.Time cont_last(start=0, fixed=true);

equation
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connect(inp, pace_av.inp);
connect(pace_av.outp, refrac_av.inp);
connect(refrac_av.outp, pace_av.reset);
connect(refrac_av.outp, delay_sa_v.inp);
connect(delay_sa_v.outp, outp);
when outp then

T = time - pre(cont_last);
cont_last = time;

end when;
end ModularConduction;

As you can see, the model ModularConduction is again a UnidirectionalConductionComponent
and can therefore be used as a component in a larger model (such as the SHM).

4.3 PVC model
For the PVC model we will now only discuss the changes required for the existing
components. The full code can be found in Supplementary Listing 1–26.

In the RefractoryGate, the condition when outp simply has to be replaced
with when outp or reset. For ConductionDelay the process is a little bit
more complicated since oncoming signals have to be canceled. This is achieved
by temporarily setting t_next to a very large value (larger than the total sim-
ulation time). The equations section changes as follows:

when pre(reset) or (inp and pre(delay_passed)) then
T = time - pre(t_last);

end when;
when pre(reset) then

t_next = 1e100;
elsewhen inp and pre(delay_passed) then

t_next = time + duration;
end when;
when outp or reset then

t_last = time;
end when;

The resulting extended model ModularConductionX looks as follows:
model ModularConductionX

extends UnidirectionalConductionComponent(outp.fixed=true);
extends SHMConduction.Icons.Heart;
RefractoryGateX refrac_av(T_refrac=0.364);
Pacemaker pace_av(T=1.7);
AVConductionDelayX delay_sa_v;
RefractoryGate refrac_v(T_refrac=0.2);
discrete Modelica.SIunits.Period T(start=1, fixed=true);
discrete Modelica.SIunits.Time cont_last(start=0, fixed=true);
InstantInput pvc(fixed=true) "trigger signal for a PVC";
Modelica.Blocks.Logical.Or vcont;
Modelica.Blocks.Logical.Or rpace;
Modelica.Blocks.Logical.And pvc_upward

"true if we have PVC that travels upward";
equation

connect(inp, pace_av.inp);
connect(pace_av.outp, refrac_av.inp);
connect(refrac_av.outp, delay_sa_v.inp);
connect(delay_sa_v.outp, vcont.u1);
connect(refrac_av.outp, rpace.u2);
connect(vcont.y, refrac_v.inp);
connect(refrac_v.outp, outp);
connect(outp, pvc_upward.u1);
connect(pvc, pvc_upward.u2);
connect(pvc_upward.y, refrac_av.reset);
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connect(pvc_upward.y, delay_sa_v.reset);
connect(pvc_upward.y, rpace.u1);
connect(rpace.y, pace_av.reset);
connect(pvc, vcont.u2);
when outp then

T = time - pre(cont_last);
cont_last = time;

end when;
end ModularConductionX;

4.4 Modular contraction experiment setup
Simulation experiments can also be defined directly in Modelica syntax. The
following code was used to produce Figure 2:

model ModularExample
ModularConduction modC;
MonolithicConduction monC;

equation
modC.inp = monC.signal;
if time < 5 then

monC.signal = sample(0,1);
elseif time < 15 then

monC.signal = sample(0,3);
elseif time < 20 then

monC.signal = sample(0,0.05);
elseif time < 30 then

monC.signal = sample(0,0.8);
elseif time < 40 then

monC.signal = sample(0,0.2);
else

monC.signal = sample(0,1.8);
end if;
annotation(

experiment(
StartTime = 0, StopTime = 50,
Tolerance = 1e-6, Interval = 0.002

),
__OpenModelica_simulationFlags(lv = "LOG_STATS", s = "dassl")

);
end ModularExample;

For the results the variables monC.T_cont and modC.T were plotted against
simulation time.

4.5 PVC experiment setup
The simulation experiment for the PVC model is also defined as a Modelica
class. Here the variable T was plotted once with with_sinus = true and once
with with_sinus = false:

model PVCExample
ModularConductionX con;
discrete Modelica.SIunits.Time sig_last(start=0, fixed=true)

"time where last SA/AV signal was received";
Integer count_sig(start=0, fixed=true)

"counts SA/AV signals";
parameter Boolean with_sinus = true;
parameter Modelica.SIunits.Period T_normal = if with_sinus then 0.8 else

con.pace_av.T
"normal cycle duration without PVC";

Modelica.SIunits.Duration t_since_sig = time - pre(sig_last)
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"time since last signal from SA/AV node";
Boolean pvc_a = pre(count_sig) == 5 and t_since_sig > con.delay_sa_v.T_avc0

/2;
Boolean pvc_b = pre(count_sig) == 12 and t_since_sig > con.refrac_av.T_refrac

/2;
Boolean pvc_c = pre(count_sig) == 19 and t_since_sig > T_normal/2;
Boolean pvc_d = pre(count_sig) == 26 and

t_since_sig > T_normal - con.delay_sa_v.T_avc0/2;
Boolean trigger(start=false, fixed=true) = pvc_a or pvc_b or pvc_c or pvc_d;

equation
con.pvc = edge(trigger);
if with_sinus then

con.inp = sample(0, T_normal) "undisturbed normal sinus rhythm";
else

con.inp = false "no sinus, only AV node";
end if;
when con.refrac_av.outp then

count_sig = pre(count_sig) + 1;
sig_last = time;

end when;
annotation(

experiment(
StartTime = 0, StopTime = 55,
Tolerance = 1e-6, Interval = 0.002

),
__OpenModelica_simulationFlags(lv = "LOG_STATS", s = "dassl")

);
end PVCExample;
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