
Characteristics of mathematical modeling
languages that facilitate model reuse in systems

biology: A software engineering perspective
Christopher Schölzel1,*, Valeria Blesius1, Gernot Ernst2,3, and

Andreas Dominik1

1THM University of Applied Sciences, Giessen, Germany,
{christopher.schoelzel,andreas.dominik}@mni.thm.de

2Vestre Viken Hospital Trust, Kongsberg, Norway
3University of Oslo, Norway

*corresponding author

January 15, 2021

Abstract

Reproducible, understandable models that can be reused and com-
bined to true multi-scale systems are required to solve the present and
future challenges of systems biology. However, many mathematical mod-
els are still built for a single purpose and reusing them in a different
context can be challenging due to an inflexible monolithic structure, con-
fusing code, missing documentation or other issues. These challenges are
very similar to those faced in the engineering of large software systems. It
is therefore likely that addressing model design at the software engineer-
ing level will also be beneficial in systems biology. To do this, researchers
cannot just rely on using an accepted standard language. They need to be
aware of the characteristics that make this language desirable and they
need guidelines on how to utilize them to make their models more re-
producible, understandable, reusable, and extensible. Drawing upon our
experience with translating and extending a model of the human barore-
flex, we therefore propose a list of desirable language characteristics and
provide guidelines and examples for incorporating them in a model: In
our opinion, a mathematical modeling language used in systems biology
should be modular, human-readable, hybrid (i.e., support multiple for-
malisms), open, declarative, and support the graphical representation of
models. We compare existing modeling languages with respect to these
characteristics and show that there is no single best language but that
trade-offs always have to be considered. We also illustrate the benefits of
the individual language characteristics by translating a monolithic model

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

of the human cardiac conduction system to a modular version using the
modeling language Modelica as an example. Our experiment can be seen
as emblematic for model reuse in a multi-scale setting. It illustrates how
each characteristic, when applied consistently, can facilitate the reuse of
the resulting model. We therefore recommend that modelers consider
these criteria when choosing a programming language for any biologi-
cal modeling task and hope that our work sparks a discussion about the
importance of software engineering aspects in mathematical modeling lan-
guages.

1 Introduction
As the understanding of biological systems grows, it becomes more and more
apparent that their behavior cannot be reliably predicted without the help of
mathematical models. In the past, these models were confined to single phe-
nomena, such as the Hodgkin-Huxley model of the generation of neuronal action
potentials [1]. They have served their purpose up to a point where now it is
necessary to take into account the upward and downward causations that link
all levels of organization in a biological system from genes to proteins to cells
to tissue to organs to whole organisms, populations and ecosystems [2]. These
causations span effects on multiple scales of space and time, which need to
be included in models. This can be achieved by two different approaches. A
micro-level model combines thousands of individual homogeneous submodels
to reach the next higher scale. This approach requires a vast amount of com-
puting power and is therefore usually limited to span a distance of only two
scales. More wide-spanning multi-scale models can be achieved by the multi-
level approach, which combines both macro- and micro-level descriptions of a
system by different models [3]. While micro-level parts of such a model may
look as described above, the macro-level parts feature heterogeneous descrip-
tions of subsystems and their high-level interactions. For this approach, a wide
variety of techniques exist that reduce the computational complexity of result-
ing models [4]. While both approaches require the reuse of existing models,
the multi-level approach additionally involves the combination of independent
submodels, which may have been designed for different purposes and in differ-
ent labs. These submodels may even use different modeling formalisms, thus
forming a multi-class model [5].

The first step in building a model consisting of several submodels is to regen-
erate the individual parts from the literature. This can already be a challenge
due to several issues with reproducibility in systems biology including incom-
plete model descriptions, errors in formulas, availability of the code or missing
descriptions of experiment setup or design choices [6–8]. A recent study by cu-
rators of the BioModels database showed that only 51% of 455 published models
were directly reproducible [8]. In an extreme case, Topalidou et al. [9] report
requiring three months to reproduce a neuroscientific model of the basal ganglia.

We experienced similar reproducibility issues first-hand when we translated
the Seidel-Herzel model (SHM)—a macro-level model of the human baroreflex,

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

which is able to simulate many disease conditions and exhibits interesting dy-
namical properties—into a form that would be more amenable to extension and
reuse [10–12]. Even though we could reach out to the author of the model to
obtain his original implementation in C, the translation process was still quite
challenging. The C code was monolithic and imperative in nature, describing
calculation steps instead of mathematical relations and containing details that
where not described in the corresponding PhD thesis. We had to carefully ex-
tract the meaning of each line of code in order to build a modular, declarative
version that produced the same simulation results. For this task, we chose the
modeling language Modelica, since it provides a lot of flexibility for modular
model design. However, when we wanted to extend the model with a trigger for
premature ventricular contractions (PVCs), it turned out that even our new ver-
sion was not suitable for reuse. In fact, the component that described the cardiac
conduction system remained monolithic and lacked a graphical representation,
which made it hard to identify the equations and variables that would have to
be changed. This situation—having to untangle the semantics and code of an
existing model to extend or adjust it for use in a different context—is emblem-
atic of the challenges faced when building multi-scale and especially multi-level
models. Our example shows that issues with reproducibility and reuse reach
down to the engineering level. The modeling language and the design principles
applied to the construction of a model can facilitate or hamper further use. This
also holds for the aforementioned case of Topalidou et al. [9], since the original
model was implemented in Delphi, which is also an imperative language and
therefore not well suited for mathematical modeling.

Even though the need for design principles on the engineering level is appar-
ent, most publications about best practices for reproducibility and reusability
do not address it. Instead, existing approaches broadly fall into three (over-
lapping) categories. They tend to focus on a) biological validity [13–18], b)
high-level choices of modeling formalisms and techniques [19–21], or c) model
documentation, annotation and distribution [7, 22, 23]. Apart from these gen-
eral discussions about reusability, there also are authors who advocate for in-
dividual modeling techniques, such as modular model design [24] in CellML or
coupling models via semantic annotations [25]. However, while the latter work
is applicable to multiple languages, it only focuses on one, albeit central, part
of model design, namely the composition of multiple models or model parts.
This means that researchers who want to select a suitable language for their
modeling task still have little guidance available, which both covers multiple
design aspects and multiple languages. The best assistance for choosing a mod-
eling language currently comes from the list of accepted standards published
by the COmputational Modeling in BIology NEtwork (COMBINE) [22, 26].
The COMBINE suggests to use CellML and the Systems Biology Markup Lan-
guage (SBML) with the main reason that these are standard exchange formats
that have a high interoperability among several tools. While this is true and a
great improvement over the previous state of the art, standardization and in-
teroperability alone cannot guarantee reusable model design. For example, the
BioModels database [27] features curated models in SBML format, but most of

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

these models are monolithic and therefore require further modification if only
parts of the model should be reused [28]. In the aforementioned reproducibility
study, the curators of this database found that the reproducibility rate for SBML
models was only slightly higher (56%) than the overall rate of reproducibility
across all models (51%; including models written in SBML, MATLAB, Python,
C, R, and other languages) [8]. Our previous example of the translation of the
SHM also shows that using a suitable language is a necessary but not sufficient
criterion for the model to actually be reusable. Additionally, no single language
or even a small set of prescribed languages is likely to cover all use cases which
may arise in systems biology, especially when considering multi-class models,
which combine entirely different model formalisms [7].

Even when the discussion is restricted to the formalisms of ordinary differen-
tial equations (ODEs) and discrete events, there are a multitude of languages to
choose from. As mentioned above, the COMBINE lists SBML and CellML as ac-
cepted standard languages. Both are markup languages based on the eXtensible
Markup Language (XML) and designed to be written and read by software tools
and not directly by humans. While SBML has a clear focus on metabolism and
cell signaling models, CellML, despite its name, is not targeted towards a spe-
cific level of organization. MATLAB is a proprietary domain-specific program-
ming language designed for scientific computing in general, which is also popular
in systems biology (https://www.mathworks.com/products/matlab.html). It
provides an environment for graphical block diagrams called Simulink (https:
//www.mathworks.com/products/simulink.html) and a declarative language
for designing physical systems called Simscape (https://www.mathworks.com/
products/simscape.html). The MATLAB environment SimBiology is another
alternative based on block diagrams, which is targeted towards pharmacological
models, but can, like SBML, model arbitrary ODE-based dynamical systems
(https://de.mathworks.com/products/simbiology.html). While MATLAB
is still popular [29, 30], the open-source programming language Python also
gains increasing interest in the community [29, 31–34]. Usually models are not
built in Python itself, but researchers have created packages such as PySB [33]
and the Python Simulator for Cellular systems (PySCeS) [31] that define em-
bedded domain-specific languages (DSLs) which facilitate the creation of math-
ematical models for specific use cases. With Tellurium [34] there also exists a
broader python-based environment that supports multiple COMBINE standards
and uses the declarative modeling language Antimony [35]. Another emerging
language for the definition of embedded DSLs for mathematical models is Julia,
which has a similar focus as Python but is more extensible and tends to have
better runtime performance [36]. Finally, Modelica is an open-source declara-
tive modeling language primarily used in engineering [37]. It has a large user
base both in industry and research, but is still largely unknown in systems bi-
ology. Notable exception include the Physiolibrary [38]—a Modelica library for
physiological models—and SBML2Modelica [39]—a tool that translates SBML
models to Modelica. This extensive list of language candidates makes it appar-
ent that researchers need guidelines to choose between these candidates and to
write model code that actually uses the desirable characteristics of the chosen

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simscape.html
https://de.mathworks.com/products/simbiology.html
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

language.
In recent years there has been increasing interest to apply techniques from

software engineering (such as unit testing, version control, or object-oriented
programming) to modeling in systems biology [28, 30, 40]. Hellerstein et al.
[40] even go so far to suggest that systems biologists should rethink the whole
modeling process as “model engineering”. To date they are the only authors that
we are aware of who actually give explicit guidelines for how to write model code
(e.g., they suggest to use human-readable variable names).

In this article we share our experience with extending the SHM and gener-
alize our findings from this example to expand on the idea of model engineering
in three ways: First, we propose a list of desirable characteristics that make a
model language suitable for building reusable multi-scale models. Second, we
give guidelines on how these characteristics can be exploited during model de-
sign to increase the reproducibility and reusability of a particular model. Third,
we compare state-of-the-art language candidates with respect to the aforemen-
tioned characteristics.

From these candidates we chose one, namely Modelica, to demonstrate the
reasoning behind the characteristics, guidelines, and language assessment using
the example of the cardiac conduction system within the SHM. We transform
the existing monolithic model into a modular structure and show how this facil-
itates the PVC extension. After we present our results we reflect on the impact
that each of the language characteristics and the choice of Modelica in particular
has on the usefulness of the model.

2 Results
2.1 Desirable characteristics for a mathematical modeling

language for systems biology
The following characteristics were developed from literature review and/or from
our personal experience with Modelica and the SHM. The goal of these char-
acteristics is to facilitate the creation and analysis of multi-scale, multi-level
and multi-class models. We therefore focus on increasing reproducibility, un-
derstandability, reusability, and extensibility. The resulting characteristics are
that a modeling language should be modular, human-readable, hybrid, open,
declarative and graphical. Each characteristic will be introduced with argu-
ments for its usefulness, a brief set of guidelines on how it may be applied to
full effect, examples where this was relevant in our implementation of the SHM,
and references to other authors that advocate this feature.

Modular In order to replace or reuse parts of a model, they have to be iden-
tified in the code. The modeling language should make this as easy as
possible, using separable components with clear interfaces. The number
of variables in the interface should be minimal, encapsulating internal im-
plementation details so that using and connecting the component becomes

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

as easy as possible. Some languages facilitate this by allowing the defi-
nition of connector components, which group interface variables together,
so that the interface has, e.g., a single electrical pin connector instead of
two separate variables for current and voltage. Interfaces are important
to define intended biological transitions between model components and
to document assumptions, even if rigid interfaces can limit reuse. It can
even be argued that it is beneficial if a component cannot easily be reused
in an environment with different assumptions, since such a switch of as-
sumptions will likely require more change than adding a variable to the
interface. For quick experimentation, it can be an advantage if the lan-
guage allows connecting arbitrary internal variables of components, but
published versions of a model should always have a clear interface concept
to remain understandable.
Modularization and encapsulation are reliable tools to handle complexity
in large software projects, so it is reasonable to expect that they will also
be able to manage the complexity of biological systems. Modularity also
inherently facilitates reusability, since clearly defined self-contained mod-
ules are easier to reuse than a set of equations that has to be extracted
from a tightly coupled model. To allow reuse of components within the
same model, it must be possible to import multiple instances of a module
and assign individual identifiers to them. This can be further facilitated by
supporting full object-orientation, allowing a component to inherit vari-
ables, equations and possibly annotations from one or more parent com-
ponents, which define common structure and behavior. Additionally, com-
ponents are also easier to reuse if individual variables and equations may
be overwritten or removed during instantiation and inheritance. Some
languages also allow the reuse of models across different languages, tools
and platforms by using a standardized exchange format or a standardized
interface. In systems biology, SBML is a standard exchange format for
hundreds of tools, allowing the use of models in a multitude of different
contexts and often also automatically translate a SBML model to a dif-
ferent language. In contrast, the Functional Mock-up Interface (FMI) is a
model exchange format maintained by the Modelica Association [41, 42]
that focuses more on a unifying interface than a unified language. It is
not used to translate models into other languages, but rather to distribute
models in an encapsulated format that is independent of the underlying
formalism, which is especially interesting for multi-class models.
Guidelines: Modules should be small enough to be understandable at
first glance, but still self-contained. If a formula or concept is used mul-
tiple times in a model, it should be defined as a module once and then
referenced. In software engineering this concept is called DRY for “don’t
repeat yourself”. Modules should have clearly defined, minimal interfaces,
which explicitly state possible connection points to the outside world.
Both modules and their interfaces should follow the biological structure
of the system. If a module represents more than one biological entity or

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

an equation in the module conflates effects from multiple distinct causes,
it might be worth to investigate if splitting up the corresponding module
further might increase its understandability and flexibility for reuse and
extension. Interfaces should represent the transfer of some physical quan-
tity between biological entities and should only expose variables whose
meanings are clear and do not require an understanding of the module’s
internal organization or function. If possible, each module should be tested
individually, which is called a “unit test” in software engineering.
Importance in SHM modeling task: Since the SHM features a multi-
tude of feedback loops, locating errors was very tedious with the original
monolithic model. Systematic debugging became only possible when we
isolated the different parts of the system, such as the baroreceptors, and
subjected them to controlled input signals to observe the component out-
put. It was also possible to reuse several components within the SHM:
The parasympathetic and the sympathetic system share a base class that
only leaves the sign of the baroreceptor influence open for definition and
the four different release equations for norepinephrine and acetylcholine
are also governed by a common base class.
References: There is a consensus that multi-scale modeling requires some
form of modularity for hierarchical composition [24, 25, 28, 43–45]. More
specifically, Hellerstein et al. [40] and Mulugeta et al. [30] both suggest
that object-oriented programming might be an especially promising way
to implement modularity. Many researchers advocate for clearly defined
interfaces [2, 28, 44, 46], but there is also critique with regard to a loss of
flexibility for reuse and the requirement to consider all code-level elements
of a model as potential coupling points [25, 29].

Human-readable This characteristic covers two loosely connected aspects:
The fundamental readability of model files with a text editor and the
readability and understandability of definitions within the model.
Every modeling language has to be both human-readable so that a hu-
man can write the code to define a model and machine-readable so that
a software tool can interpret that code to run simulations. However, as
Figure 1 shows, there is a trade-off between the two and languages can
choose to support the one at the cost of the other. On the one end of the
spectrum, languages like Antimony or Modelica, whose syntax is closer
to natural language and easier to read and write for humans using just
a text editor, require more effort for specialized parsers to build abstract
syntax trees, which can then be processed by compilers and other software
tools. The middle ground is formed by XML-based languages like SBML
and CellML. XML files already have a tree structure and parsers for XML
exist for virtually all modern programming languages, which lowers the
barrier to implement support for an XML-based format in a software tool
and therefore increases interoperability between tools. While XML files
can still be viewed and edited in a text editor, this requires familiarity

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

with the language and tends to be cumbersome for larger edits. Espe-
cially the Mathematical Markup Language (MathML) format used both
by SBML and CellML for storing equations can be hard to write and
decipher without tool assistance. SBML and CellML therefore rely on
software tools that use graphical interfaces or intermediary languages to
ease model editing. On the machine-readable end of the spectrum, MAT-
LAB Simulink uses a proprietary binary format that is tailored specifically
to the MATLAB software toolchain. This can both reduce storage space
and implementation effort for parsers, but also means that it is impossible
to inspect model files without the corresponding software.

y = (x + 1) / (x - 1)

var y: dimensionless
y = (x + 1{dimensionless}) / (x - 1{dimensionless})

<parameter constant="false" id="y"/>
...
<assignmentRule variable="y">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply>
 <divide/>
 <apply><plus/><ci>x</ci><cn>1<cn></apply>
 <apply><minus/><ci>x</ci><cn>1</cn></apply>
 </apply>
 </math>
</assignmentRule>

Antimony

CellML text

SBML

h
u
m

a
n
-

re
a
d

a
b

le
m

a
ch

in
e
-

re
a
d

a
b

le

Figure 1: Example of a variable definition via a simple assignment rule in
three modeling languages with different levels of focus on human-readability
versus machine-readability. Antimony mainly focuses on how humans would
write equations in text form, but requires a specialized parser. CellML text—an
intermediary editing language used by the tool OpenCOR—adds some syntax
that is easy to parse by a machine (due to using braces that do not conflict
with other symbols in the code), but is not an intuitive representation of unit
information for a human unfamiliar with the language. SBML focuses more on
machine-readability, since XML can be parsed by the standard libraries of most
modern programming languages, ensuring minimal barriers for tool support.
However, while the SBML code is still readable and editable in a text editor,
it takes some effort and familiarity with the language to decipher the meaning
from the symbols.

For model exchange and interoperability between different tools, XML-
based formats have the clear advantage that supporting their import or ex-
port in a tool requires very little programming effort. This is illustrated by
the success of SBML and FMI, which are both based on XML and are sup-
ported by over 100 tools each (http://sbml.org/SBML_Software_Guide/

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

SBML_Software_Matrix, https://fmi-standard.org/tools). Increased
interoperability also facilitates model reusability, because it becomes more
likely, that a researcher who wants to reuse a model can simply import it
in their tool of choice without having to translate it to another language
first.
However, for model development and for publishing models to other re-
searchers, languages with a strong focus on human-readability are prefer-
able, because they allow tool-independent access to a model and because
they are more suitable for version control. Due to their verbose syntax,
XML-based languages are typically not designed to be written by humans
directly but by software tools, which provide intermediary languages or
graphical interfaces to facilitate editing. The translation between these
different representations is performed automatically during export and
import, which is convenient, but if the feature sets of the exporting and
the importing tool do not overlap completely, there is a risk that informa-
tion is lost. For example, a SBML model written with tool A may include
layout information for a graphical representation of the model, but when
it is loaded in tool B, which uses a purely equation-based representation,
this layout information may be discarded. If tool B does not show a warn-
ing message, there is no way for the user to know that the model contained
this information unless they look at the SBML code itself. This problem
is less likely to occur, if the model is written in a language more focused
towards human-readability, which is then also used directly for editing.
In this case, both tool A and tool B would display the same code and
while tool B does not display the graphical representation, the user would
notice the presence of the layout annotations and could choose to view
the model in a tool that does support them. Additionally, the more a
language focuses on human-readability, the more easily it can be trans-
lated to slides, websites, articles and other formats, which makes it easier
to communicate the details of a model to other researchers. It can also
be archived more safely, as it will still be easily readable decades into the
future, even if the tools used to create it and to view its contents will not
be available anymore. Finally, version control software can be immensely
helpful for tracking errors, for finding the exact versions of a model used
to generate plots in an article, and for understanding the rationale behind
modeling design choices. Standard solutions like Git operate under the
assumption, that the documents under version control are written by hu-
mans and that element order, white space, and other details all are results
of deliberate choices and therefore carry meaning. This is not the case
for XML-based documents written by tools, which can artificially inflate
changesets between document versions with management data or struc-
tural changes that carry no meaning and therefore obscure the changes
that are actually relevant. While there are specialized solutions to dis-
tinguish semantic from structural changes in XML documents [47], this is
still an active field of research and not yet broadly implemented in version

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
https://fmi-standard.org/tools
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

control software. Also, even with these solutions, researchers might only
be familiar with the tool that generated the file and not the content of
the file itself, which makes it harder for them to localize and understand
changes between model versions.
It is possible to combine the benefits of XML-based exchange formats and
languages that focus more on human-readability, if these exchange formats
are used and published in addition to a more human-readable represen-
tation of a model. This can be seen as analogous to software packages in
general purpose programming languages. Open source software projects
are usually both published as some kind of easily installable artifact—a
file that not even has to be human-readable at all—and also as human-
readable code in an online repository, which can be used to analyze and
extend the software.
Moving from the question of the general file format to the content of
the file, it can be said that readable code is largely the responsibility of
its authors. However, a language may facilitate a clean coding style by
providing expressive language constructs and documentation features or
hinder it by introducing visual clutter. One example for this is the verbose
use of {dimensionless} that is required after each constant in an equation
in CellML text as seen in Figure 1. Additionally, languages can also add
human-readable documentation strings to variables and components or
incorporate an HTML document for a more detailed model description.
In contrast to comments in traditional programming languages, which are
ignored by the compiler, these documentation features can enrich model
presentation across various tools and representations including graphical
dialogs or HTML representations within a model database. An example
for this can be seen in Figure 2.
Guidelines:
Model files stored in a version-controlled repository and published in
model databases should be written in languages that focus on human-
readability. If possible, models should additionally be published in a more
easily machine-readable exchange format like XML to lower the barrier
for direct reuse. If the language has support for structured documentation
that is semantically tied to individual components or variables, this form
of documentation should be preferred over unstructured comments. Every
parameter, variable, and model component should at least be documented
with a short human-readable label. Any non-obvious design choices or
complex equations should also be documented.
Importance in SHM modeling task: On several occasions during our
implementation we accidentally introduced errors in one part of the model
while correcting an issue in a different part. To recover from these errors,
it was crucial that we could quickly skip through the changes made since
the last known working version. This was facilitated by the fact that
Modelica focuses on keeping model files easily human-readable. With an

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

DSargs = args()
DSargs.name = "LotkaVolterra"
DSargs.ics = {

'x': 10, # prey
'y': 10 # predator

}
DSargs.pars = {

'alpha': 1.1,
'beta': 0.4,
'delta': 0.1,
'gamma': 0.4

}
DSargs.tdata = [0, 20]
DSargs.varspecs = {

'x': 'alpha*x - beta*x*y',
'y': 'delta*x*y - gamma*y'

}

model LotkaVolterra "predator-prey model"
Real x(start=10, fixed=true) "prey pop.";
Real y(start=10, fixed=true) "pred. pop.";
parameter Real alpha = 1.1 "prey birth";
parameter Real beta = 0.4 "prey death";
parameter Real delta = 0.1 "predator birth";
parameter Real gamma = 0.4 "predator death";

equation
der(x) = alpha * x - beta * x * y;
der(y) = delta * x * y - gamma * x;

annotation(Documentation(info="<html>
This model implements the <a href=\"https://

en.wikipedia.org/wiki/Lotka%E2%80%93
Volterra_equations\">Lotka-Volterra
equations .

</html>"));
end LotkaVolterra;

Figure 2: Simple predator-prey model in a language without (left, PyDSTool)
and with (right, Modelica) support for documentation strings. Note that while
regular Python comments (#) can be used to annotate PyDSTool models, they
are ignored by the compiler and are only useful when reading the code directly.
Modelica comments are part of the model syntax and can therefore be read
by tools to, e.g., provide automated tooltips in dialogs and graphs or to enrich
model summaries in databases.

XML-based format, we would have had more difficulties to make sense of
the differences between versions.
References: Hellerstein et al. [40] and Zhu et al. [43] stress the im-
portance of keeping model files under version control. The authors of
Tellurium specifically state that human-readable languages can facilitate
reproducibility and exchangeability [34]. Drager et al. [48] found that ex-
isting tools struggle to make all the information in the XML-based descrip-
tion of SBML models accessible in a comprehensive form, which led them
to develop a tool called SBML2LaTeX, which generates human-readable
reports from SBML models.

Hybrid A language is hybrid if it supports multiple modeling formalisms and
thus multi-class models. The most common form of hybrid models and
languages cover both continuous ODEs or differential algebraic equations
(DAEs) and discrete events, but other combinations are possible. The
distinction between ODEs and DAEs is important here since physical
conservation laws, such as conservation of mass or energy, are algebraic
constraints, which cannot always be formulated with pure ODEs. In-
corporating them in a model can, however, have the benefit of making
connections between components acausal, which means that variables do
not have to be designated as input or output and instead the solver can
choose the appropriate resolution order. This avoids errors and perfor-
mance issues related to algebraic loops, simplifies model descriptions, and
allows reusing components in different contexts. As with DAEs, support

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

for discrete events also comes in different forms. Many languages sup-
port the reinitialization of continuous variables through discrete events.
In this formalism the only discrete part of the model is a set of equations
that define boolean values based on the state of the system. When one
of these values switches from false to true, an event is generated, which
can introduce discontinuities in an otherwise continuous system. For a
fully hybrid model that involves more complex discrete parts it is prefer-
able that the language also supports discrete variables. The value of these
variables remains constant between events, but they may be defined with
complex equation systems, which are solved during each event instance.
As a result, they can make models that require complex event triggers
more understandable as can be seen in Figure 3.

1 ...
2 Boolean in_window = time < event+2;
3 discrete Real x_max;
4 initial equation
5 in_window = false;
6 x_max = x;
7 equation
8 when in_window and der(x) < 0 then
9 x_max = max(x, pre(x_max));

10 end when;
11 ...

...
in_window = 0;
in_window' = 0;
at (time < event+2): in_window = 1;
at (time >= event+2): in_window = 0;

x_max = x;
x_max' = 0;
at ((in_window > 0) && (x' < 0)):

x_max = max(x, x_max);
...

Figure 3: Definition of a discrete variable x_max, which captures the peak value
of the continuous variable x obtained within two seconds after an event event
in a language with (left, Modelica) and without (right, Antimony) support for
declaring discrete variables. The Modelica model defines a discrete boolean
variable in_window, to simplify the when condition later in the code. The in-
formation that this variable is discrete already lies in the type definition as
Boolean. For real variables like x_max, there exists a keyword discrete, which
determines that the variable value may only change within a when equation.
The same model structure and semantics can also be achieved in Antimony,
but the discrete variables in_window and x_max each need an explicit rate rule
to ensure that their value only changes when an event occurs (lines 3 and 8).
Additionally, two events are needed to emulate the boolean variable in_window:
One to update the value when the condition becomes true (line 4) and one to
do so when it becomes false (line 5).

It is important to note that we do not argue that a modeling language
should support as many formalisms as possible, but rather a combina-
tion of formalisms that go well together. If other formalisms are required,
the language should rather aim to allow coupling of models across lan-
guages with standardized interfaces such as the FMI [41, 42]. Addition-
ally, there is a trade-off between fully supporting a modeling formalism,
such as ODEs or DAEs and being able to assign a domain-specific mean-
ing to language constructs. For example, SBML, PySB, and Antimony
all use biological terms tied to the biochemical level to describe the parts

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

of a model. This makes the language easier to understand and use for
domain experts, but may prove challenging when building a multi-scale
model that has to extend beyond the biochemical level.
Guidelines: A model should clearly indicate which variables are discrete
and which are continuous. Event triggers, which define the transition be-
tween discrete and continuous parts of the model, should be examined
and tested with extra care. If the language allows them, acausal con-
nections should be preferred over causal input-output relationships, since
acausality facilitates reuse.
Importance in SHM modeling task: At first, it was not clear for us
whether the contractility of the heart in the SHM was a continuous or
discrete variable. This confusion led to a severe error in an early version
of the model. Our current implementation defines the variable with the
keywords discrete Real to clearly indicate this distinction. Discrete
variables were also required to disentangle the semantics of the cardiac
conduction system, which is introduced in detail in Section 2.3.
References: In their 2017 review Bardini et al. [2] argue that multi-
scale models in systems biology in general should strive towards a hybrid
approach. The same has also previously been stated by other researchers
[49–51]. In particular, the authors of PyDSTool argue that hybrid models
based on DAEs are well-suited to represent multi-scale models [32].

Open As a prerequisite for reproducibility and collaboration, models and simu-
lation tools need to be accessible for everybody. In particular, the hurdle to
run a quick simulation of a model to determine its usefulness for a specific
task should be as low as possible. An openly accessible model definition
also means that readers can offer feedback and corrections to improve the
model. Preferably the language itself, the compiler and associated tools
should all have an open-source license. Additionally, collaboration is also
facilitated if the language can be used on different platforms.
Guidelines: Readers of a paper should be able to download the model
code and to simulate it with open-source tools. The download should
also include explicit licensing information. The model repository should
include everything necessary to reproduce plots and other results of the
corresponding paper. It should also be under version control and include
a human-readable changelog. Other researchers should be able to point
out errors and suggest corrections.
Importance in SHM modeling task: Without the reference code of
Seidel, our re-implementation of the SHM would not have achieved a per-
fect agreement with the original. To weed out our last errors, which only
showed quantitative and not qualitative differences in the plots, we needed
to simulate both models with identical solver settings and manually com-
pare the output data. Additionally, some small errors in the published
formulas became only apparent when we compared them with their C
implementation.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

References: Many large projects and databases such as the Physiome
Model Repository of the IUPS Physiome project [52], the NSR Physiome
project [53], the BioModels database [27], the virtual liver network [54],
Plants in silico [43] and SEEK [23] already provide open-source imple-
mentations of models. Mulugeta et al. [30] also specifically advocate for
more version control and changelogs (in the form of e-notebooks).

Declarative The mathematical formalism for biological models can already be
complicated in itself. A modeling language should not require the adap-
tation of the model to the execution logic of the language, obscuring the
original definition. Instead, the language should adapt to the model if
it is presented in a clean mathematical formulation. This way the code
can focus on expressing meaning rather than structure, which facilitates
understanding. This also includes the possibility to formulate ODEs and
DAEs not only in explicit form, i.e., with a single variable on the left-hand
side of the equation, but also in implicit form, i.e., with arbitrary math-
ematical terms on the left and right-hand side. For example, specifying
u = r * i should be equivalent to the equation u / r = i and the solver
should decide for which variable this equation needs to be solved.
As a consequence of such a declarative style, errors reported by the com-
piler can also focus on meaning rather than just grammar, increasing the
soundness of the model. One important example of this is that declarative
languages usually allow the declaration and automatic checking of proper
units for variables and parameters. Missing or wrong unit conversions are
a common source of error in modeling that can be all but eliminated this
way. Unit definitions also add semantic information and therefore make
the model more understandable. Additionally, if the model is described in
a declarative style, it is possible for automated tools to identify and extract
meaningful parts of the model. This facilitates tool support—e.g., in the
form of numerical solvers, optimization and verification toolchains—and
also allows connecting model parts to standardized ontological terms. For
the latter it is preferable if the support for ontologies is already included
in the language itself.
Guidelines: Models should follow strict mathematical rules to fit nicely
into the chosen formalism. If the language allows it, equations should be
written exactly as one would write them in a scientific paper to convey
their meaning, choosing freely between explicit and implicit form. If a
model needs workarounds in the form of code that has to be added to
make the model compile but that does not add new information about
the modeled system, it may be worthwhile to revisit design choices and
check the mathematical soundness of the model. In our own experience we
found that most workarounds could be removed and the resulting model
behaved more soundly and was easier to understand. Models should also
specify units for all variables, preferably using the International System of
Units (SI). If possible, automated unit consistency checks should be per-
formed before publishing a model. Additionally, if the language supports

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

semantic annotation with ontological terms, this feature should be used
for all variables and components.
Importance in SHM modeling task: The original SHM was imple-
mented in C, which is an imperative language. Most of the reference code
that we consulted for our re-implementation was responsible for manage-
ment tasks, such as storing a history of variables that enter equations with
a delay, debugging output, or a manual implementation of an integration
loop with the Runge-Kutta method. Although most equations were de-
fined as separate functions, we sometimes had difficulties untangling the
semantics of the model from the main integration loop.
One area of the model that was highlighted by the Modelica compiler as
not mathematically sound was the systemic arterial blood pressure, which
is given by an algebraic equation during systole and by an entirely separate
differential equation in the diastole. This issue only became apparent,
because we had to translate the imperative C code, which simply used
an if-expression to switch between the two states, into a declarative form,
which required a consistent equation structure. This consistent structure
could be established by manually differentiating the systolic equation and
then only switching between two different expressions for the derivative.
References: Few researchers in systems biology explicitly distinguish
between imperative and declarative languages. Zhu et al. [55] state that
declarative languages are desirable, because it allows the description of
the biological processes “in a natural way”. Several language authors also
state that their respective modeling language is declarative [29, 33, 56,
57], but they do not go into detail why this is important. Of these, only
the authors of JSim [57] and Myokit [29] state that declarative languages
allow concentrating on what is modeled and not how the equations are
solved, make models more understandable, and facilitate their analysis
both by researchers and software tools.

Graphical Discussing or even just understanding a model is difficult if the
model is only described in the form of code or mathematical equations.
This is especially true when the input of domain experts is required, who
are not computer scientists or mathematicians. For this purpose most pa-
pers in biology use some kind of diagram to transport the general structure
of the model in a graphical way. Here, there is a trade-off between two
different visualization types:

1. Automatically generated abstract graphs of variable dependencies
are an exact representation of the model and are well-supported by
tools, which reduces the effort required to build these representations.
However, automatic graph layout is a nontrivial problem: Different
algorithms or parameter settings can lead to large differences in the
layout [58]. Most algorithms also do not scale well to large graphs
and additional techniques are required to group nodes according to

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

semantic similarity [59]. Additionally, to the lack of grouping capa-
bilities, automatic graph visualizations also solely rely on the vari-
able names to convey the role of a variable—e.g., whether it is the
product, reactant or catalyst of a reaction—or the kind of variable
interactions—e.g., if the correlation is positive or negative. Conse-
quently, this approach is mainly suited to represent the mathematical
dependencies of variables, but not to give an intuitive overview of the
model structure or to analyze the biological relations between mod-
eled concepts.

2. Manual drawings of the biological interactions with respective images
and symbols capture the essence of the information required to un-
derstand the model and can quickly be processed by the reader. This
also has the additional benefit that the model can be discussed with
domain experts that are familiar with the biological concepts, but
not with mathematical modeling. However, they are less accurate,
not standardized and require a lot of manual effort. This can also
mean that when a model is extended or otherwise updated, changes
may not be immediately reflected in the drawing, since it may only
be updated at a later stage or not at all.

There are multiple hybrid approaches that try to address the shortcom-
ings of pure type 1 or type 2 visualization. The Systems Biology Graph-
ical Notation (SBGN) [60] allows the illustration of models with stan-
dardized abstract structural diagrams, which serve a similar function as
circuit diagrams in electrical engineering. SBGN diagrams do not dis-
play variables, but represent the actual physical entities and processes
with unambiguous, standardized glyphs. While there exist tools that
can generate SBGN diagrams automatically, like CySBGN, some manual
arrangement is required to produce satisfactory results [61]. The stan-
dardization of SBGN also comes at the expense of the biological intu-
itiveness of the resulting diagram. Instead of immediately recognizable
biological icons, researchers have to learn and interpret a series of ab-
stract glyphs. For metabolism pathways this is no issue, since species
that are part of a reaction are typically identified by their name and
not by any two- or three-dimensional structure that could be used as
an icon. However, e.g., for action potential models it would be prefer-
able to represent ion channels and pumps by schematic drawings and to
have a visual separation between the inside and outside of a cell. Such
a graphical representation is especially helpful if it is standardized across
different models. For example, the Physiome Model Repository [52] uses
the same icons for ion channels and pumps across all curated action po-
tential models, which are drawn by the now discontinued tool OpenCell
(http://physiomeproject.org/software/opencell/about). A similar
standardized icon language could also be beneficial for models at the tissue
or organ level.
Like type 1 and type 2 visualizations, SBGN graphs are independent of

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

http://physiomeproject.org/software/opencell/about
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

the capabilities of the language with which the model was written. They
are generated by tools that do not need to have any connection with
the modeling language itself. Modeling languages can support them by
referencing image files or XML files containing SBGN as part of the model
documentation, but they have to be maintained separately. An example
of this can be seen on the left side in Figure 4.
This is addressed by another hybrid approach that goes a step further
towards the analogy with circuit diagrams and integrates layout and ren-
dering information directly into the model structure. It is mainly prevalent
in languages with an industrial background such as Modelica and MAT-
LAB, but is also implemented in the SBML level 3 layout and rendering
packages. In this approach, model components are assigned graphical
annotations, which define how the component should look and where it
should be placed in the diagram representation of the model. In a mod-
ular language, this information can be used to build tools that allow to
construct models by dragging and dropping component icons and connect-
ing them with lines, much like a circuit diagram. An example of this can
be seen on the right side in Figure 4. The resulting diagrams are both
an accurate reflection of the connections between model components, be-
cause they are intrinsically tied to the functional model code, and can be
understood quickly, since they are arranged manually and use biological
imagery. If the model changes and, e.g. a component is removed, the
graphical annotation also has to be removed, because the compiler would
otherwise produce an error message. This ensures that graphical repre-
sentations stay up to date when a model is changed. Creating symbols
and images for components requires effort, but this has to be done only
once for each component and the arrangement and connection may even
be easier than writing the equations that connect the components in code.
As becomes apparent, this last approach should be favored for multi-scale
models, although it has to be noted that it is also possible to combine
multiple approaches in the same language.
Guidelines: All interactions between the individual modules in a model
should have a graphical representation in the corresponding diagram.
Each diagram should only have a few components. If it becomes too
crowded, some components should be grouped together to form a hier-
archical structure. Each individual component in the diagram should be
represented with an intuitive symbol that either corresponds to the ap-
pearance or function of its biological equivalent. Components should be
visually grouped according to their function and interaction to facilitate
understanding.
Importance in SHM modeling task: The original SHM features a
graphical representation in the form of 23 text boxes that are connected
by arrows. While this does give an overview of the physiological effects
present in the model, one of our first steps to better understand the model
was to augment this diagram by grouping the effects by the organs to which

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

...
<informalfigure float="0" id="frd">

<mediaobject>
<imageobject>

<objectinfo>
<title>

model diagram
</title>

</objectinfo>
<imagedata

fileref="model.png"/>
</imageobject>

</mediaobject>
<caption>

Diagram of the XYZ model.
</caption>

</informalfigure>
...

model MyModel
//(2) component location in diagram
MyComponent comp annotation(

Placement(transformation(
extent = {{0, 0}, {20, 20}}

))
);
...

equation
//(3) line connecting two components
connect(comp.c, other.c) annotation(

Line(points={{10, 0}, {10, 100}})
);
...

//(1) component icon as vector graphic
annotation(Icon(graphics={

Rectangle(extent={{0,0},{100,10}})
}));
end MyModel;

Figure 4: Two different ways in which modeling languages can support graph-
ical representations of models as part of their syntax. Left: CellML allows to
include diagrams or plots as figures in the model documentation. The image
files remain separate from the model code and have no semantic connection to
it except for the figure caption. Right: Modelica allows to add graphical anno-
tations using a vector graphics syntax. Models and their components can have
icons graphics (//(1)), which can be placed in a diagram coordinate system
(//(2)) and connected with lines (//(3)). This graphical representation is tied
to the structure of the model. If, e.g., a component is removed from a model,
the placement annotation (//(2)) must also be removed, which automatically
updates the diagram and ensures that it still accurately reflects the new model
structure.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

they belong and adding respective icons. Our Modelica implementation
now features a fully visual diagram with 15 components that is guaranteed
to be faithful, since it is tied to the equations in the code. It helped us
on several occasions to discuss the model with domain experts, such as
physicians and chemists.
References: The Physiolibrary is a Modelica library for physiological
models that has graphical representations for each component [38]. Pro-
MoT is a modeling tool that allows the composition of modular models
in a graphical way [44]. Alves et al. [62] compare 12 different simulator
tools, giving higher ratings to those that have graphical representations
for model components. Mangourova et al. [63] state that it is preferable
when a modeling tool for integrative physiology provides a graphical way
of composing models since this can reduce development time.

To easily refer to these characteristics we form the mnemonic MoDROGH
for Modular, Descriptive, human-Readable, Open, Graphical, and Hybrid. We
will also use the term “MoDROGH language” for a language that exhibits all or
most of these characteristics. A checklist for ensuring that a particular model
utilizes the MoDROGH criteria to the fullest extent permitted by the chosen
language can be found in Supplementary Note 3.

2.2 Existing languages exhibit MoDROGH criteria to vary-
ing extent

As mentioned in the introduction, there are multiple suitable languages avail-
able that implement the MoDROGH characteristics to some extent. In this
section the most prominent examples will be discussed with respect to each
characteristic (highlighted in italics). We consider a “modeling language” to be
any language used for describing and distributing mathematical models. This
includes exchange formats such as CellML and SBML, languages that are em-
bedded in a general-purpose programming language like Python or Julia, and
standalone languages like Modelica. We selected languages that are currently
popular either in systems biology or in mathematical modeling in general with
a tendency towards general-purpose modeling languages that are not restricted
to a specific organizational level or model type. We also only chose candidates
that exhibit at least some MoDROGH characteristics. We have to emphasize
that the list is not comprehensive, but we tried to cover examples for all major
trends in modeling languages.

MATLAB MATLAB is perhaps the most widely known language used for solv-
ing ODEs (https://www.mathworks.com/products/matlab.html). The
MoDROGH criteria can be best fulfilled when using the Simulink environ-
ment (https://www.mathworks.com/products/simulink.html) with the
embedded language Simscape (https://www.mathworks.com/products/
simscape.html). The SimBiology environment can be used as an al-
ternative, which is comparable to SBML in its expressiveness regard-

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simscape.html
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

ing rules and reactions and can also export models to SBML (https:
//de.mathworks.com/products/simbiology.html). It is, however, tai-
lored towards pharmacological models and not as feature-rich as Simulink
and Simscape, which is why we restrict our analysis on the latter combi-
nation. Simscape realizes modularity through full object-orientation with
class definitions, instantiation and inheritance, although Simscape classes
can only have one parent class, in contrast to MATLAB classes, which al-
low multiple inheritance. Through Simulink, models can be imported from
different languages using the FMI, but export of Simscape models with
this interface is currently not supported. The language is also declarative
allowing to freely mix between implicit and explicit formulation of DAEs,
which are written in a concise syntax that focuses on human-readability. It
supports documentation strings for components and human-readable la-
bels for variables. Unfortunately, the readability of Simscape is hampered
by the fact that Simscape has to be used in conjunction with Simulink,
which saves models in a proprietary binary format, which is not readable
in a text editor and not even openly documented. This issue is further ag-
gravated by the fact that backward compatibility to older versions of the
model format is not guaranteed [63]. Units are supported and a manda-
tory consistency check is performed at the interfaces between components.
There is no built-in support for ontologies, but since Simscape supports
object-orientation, “is-a” relationships, which designate a component as
an instance of a concept, might be expressed by building a large type hi-
erarchy of ontological terms. This would require all models to use this type
hierarchy and therefore reduce flexibility in designing generic base classes,
since Simscape only allows single inheritance. Simscape classes can be
used as graphical components within Simulink to create larger systems by
arranging and connecting them via drag and drop. Hybrid systems are
supported with index-reduction for DAEs and discrete events and vari-
ables. Unfortunately MATLAB, Simulink, and Simscape are proprietary
tools that are not open in any way, requiring license fees and prohibiting
custom extensions.

SBML In systems biology, the SBML is a widely used open language for de-
scribing biological models—mostly at the level of biochemical pathways
[64]. SBML level 3 includes an optional language module for hierarchi-
cal composition, which allows building modular models via the import of
components during which individual variables can also be overwritten or
deleted. Because it uses a subset of MathML to describe equations, SBML
is declarative and hybrid and in theory allows the definition of arbitrary
DAEs in explicit and implicit form. SBML is based on XML, which makes
it highly machine-readable and in turn facilitates interoperability between
tools, because support for model import or export can be implemented
easily. Unit definition is possible but optional and tools are not required
to interpret them. However, libSBML, the most popular library for work-
ing with SBML models, can perform automatic unit consistency checks

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://de.mathworks.com/products/simbiology.html
https://de.mathworks.com/products/simbiology.html
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

[65]. Support for discrete events is limited to reinitialization of continuous
variables. The reliance on MathML and XML is also a drawback, because
it limits the human-readability of model files and land presents challenges
for version control software that is not equipped to distinguish structural
from semantical changes. Individual components can be annotated with
textual notes, Systems Biology Ontology (SBO) terms, or Minimal In-
formation Required In the Annotation of Models (MIRIAM) metadata.
Using the SBML level 3 packages for layout and rendering, graphical an-
notations can be assigned to model components. The high interoperability
between SBML tools resulting from its focus on machine-readability is a
major advantage, because researchers can use a tool that is designed to fit
their specific use case and can reuse models across tools. Due to the wide
acceptance of SBML, it can be expected that most researchers will have at
least one such tool available so that the visual clutter of the XML files is
no issue for model reuse. However, most of these tools do not support all
optional SBML packages with the consequence that in practice support
for modularity, graphical annotations, and DAEs in implicit or explicit
form may be limited to specific tools.

CellML CellML is similar to SBML, but focuses on building more general
component-based models [66]. It is also open, declarative and hybrid with
the same considerations for being based on XML and MathML. In con-
trast to SBML, it does not only support units, but enforces that every
variable in a valid CellML model must have a unit definition. Modelers
can still choose the special value dimensionless to designate that a vari-
able does not have a unit, but they have to make this choice consciously
and explicitly. The language itself does not require tools to check the
consistency of these units, but OpenCOR, one of the main tools for creat-
ing and simulating CellML models, does perform automated consistency
checks when a model is loaded or saved [67]. OpenCOR can also some-
what alleviate the downside in human-readability, because it defines a so
called “CellML Text” language, which can be used to view and manipulate
the model in a more human-readable text format [67]. However, “CellML
Text” has limited expressiveness only allowing the definition of explicit
and not implicit equations and it is only used for viewing and editing
and not for model storage. It also does not contain annotations, which
can be defined in CellML through embedded metadata files in Resource
Description Framework (RDF) format, which can also contain ontological
annotations. Since version 1.1, modular CellML models can be hierarchi-
cally composed of sub-models [24, 68]. In contrast to SBML, CellML only
allows including external drawings as figures in the model documentation.
These diagrams are not linked to the code itself and therefore have to be
maintained separately.

Python Python is an open-source programming language that is popular in
data science (http://www.python.org). The language itself is impera-
tive, but it can be extended with some declarative features for special

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

http://www.python.org
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

purposes. In systems biology, notable efforts include PySB [33] and the
PySCeS [31]. These packages define their own declarative domain-specific
languages (DSLs) within Python to tackle specific biological use cases.
PySB focuses on rule-based reaction models while PySCeS focuses on
ODEs, structural analysis, and metabolic control analysis. There also
exist general-purpose packages, such as SimuPy [69] and PyDSTool [32],
that allow users to create and analyze models built with ODEs, DAEs and
discrete events.
All aforementioned python-based solutions are open and declarative and
Python itself focuses on human-readability. However, the modeling pack-
ages mainly rely on the modeler to use the features of Python to implement
modularity concepts and to document their models by themselves. Also,
none of them support any graphical representation of models. Notably,
SimuPy and PyDSTool lack slightly in human-readability and declara-
tiveness because they require a very specific and low-level technical format
for defining equations. Exceptions in terms of modularity are SimuPy’s
block diagrams and PySB’s macros. The fact that the environment is not
declarative in itself leads to the drawback that only PySB supports on-
tological annotations and only PySCeS supports the definition (but not
consistency checks) of units. Regarding the hybrid characteristic, the dif-
ferences are most pronounced since PySB is not hybrid at all, featuring
only specific biochemical rules without events, while PySCeS and SimuPy
allow discrete events as well as ODEs and only PyDSTool is able to also
handle DAEs. None of these packages supports discrete variables.

Antimony Antimony [35] is a declarative modeling language with an emphasis
on human-readability used by the open Python-based environment Tel-
lurium [34], which can be used for model building, simulation and analysis.
Since Tellurium version 2, Antimony also supports the structural annota-
tion of models with terms from the SBO or general MIRIAM metadata.
Antimony is modular by design, allowing the definition of components
that can be imported in other models. As in SBML, individual variables
and equations can be overwritten or deleted during import. It is hybrid
in the sense that it allows discrete events, but it only supports explicit
ODEs and not DAEs and it lacks support for declaring discrete variables.
Like SBML, Antimony focuses on models on the level of biochemical path-
ways by providing a special syntax for reactions. It has no support for
embedding any form of graphical model representations.

Modelica Modelica is an open-source declarative modeling language primarily
used in engineering [37]. It is very similar to MATLAB’s Simulink environ-
ment and the Simscape language. In fact, Simulink was developed before
Modelica and Modelica before Simscape, which suggests some influence
between the languages in both directions. Modelica supports modularity
via object orientation including the overwriting of variables and explicit
equations, and, in contrast to Simscape, multiple inheritance. Most Mod-

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

elica tools support the FMI, allowing the reuse of models across different
languages. Like Simscape, it also allows grouping of interface variables to
connectors, which can be used to connect models graphically via drag and
drop. It is human-readable and declarative allowing to define a model with
a mix of explicit and implicit DAEs. Models can be annotated with docu-
mentation strings for individual components, a full HTML documentation
for classes and machine-readable annotations, which do not support on-
tologies by default but have a flexible extension mechanism with so-called
vendor-specific annotations. As in Simscape, “is-a” relationships between
model components and ontological terms can also be implemented via
a type hierarchy. While this introduces design restrictions in Simscape,
Modelica supports multiple inheritance and therefore allows maintaining
ontological type hierarchies in addition to generic base classes. Units are
supported and optional consistency checks can be performed. Modelica is
also fully hybrid with support for discrete events and variables as well as ar-
bitrary DAEs. With additional, open-source libraries, it is also capable to
express models, e.g., as bond graphs, Petri nets and finite state machines.
The Modelica ecosystem is a mix of open academic tools and commercial
tools for use in industry while most libraries are open-source. There are
two actively maintained open-source Modelica compilers called JModelica
and OpenModelica, the latter including a fully-fledged integrated devel-
opment environment (IDE) [70, 71]. However, Dymola, the most widely
used Modelica IDE, is proprietary and not fully compatible with open-
source alternatives (https://www.3ds.com/products-services/catia/
products/dymola/). Therefore, Dymola models may need to be adjusted
slightly to run with open-source compilers or vice versa.

Julia Julia is an open programming language that is mainly used for data
science [36]. It is imperative by nature, but the language can be extended
with macros, which are more powerful than the respective capabilities of
Python, to allow declarative modeling. Elmqvist et al. use this feature
for Modia, an implementation of the Modelica syntax within Julia [72].
Modia is currently still experimental. It is modular, hybrid, and focuses
on human-readability, but lacks, for example, the graphical features of
Modelica.
In general, Julia offers strong support for differential equations with pack-
ages such as DifferentialEquations.jl which supports hybrid systems in-
cluding DAEs, partial differential equations (PDEs) and discrete events,
but not discrete variables [73]. The syntax of this package focuses on
human-readability and is declarative, but only allows either a fully-implicit
or semi-explicit formulation of the whole system of DAEs with a mass ma-
trix. Like Python-based solutions, annotation and modularization in this
package is up to the modeler using the features of the language Julia
which supports a multiple dispatch mechanism, which can be used to ac-
complish the same functionality as object orientation except for encapsula-
tion. However, units with automated consistency checks can be supported

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

though the Unitful.jl package [73]. Like Modia, DifferentialEquations.jl
offers no graphical representation of models.

M
AT

LA
B

1

SB
M

L

C
el

lM
L

py
SB

Py
SC

eS

Si
m

uP
y

Py
D

ST
oo

l

A
nt

im
on

y

M
od

el
ic

a

Ju
lia

2

modular 3 (3) 3 (3) 5 (3) 5 3 3 (3)
declarative 3 3 3 (3) (3) (3) (3) 3 3 (3)
readable 5 (3) (3) (3) (3) (3) (3) (3) 3 (3)
open 5 3 3 3 3 3 3 3 (3) 3
graphical 3 3 (3) 5 5 5 5 5 3 5
hybrid 3 (3) (3) 5 (3) (3) 3 (3) 3 3
1 using the Simulink environment and the Simscape language
2 using macro packages that extend the language

Table 1: Evaluation of language candidates with respect to the desirable
characteristics established in this paper. A check mark in parentheses means
the language has the respective characteristic in principle, but not to its full
extent or with noticeable drawbacks. A more detailed version of this table
with regard to individual language features can be found in Supplementary
Table 1.

A summary of the available languages and their features can be found in
Table 1. Notably, Simscape and Modelica stand out by supporting full object-
oriented design of models, discrete variables, an integrated graphical represen-
tation, which allows biological drawings and manual arrangement, acausal con-
nections between components, cross-language import of models via the FMI,
grouping of interface variables as connectors, and unrestricted mixing of im-
plicit and explicit equation formats. The feature-richness of these languages is
not surprising, since both are established industry standards, which are used in
multiple disciplines to build large and complex models. Between the two can-
didates, Modelica additionally provides a mostly open environment, multiple
inheritance, overwriting of variables and some equations during instantiation
and inheritance, export to other languages via the FMI, and machine-readable
annotations, which can, in theory, be used to implement support for ontologies.
On the downside, this ontology support must be implemented manually and is
not included in major tools and while open source tools do exist, they only make
up a part of the Modelica ecosystem and are not necessarily fully compatible
with proprietary solutions.

Although it is certainly not the only option and it is as of now foreign to
the systems biology ecosystem, we think that Modelica is a suitable choice to
demonstrate the benefits of the MoDROGH characteristics since it implements
them to the fullest extent among our selection of languages.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

2.3 Modularizing a model of the human cardiac conduc-
tion system facilitates reuse

The Seidel-Herzel model (SHM) describes the autonomic control of the heart
rate in humans at a high level of abstraction [10]. It was developed and imple-
mented by Henrik Seidel in 1997 using the programming language C. We chose
this model because preliminary1 versions, which have been published as individ-
ual peer-reviewed articles [11, 74], have gained substantial research interest and
are able to simulate several relevant disease conditions such as first and second
degree atrioventricular block [10], carotid sinus hypersensitivity [11], congestive
heart failure [75], and primary autonomic failure [75] as well as treatment options
such as the administration of atropine or metoprolol [75]. It is also especially
interesting with regard to its dynamical properties such as the emergence of
Mayer waves [10], bifurcations [11] and cardiorespiratory synchronization [76].
In a previous paper, we translated the SHM to Modelica [12], and we recently
also published our full model code as an open-source reference implementation
[77]. The model is therefore freely available, able to produce physiologically
relevant results, large enough to benefit from engineering methodology, and yet
small enough to allow an in-depth analysis at the source code level. It is not
representative of lower-level metabolism and cell-signaling models, which are
currently the most common type of models encountered in systems biology, but
it is well suited to showcase what is needed for future multi-scale models, which
inevitably have to leave these well-explored levels behind to generate new in-
sights. In fact, the model can already be considered to span multiple scales of
time since it includes effects at the sub-second level as well as on the level of
multiple minutes [78].

To be more specific, the SHM can be classified as a hybrid (discrete and
continuous), deterministic, quantitative, macro-level model. All effects in the
model are described on the organ level, including the time course of systemic
arterial blood pressure generated by the pumping of the heart; the Windkessel
effect of the expanding arteries dampening the initial rise in blood pressure;
the arterial baroreceptors generating a neural signal depending on the absolute
value and the increase in blood pressure; the autonomic nervous system emitting
norepinephrine and acetylcholine as hormone and neurotransmitter based on
signals from the baroreceptor and the lungs; and the cardiac conduction system
with the sinoatrial node (SA node) as main pacemaker and the atrioventricular
node (AV node) as a fallback system.

In the following, only the conduction system is examined. It takes an in-
put signal from the SA node (based on norepinephrine and acetylcholine con-
centrations) and includes the refractory behavior of the SA node2 limiting the
maximum signal frequency, the delay between a signal from the SA node and
the actual ventricular contraction, and the AV node generating a signal if no
signal has been received for a given period of time. In the original model, these

1Note that although the journal article [11] was published one year after the PhD the-
sis [10], the PhD thesis actually contains the latest version of the model with many small
improvements.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

effects were tightly coupled within a single piece of code comprising five param-
eters, and 13 variables and equations—not counting additional parameters and
variables for initial conditions. We found that this complexity makes it hard to
understand and modify the model, which is why we translated it into a modular
structure using Modelica. We will explain Modelica-specific language constructs
as they appear in the code examples, but for a more complete introduction to
Modelica in a biological context the reader is referred to the Lotka-Volterra ex-
amples in [79] as well as our own implementation of the Hodgkin-Huxley model
[80].

The modular version separates the code into the three components RefractoryGate
, Pacemaker and AVConductionDelay. These components are connected via
a unifying interface using a base class UnidirectionalConductionComponent,
which takes a Boolean signal as an input and produces a Boolean output. These
inputs and outputs are only true for the exact point in time when a signal is
issued (i.e., , they behave as a sum of Kronecker deltas). In Modelica, this
behavior can be indicated by defining a type alias InstantSignal.

type InstantSignal = Boolean(quantity="sum of Kronecker deltas");
connector InstantInput = input InstantSignal annotation(...);
connector InstantOutput = output InstantSignal annotation(...);

The new type is functionally identical to the base type Boolean, but by
overwriting the built-in variable quantity it includes additional information
that is both human-readable and can be interpreted by graphical tools to en-
hance understandability. The next two lines achieve two separate goals: First,
the keyword connector designates InstantInput and InstantOutput as part
of the interface of a class to the outside world. Second, specifying the input
and output causalities ensures that input signals can only be connected to

output signals and vice versa. This distinction can also be reflected in the
graphical representation, which is defined in annotation() statements, which
are shown here without their content for the sake of brevity. The base model
UnidirectionalConductionComponent, which has one input and one output,
then becomes

partial model UnidirectionalConductionComponent
InstantInput inp "input connector" annotation(Placement(...));
InstantOutput outp "output connector" annotation(Placement(...));
annotation(Icon(...));

end UnidirectionalConductionComponent;

Note that the model is declared as partial which indicates that it is only
a template that cannot be used on its own but must be extended by defining
other models that include the following declaration.

extends UnidirectionalConductionComponent;

This statement imports all variables and equations of the base class into
the current model, which ensures that all components will have an input and
output connector named inp and outp without the need to define these variables

2Seidel probably meant to include the refractory behavior of the ventricles and not the
SA node. The actual implementation, however, checks the refractory state before the delay
between SA node and ventricles is applied.

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

multiple times. Models can also inherit graphical annotations from base classes,
which can define a common look and connector placement for the graphical
representation.

The three main components RefractoryGate, Pacemaker and AVConductionDelay
all extend UnidirectionalConductionComponent. For the sake of brevity we

will only show the code for the RefractoryGate here while the code for the
other two components can be found in Section 4.2. The RefractoryGate rep-
resents the refractory behavior of the SA node which cannot be excited for a
certain time period after it has fired a signal. For our model this means that
the output equals the input except that after each signal there is a time period
d_refrac in which incoming signals are ignored. This results in the following
definition:

model RefractoryGate "lets signal pass if refractory period has passed"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
import SI = Modelica.SIunits;
parameter SI.Time t_first = 0 "time of first signal";
parameter SI.Duration d_refrac = 1 "duration of refractory period";
Boolean refrac_passed = time - pre(t_last) > d_refrac "not refractory?";

protected
discrete SI.Time t_last(start=t_first, fixed=true) "time of last output";

equation
outp = inp and refrac_passed;
when outp then

t_last = time;
end when;

end RefractoryGate;

This model showcases several language features: It designates parameters
with the parameter keyword, indicating that their value will not change during
the simulation. It uses the Modelica.SIunits package, which contains types
with unit definitions according to the SI. It documents each variable with a short
informative explanation. It defines the helper variable t_last in a protected
environment, which indicates that this variable is only relevant inside this com-
ponent and should be hidden from other components. It contains an event using
the when keyword, which can be used to assign values to discrete variables and
to reinitialize continuous variables. It uses the pre() function to distinguish
between the value of t_last before and after the event, which is required, be-
cause equations do not assume any causality. It explicitly marks t_last as
discrete, which ensures that it must be defined within a when equation and
indicates to the reader that it remains constant between events. It also employs
multiple inheritance by including two extends statements: one for the base
class containing the interface connectors, and one for an icon class containing
the graphical annotation code. The latter is not strictly required, but it is con-
venient for readability, because it allows keeping verbose icon annotations in a
separate file.

The other two components follow a similar design structure. The Pacemaker
represents the capability of the AV node to generate spontaneous action poten-
tials in the absence of a signal from the SA node. This means it lets incoming
signals pass through but also issues a signal on its own when the output has been
silent for the duration of its period period. To ensure that signals during the

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

refractory period do not prematurely reset the pacemaker, it needs a separate
reset input, which is only triggered when the output signal has also passed the
refractory gate. The AVConductionDelay represents the time delay that occurs
due to the slow conduction between AV node cells. It delays an incoming signal
by a duration that depends on the elapsed time since the last output signal has
been issued. As mentioned above, the code for both of these components can
be found in section 4.2.

To form the full model of the cardiac conduction system, the components
have to be connected through their interface variables. In Modelica, this is
usually done in graphical tools like OpenModelica through a drag and drop
interface. For this, the aforementioned annotation() statements come into
play. They define the icons and the placement of components and connection
lines in a vector graphics format. An example for the placement of the inp
connector may look as follows:

InstantInput inp "input connector" annotation(
Placement(

visible = true,
iconTransformation(

origin = {-108, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0
)

)
);

This ensures that the resulting diagram in Figure 5 is not a separate image
file that has to be maintained separately, but is instead directly tied to the ac-
tual model structure. To keep the model code simple and short we defined the
icon annotations in separate classes whose code can be found in Supplementary
Listing 23–27. As seen in Figure 5 we chose an open fence gate for the refrac-
tory gate, a metronome for the pacemaker and an hourglass for the delay. The
components are simply connected in order with the exception that the reset of
the pacemaker component is only triggered if the signal also passed the refrac-
tory component. The resulting composite Modelica model ModularConduction
looks as follows:

model ModularConduction
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Heart;
import SI = Modelica.SIunits;
RefractoryGate refrac_av(d_refrac=0.364) "refr. time of AVN" annotation(...);
Pacemaker pace_av(period=1.7) "AV node pacemaker behavior" annotation(...);
AVConductionDelay delay_sa_v "delay from SAN to ventricles" annotation(...);
discrete SI.Duration d_interbeat(start=initial_T, fixed=true);
discrete SI.Time cont_last(start=0, fixed=true);

equation
connect(inp, pace_av.inp) annotation(...);
connect(pace_av.outp, refrac_av.inp) annotation(...);
connect(refrac_av.outp, pace_av.reset) annotation(...);
connect(refrac_av.outp, delay_sa_v.inp) annotation(...);
connect(delay_sa_v.outp, outp) annotation(...);
when outp then

d_interbeat = time - pre(cont_last);
cont_last = time;

end when;
end ModularConduction;

Note that we do not show the content of the annotation() statements
here for the sake of brevity. The full code can be found on GitHub and in

28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

Supplementary Listing 1–27. Since the model itself receives a Boolean input
from the SA node and provides a Boolean output for the Ventricles, it is itself
a UnidirectionalConductionComponent. Components are used by defining
variables of the types RefractoryGate, Pacemaker, and AVConductionDelay.
The definitions also overwrite the parameters d_refrac and period to adjust
the general Pacemaker and RefractoryGate models to their specific use case
in this model. The inputs and outputs of the components are connected via
connect() equations. In this case, connect(a, b) is synonymous with the
equation a = b, but more complex connectors can connect multiple variables
within a single statement and can also handle conservation laws. The model
also introduces the additional variable d_interbeat, which allows using the
interbeat intervals as a higher-level feature.

cc

AVN

Figure 5: Diagram of the modular conduction model with symbols for the
components. From left to right: Pacemaker for the pacemaker effect of the
AV node, RefractoryGate for the refractory behavior of the SA node and
AVConductionDelay for the combined delay between the SA node and the ven-
tricles. The C in a black box indicates that the main variable of the component
is held constant while the stopwatch symbol for the delay should indicate that
the duration is time-dependent. Components have their input on the left, their
output on the right and the pacemaker has the additional reset input at the
bottom.

The structure defined in this model (and seen in Figure 5) deviates from the
original SHM because the refractory behavior is situated at the AV node instead
of the SA node. Additionally, the delay component models the complete delay
from the SA node to the ventricles but is actually applied after the components
for the AV node. To remain closer to physiology, one could split the delay com-
ponent into two delays—one before and one after the AV node—and similarly
add another refractory gate for the SA node. However, in Supplementary Note
1 we show that this simplified structure closely replicates the behavior of the
SHM and even reveals some minor inconsistencies in the original model.

We also used our modular version to implement the trigger for PVC, which
initially uncovered the problems with the monolithic version. It turned out that
this extension now becomes possible without much effort, since it is easier to
determine the effect of a PVC on the individual components one by one than
to describe its effect on the whole system at once. A complete discussion of the
extension can be found in Supplementary Note 2 and a diagram of the resulting

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

model can be seen in Figure 6.

c

S V

PVC

cc

pace_av refrac_av delay_sa_v refrac_v

AVN

Figure 6: Diagram of the PVC model. The components are the same as
in Figure 5 with additional components and connections highlighted in blue:
reset inputs, second RefractoryGate (right) for the refractory period of the
ventricles, two logical OR gates and one AND gate. The letters on the outside
of the rectangle represent the connections of the model to the outside world:
the input from the SA node (S), the output to the ventricles (V) and the trigger
signal for PVCs (PVC).

3 Discussion
The model that we chose to demonstrate the benefit of the MoDROGH charac-
teristics is quite small as compared to, e.g., , current whole-cell models, which
can involve 28 or more individual interconnected components [81]. It can be
argued that one needs to look at models of this scale to really assess the im-
pact of model engineering decisions and language choice. However, we think
that more than the size or structure of the model, the context of its reuse is
the most important factor that allows us to generalize our findings to different
areas of mathematical modeling. To extend the SHM, we needed to identify
the correct integration points for the new effect in the model, which in turn
required us to first separate the model into modules that each represent only a
single physiological effect. We think that this requirement to understand and
break up existing models for reuse in a different context represents one of the
main challenges of multi-scale modeling in general. Additionally, larger models
would not allow an in-depth discussion of their code within a single research
article, since there would be simply too much interrelated code to discuss. We
therefore chose the cardiac conduction system of the SHM as a “minimal work-
ing example”, which is just large enough to show the effects that we want to
discuss but still small enough to cover the whole code in this article. This is in
accordance with common practices in computer science textbooks where general
design patters for the construction of large software systems are discussed based
on small examples [82]. It is also important to note that the language Modelica

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

and the techniques that we discuss here can be, and to some extent have been,
applied to build large models. Examples include the Physiolibrary, a library
to build multi-organ or whole-body circulatory models [38], the Guyton model
of physiological regulation [83] or even larger examples from industrial settings
such as end-to-end simulation of launch vehicles [84] or electrical power systems
with thousands of components [85]. For our specific example, an application to
a model of relevant size is also tangible, because our model of the cardiac con-
duction system can be seamlessly integrated in our Modelica implementation
of the full SHM, which features 15 interconnected components and also utilizes
the MoDROGH characteristics [12].

This leads to our initial research question to assess how the modular, declar-
ative, readable, open, graphical and hybrid nature of a MoDROGH language
helped in the modeling process of the conduction model. We discuss this for
each individual characteristic and then sum up the impact on the model de-
sign goals of reproducibility, understandability, reusabilty, and extensibility and
reflect on our choice to use the modeling language Modelica.

Modular The modular implementation of the cardiac conduction system con-
sists of small components with at most three parameters and seven vari-
ables and equations including only two to three interface variables. This
stands in contrast to the five parameters and 13 variables and equa-
tions of the monolithic version. The lower amount of items that have
to be processed at the same time can be seen as an indicator for in-
creased understandability [86]. The Pacemaker, RefractoryGate and
ConductionDelay models all are quite generic and it is easy to imagine
that they could be reused in a different model that requires these effects.
This also facilitated the extension of the model with a trigger for PVCs,
which required the incorporation of a second RefractoryGate to model
not only the refractory behavior of the SA node but also of the ventri-
cles (see Figure 6). In this case, the component could be reused without
modification.
This extension was our initial goal, which sparked the discussion about
language characteristics and design guidelines for mathematical models.
When we originally tried to implement this behavior in the monolithic ver-
sion, we found it extremely hard to pinpoint the lines of code that would
need to change. Now, with the modular version, the question was not
“Which variables do I have to change?” but “Which influence does a PVC
have on physiological component X?”. The discussion shifted from tech-
nological considerations to physiological ones, which made the extension
possible without much effort. In the original model, several variables and
equations would have to be added, making the already complicated sys-
tem almost unmanageable. The benefits of modularity become even more
apparent when moving from the conduction model to the whole SHM.
Since the whole ModularConduction model is also encapsulated with a
simple interface consisting of an input, an output, the interbeat interval

31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

and the timestamp of the last contraction it can seamlessly be integrated
into our modular version of the SHM. In fact, switching between the mono-
lithic and modular implementation becomes as simple as changing the type
of a variable from MonolithicConduction to ModularConduction. This
is in stark contrast to the original implementation by Seidel in C, where
the variables and equations for the conduction system where scattered
throughout the code of the whole model. As a welcome side effect, the
separation of the model into individual physiological effects also revealed
some design flaws in the original. For example, it was not quite clear if
the refractory term referred to the refractory behavior of the SA node,
the AV node, or the ventricles and in Supplementary Note 1 we discov-
ered that the C implementation introduces a seemingly unphysiological
time-dependence in the effective duration of the refractory period.
It has to be said that the components we developed are only reusable
within their physiological context. In contrast to, e.g., reaction equations
in metabolism models, physiology is not yet standardized enough to have
a unifying theory that allows building libraries of components that can be
used in multiple tissue or organ models. However, the Physiolibrary can
be seen as a first approach in this direction, which also uses Modelica [38].

Human-readable All variables, parameters and components in our model
have human-readable labels that clearly specify which physiological quan-
tity they represent. The full version of the model code, which can be found
in Supplementary Listing 1–27 and at https://github.com/CSchoel/
shm-conduction, also contains additional documentation. This is im-
portant for the understandability of the model but also for reuse and
extension. Reuse requires the identification of possible connection points
between variables in different models based on their semantics. Extension
could, for example, involve the replacement of one variable or component
with a more complex representation, which models the same concept in
more detail.
The new model also removed an undocumented technical workaround from
the original where the interaction between refractory time, spontaneous
beats by the AV node, and the time delay were resolved indirectly: A
scheduling system kept track of the next time a beat would be issued,
giving precedence to beats that enter the schedule at a later time but would
take effect earlier. A diagram of this system can be seen in Supplementary
Figure 1. This indirect implementation was hard to understand, because
the schedules have no direct physiological equivalent. The AV node, for
example, does not signal the sinus node ahead of time to indicate when
it will issue the next beat. This systems was therefore replaced by an
explicit, more readable version by only considering actual signals and no
schedules.
Modelica focuses on human-readability over machine-readability, which
enabled us to discuss code-level details in this article and makes it possible

32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://github.com/CSchoel/shm-conduction
https://github.com/CSchoel/shm-conduction
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

to quickly review changes in a version control tool like Git (https://git-
scm.com/). For example, V. Blesius added some small changes to the code
presented in this article. The Git commit is titled “adds parameters for
initial values” and might be displayed as follows by a version control tool:

parameter SI.Duration initial_T = 1 "...";
parameter SI.Duration initial_cont_last = 0 "...";
discrete SI.Duration d_interbeat(start=1initial_T, fixed=true) "...";
discrete SI.Time cont_last(start=0initial_cont_last, fixed=true)

"...";

As a comparable example of an XML-based file under version control, the
CellML version of a one-dimensional model of the rabbit AV node [87] has
a similarly innocuous small change (https://models.physiomeproject.
org/workspace/inada_2009/@@shortlog). It is titled “[name removed]
noted that the AN and NH versions of the model had the wrong stimulus
amplitude. It was changed from 2 nA to -2 nA. Also he corrected the
models so they are now at steady state.”. The relevant lines look similarly
clear:

<variable name="y" units="dimensionless" initial_value="
00.2318929504458130" public_interface="out"/>

However, the whole commit lists 509 added lines and 716 deleted lines
of which only 100 added and 135 removed lines are accounted for by the
actual changes in the commit message. The additional clutter in the com-
mit includes whitespace changes, reordering of code elements, formatting
changes of floating point values, date changes, a change of the model name,
and the (most likely accidental) removal of valuable comments about se-
mantic metadata. Although the Physiome Model Repository focuses on
CellML as model file format, no specialized version control software for
XML documents is used. The website only shows commit messages but
no changesets and the download contains an ordinary Git repository.
Another advantage of fully human-readable code can be seen in the ex-
periment setup, which we show in section 4.3. This model contains the
code __OpenModelica_simulationFlags (s = "dassl"), which tells the
OpenModelica compiler to use the Differential Algebraic System SoLver
(DASSL) [88] to solve the equation system. This information can only
be interpreted by OpenModelica and not by other tools, which might not
support this solver. However, since Modelica is designed to be written by
humans directly, researchers who inspect the model can easily find this
information without knowing that it is there. In contrast, if the model
was written in an XML-based language, researchers would probably not
look at the raw code, but load the model in a tool that uses an interme-
diary language or a graphical user interface to display the model content.
It is likely that such a tool would just discard information that it cannot
process, making it possible that details like these tool-dependent solver
settings might be overlooked in reproduction attempts.

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://models.physiomeproject.org/workspace/inada_2009/@@shortlog
https://models.physiomeproject.org/workspace/inada_2009/@@shortlog
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

However, our model also has a downside with regard to its human-readability:
The visual annotations, which are only helpful within a tool like Open-
Modelica, do introduce visual clutter when the model is only viewed in
text form. To some extent, we could alleviate this issue by separating
icon definitions into separate files and base classes and including them via
multiple inheritance. Yet still the model ModularConduction has to in-
clude verbose annotation() statements for the placement and connection
of components.

Hybrid The example model is purely discrete and therefore not hybrid in itself.
However, it is important to note that we could use the same language to
describe this discrete model that we also used for the rest of the SHM,
which is mainly continuous. It was, for example, not needed to explicitly
set the derivatives of the discrete variables to zero, which would introduce
visual clutter and therefore reduce understandability. While our example
cannot directly show the benefits of DAEs and acausality, these features
are included in the implementation of the SHM that we published previ-
ously. One example of this are the acetylcholine kinetics, which use the
following connector interface.

connector SubstanceConcentration
Real concentration "concentration of the substance";
flow Real rate "rate of concentration change";

end SubstanceConcentration;

The keyword flow indicates that the variable rate is subject to a conser-
vation law: At each connection point in the system, the sum of acetyl-
choline flow from and to all connected components must be zero. In
the SHM, the acetylcholine concentration is only determined by a sin-
gle NeurotransmitterRelease component, which is connected to the
parasympathetic system, but it is easy to imagine an extension that in-
cludes multiple uptake sites. In such an example, the automatic generation
of the conservation law by Modelica would allow to separate the effects
of all connected components, which only have to declare their individual
contribution to the acetylcholine concentration. This both leads to better
encapsulation, making the model more understandable, and it facilitates
extension since additional components that have an influence on the con-
centration can be added without changing any of the equations of the
existing components.

Open Since the model discussed here is written in an open language with open-
source tools, readers can easily run simulations themselves. They simply
have to download the latest release from the Github repository at https:
//github.com/CSchoel/shm-conduction, download and install Open-
Modelica and load the models using the “Load library” option in the “File”
menu. This means that our results can be easily reproduced regardless of
available licenses or of the user’s operating system and that researchers
who might want to reuse the model or components can quickly run simu-
lations to assess the usefulness of the model for their use case.

34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://github.com/CSchoel/shm-conduction
https://github.com/CSchoel/shm-conduction
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

However, there may still be some barriers. First, Modelica is not yet widely
known in systems biology, which makes it likely that researchers will have
to become familiar with a new tool and language in order to reproduce our
findings. Second, engineers that use Modelica for industrial applications
mostly turn towards proprietary solutions like Dymola (https://www.
3ds.com/products-services/catia/products/dymola/), which can be
more feature-rich than and not fully compatible with OpenModelica.

Declarative Even though the example model only contains time-related vari-
ables and no other physical quantities, the fact that we introduced proper
SI units is still helpful for understanding. For example, it avoids errors, if
the components are reused in another model that measures time in mil-
liseconds instead of seconds. Unfortunately, Modelica does not enforce
unit definitions or unit consistency checks. However, when these optional
unit declarations are used consistently, they help to quickly identify and
solve such order of magnitude errors.
In his C implementation, Seidel implemented a fourth order Runge-Kutta
method himself, making this the only numerical method available. By
using a declarative language, it becomes possible to easily switch between
different solvers which can improve numerical accuracy. Not being tied to
a specific numerical method also increases interoperability between models
and thus reusability.
Another benefit of the declarative specification that becomes apparent in
our example is the increase in mathematical soundness and clarity. The
C implementation contained some design choices that were convenient for
programming, but neither for understanding nor physiological plausibility.
For example, the original model mixed variables that represent actual
signals and time stamp variables that schedule signals for the future (see
Supplementary Figure 1). To comprehend these formulas a context switch
from the physiological meaning to the technical representation is required.
Another hurdle for understanding the model is the unclear causality. In the
SHM, every effect is triggered by the contraction, even if there is no actual
signal feedback from the ventricles to the AV node on a physiological level.
By separating the model into smaller physiologically meaningful modules
with a unified interface, the Modelica compiler automatically hinted at
these concerns, e.g., because variables where missing.
One downside of choosing Modelica is that we could not demonstrate
the benefit of augmenting a model with semantic information using on-
tologies. However, the use of the SIunits package and the definition of
the InstantSignal type to indicate Kronecker delta behavior of in- and
outputs show how this could be achieved through a type hierarchy: The
variables in the model do not only have units, but we also distinguish
between the type Time for a point in time and Duration for a differ-
ence between two points in time. Similarly, InstantSignal is technically
equivalent to the type Boolean, but carries additional semantic informa-

35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

tion about the shape of the signal. In much the same way, one could
build large type hierarchies containing all terms of an ontology like the
SBO, Chemical Entities of Biological Interest (ChEBI) [89] or Ontology
of Physics for Biology (OPB) [90]. Another way to implement ontol-
ogy support in Modelica would be so called vendor-specific annotations
of the form annotation(__VendorName(key=value, ...)), which could
be added to components and variables. Since ontology terms are typi-
cally identified through Uniform Resource Identifiers (URIs), which are
not human-readable, and because there are currently no graphical Mod-
elica tools that support such ontologies, the first approach using the type
system seems preferable for now.

Graphical The diagram in Figure 5 helps to understand the model at first
glance. It can both be used as an entry point for understanding and for
communicating the model to a domain expert who is not familiar with
mathematical modeling or the language Modelica. The same would not
be possible with more detailed SBGN graphs or automatically generated
graphs of variable interactions as in SBML, which would also include in-
ternal variables of components and helper variables. At the same time,
the diagram is not just a separate image file but it is generated from
annotation() statements in the individual components themselves. This
means that it will remain up to date if components are added or removed
or new connectors are included so that other researchers can rely on the ac-
curacy of the diagram if they want to understand, reuse, or reproduce the
model. The annotations also allow building more complex models or small
test cases using drag and drop in a graphical tool like OpenModelica [70],
which can facilitate reuse and extension. For example, the PVC extension
required very little changes in the code. Most of the changes could be
applied by adding a RefractoryGate component and three logical AND
and OR gates to the diagram which can be seen in Figure 6.
On the downside, it can be argued that the connection in Figure 5 which
points back from the refractory component to the pacemaker component is
unintuitive and may be confusing when the model is interpreted physiolog-
ically. This can be remedied by introducing another layer of abstraction,
which combines the components Pacemaker and RefractoryGate to a
single component RefractoryPacemaker. We did not do this in our im-
plementation to keep the model code as simple as possible, but in a larger
model such an intermediary component may be advisable.

As of now our discussion was focused on Modelica, but in Section 2.2 it
could be seen that there are multiple languages with MoDROGH characteristics.
Additionally, our example revealed some shortcomings of Modelica with respect
to modeling biological systems. We therefore want to recapitulate which features
of the language were especially beneficial for our model design, which features
were lacking, and what are the trade-offs that have to be made when switching
to another language.

36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

Our Modelica implementation made heavy use of object orientation, includ-
ing multiple inheritance; it featured discrete variables with human-readable la-
bels; it relied on the graphical representation for creating and communicating
the toplevel model structure; it provided minimal interfaces by encapsulating
helper variables and defining explicit connectors; and it used the built-in sup-
port for SI units. Unfortunately, unit definition are not enforced in Modelica,
which means that it is up to the modeler to ensure their reliable use. Modelica
also does not support semantic annotation of model components with ontologi-
cal terms. We showed how this can be achieved with a type hierarchy or with
vendor-specific annotations, but still ontology support would have to be added
to open-source Modelica tools to be of practical use.

As an alternative, MATLAB with the Simulink environment and the Sim-
scape language is the only other language presented in Section 2.2 that supports
full object orientation, discrete variables, and integrated graphical annotations.
In contrast to Modelica, it also enforces unit checks at the interfaces between
components. The only technical downside of this language is that Simscape
classes do not support multiple inheritance. However, this is probably no issue
since we only used multiple inheritance to import the annotation code for icons.
Simulink only supports icons as links to separate image files and not as ver-
bose vector graphics code. This has the benefit of not cluttering the code and
therefore removing the requirement for multiple inheritance, but it also has the
drawback that it is not possible to define a common appearance for all compo-
nents by inheriting parts of the graphical annotation from the base class. Apart
from the technical aspects, the biggest drawback of MATLAB is that it is not
open. If we had used MATLAB instead of Modelica, researchers who want to
repeat our experiments could still download the code from GitHub, but they
would need licenses for Matlab, Simulink, and Simscape to run the simulations.

From the open alternatives, Julia with the Modia package comes closest to
the features we used for our example model. It has the drawback of not support-
ing any graphical representation and still being in an experimental stage. If one
instead makes the switch to the more stable DifferentialEquations.jl, the sup-
port for object-orientation, discrete variables, variable labels and encapsulation
is lost.

To compensate the shortcomings of Modelica, CellML might be the best fit,
since it is the only language from those presented in Section 2.2 that enforces unit
definitions. Additionally, it also supports model annotation with terms from an
ontology and as an accepted COMBINE standard it is part of an established
ecosystem for mathematical modeling in systems biology. With SemGen, there
even exists a tool for semantics-based annotation and composition of CellML
(and SBML) models [91]. On the downside, CellML does not support full object
orientation for composing models. This means that base classes that define an
interface need to be imported as components of the model, which requires a
more verbose syntax. It also does not support discrete variables, but only
event triggers. To implement a variable like the interbeat interval d_interbeat
, which stays constant between events, an additional equation would have to
be added to the model, which sets the derivative of this variable to zero. This

37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

both introduces unnecessary code and makes the model less understandable as
there is no clear distinction between discrete and continuous parts apart from
the labels assigned to the variables. CellML also follows a different philosophy
for graphical annotations only allowing to add drawings as part of an HTML
documentation for the whole model. Finally, the language is not designed to be
written directly by humans and instead relies on the use of appropriate tools to
view and edit models.

It becomes clear that there is no single “best” language. Further development
is needed to obtain a language that supports all the MoDROGH characteristics
to their fullest extent. This development could start with Modelica, leveraging a
flexible and industry-proven general-purpose modeling language and extending
it to fit the needs of the systems biology community. It could also start with
CellML or SBML, which are already proven languages with widespread sup-
port in the systems biology community, and which could borrow some software
engineering features and standards from languages like Modelica or Simscape.
Other approaches and foundations are also possible and it may even make sense
to not pursue the “perfect” language at all, but to focus more on interoperability
between languages that fit the specialized needs of smaller modeling domains.

In conclusion, using a modeling language that is Modular, Descriptive, human-
Readable, Open, Graphical, and Hybrid (MoDROGH) can make models more
reproducible, understandable, reusable, and extensible. Because there is no sin-
gle best language, modelers have to decide which features are most important
for them and which trade-offs they are willing to make. They should be aware
of the beneficial characteristics of the language and use them consistently as
we described in our guidelines and showed in our modular example model of
the cardiac conduction system. The situation that a model needs to be dis-
sected, modified and extended to be used in a different context is common in
multi-scale, multi-level, and multi-class models and therefore it is likely that our
findings translate to large areas of systems biology. Mathematical modeling in
systems biology has become an engineering challenge that requires engineering
solutions. Models should no longer be implemented with only a single purpose
in mind, but as reliable parts of larger systems. We hope that this article can
spark a discussion in the community to put more emphasis on these engineering
aspects of mathematical modeling in the development, selection, and application
of modeling languages.

4 Methods
4.1 Material
We used Mo|E version 0.6.3 [92] to write the code of our models and OpenMod-
elica version 1.13.0 [70] as well as Inkscape version 0.91 (https://inkscape.
org/) to add the component icons. OpenModelica was also used for all simula-
tions.

In the following we will show and explain our Modelica code for the models

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://inkscape.org/
https://inkscape.org/
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

and simulations. To keep it short, we do not show the code of the original mono-
lithic version and of the graphical annotations. We also do not include most of
the documentation strings, which are present in the full version. They can be
found in Supplementary Listing 1–27 and at https://github.com/CSchoel/
shm-conduction. Please also note that this article was previously published as
a preprint [77].

4.2 Modular conduction model
The fundamental part of the modular model of the human cardiac conduc-
tion system is the interface component UnidirectionalConductionComponent,
which serves as a base class for all other components. It has already been shown
in Section 2.3. It defines the input and output connectors inp and outp, which
are Booleans that are wrapped in a custom type InstantSignal to indicate
that they behave as a sum of Kronecker deltas, meaning that they are only true
for the exact instants in time when events occur:

type InstantSignal = Boolean(quantity="sum of Kronecker deltas");
connector InstantInput = input InstantSignal annotation(...);
connector InstantOutput = output InstantSignal annotation(...);

partial model UnidirectionalConductionComponent
InstantInput inp "input connector" annotation(Placement(...));
InstantOutput outp "output connector" annotation(Placement(...));
annotation(Icon(...));

end UnidirectionalConductionComponent;

The keyword connector designates the types InstantInput and InstantOutput
as part of the interface of a class and allows the assignment of a basic icon

representation in the form of an annotation() statement. The content of these
annotation statements can be quite verbose, which is why we only show them in
the full code in Supplementary Listing 1–27 as well as on GitHub. The model
UnidirectionalConductionComponent is defined as partial to designate that
it is not designed to be used as a finished component but has to be extended in
some way—in this case by defining the relationship between the input and the
output.

The RefractoryGate has already been shown in Section 2.3. The component
passes on its input signal as output signal, but only when the elapsed time since
the last signal left the component is larger than the refractory period:

model RefractoryGate "lets signal pass if refractory period has passed"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
import SI = Modelica.SIunits;
parameter SI.Time t_first = 0 "time of first signal";
parameter SI.Duration d_refrac = 1 "duration of refractory period";
Boolean refrac_passed = time - pre(t_last) > d_refrac "not refractory?";

protected
discrete SI.Time t_last(start=t_first, fixed=true) "time of last output";

equation
outp = inp and refrac_passed;
when outp then

t_last = time;
end when;

end RefractoryGate;

39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://github.com/CSchoel/shm-conduction
https://github.com/CSchoel/shm-conduction
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

The function pre() is used here to denote the value right before an event
instead of the value right after the event. The when statement describes an
event which can define states of discrete variables and can reinitialize continu-
ous variables. This model also introduces a protected section which contains
variables and parameters that should not be visible from the outside.

The Pacemaker model propagates incoming signals, but also adds an own
signal if there was no input for a certain period of time. Additionally, this com-
ponent, too, has to ignore incoming signals during the refractory period. This
can be implemented by decoupling the reset of the pacemaker timer from the
output of the component and instead treating the reset signal as an additional
input. It is assumed that this reset signal is only triggered if the signal passes
not only the pacemaker but also the subsequent RefractoryGate component.
The pacemaker component itself still resets when a spontaneous output signal
is generated to maintain the invariant that the output signal will not be true
for a prolonged period of time:

model Pacemaker "pacemaker eliciting spontaneous signals"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Metronome;
InstantInput reset "resets internal clock";
import SI = Modelica.SIunits;
parameter SI.Period period = 1 "pacemaker period";

protected
discrete SI.Time t_next(start=period, fixed=true)

"scheduled time of next spontaneous beat";
InstantSignal spontaneous_signal = time > pre(t_next)

"signal generated spontaneously by this pacemaker";
equation

outp = inp or spontaneous_signal;
when spontaneous_signal or pre(reset) then

t_next = time + period;
end when;

end Pacemaker;

The ConductionDelay model puts incoming signals on hold and releases
them after a certain time has passed. Physiologically the duration of the delay
for each signal depends on the time that has passed between the last signal
leaving the component and the current input signal. The original model silently
assumed that there will never be a second input signal while a signal is put on
hold. Therefore, this assumption is kept, but made more explicit by using the
helper variable delay_passed in the when condition:

partial model ConductionDelay "delay depending on prev. cycle duration"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Hourglass;
import SI = Modelica.SIunits;
discrete SI.Duration d_delay "delay duration";
Boolean delay_passed(start=false, fixed=true) = time > t_next

"if false, there is still a signal currently put on hold";
protected

discrete SI.Duration d_outp_inp(start=0, fixed=true)
"time between last output and following signal";

discrete SI.Time t_last(start=0, fixed=true) "time of last output";
discrete SI.Time t_next(start=-1, fixed=true)

"scheduled time of next output";
equation

outp = edge(delay_passed);
when inp and pre(delay_passed) then

d_outp_inp = time - pre(t_last);

40

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

t_next = time + d_delay;
end when;
when outp then

t_last = time;
end when;

end ConductionDelay;

Modelica does already have support for explicit delays, but this feature is
tailored towards continuous variables. Therefore, we use a scheduling solution
with the variable t_next, which indicates the time when the next signal should
leave the component. This is similar to the approach in the original C im-
plementation of the SHM, but here this scheduling system is encapsulated in a
single component and the respective helper variables are defined in a protected
environment so that they do not show up in the simulation output.

Note that this is again only a partial model, which does not specify the
behavior of the variable d_delay. This allows the separation of the general
delay logic from the physiological equation for the AV node which is modeled
in the AVConductionDelay:

model AVConductionDelay "conduction delay between SA node and ventricles"
extends ConductionDelay;
import SI = Modelica.SIunits;
parameter SI.Duration k_avc_t = 0.78 "maximum increase in delay duration";
parameter SI.Duration d_avc0 = 0.09 "minimal delay duration";
parameter SI.Duration tau_avc = 0.11 "reference time for delay duration";
parameter SI.Duration initial_d_avc = 0.15 "initial value for delay";

initial equation
d_delay = initial_d_avc;

equation
when inp and pre(delay_passed) then

d_delay = d_avc0 + k_avc_t * exp(-d_outp_inp/tau_avc);
end when;

end AVConductionDelay;

Currently, this separation is only performed to increase readability and to
not further complicate the already complex ConductionDelay component. Ad-
ditionally, if the delay was split into two components, as discussed in Section
2.3, the second delay component could also inherit the base equations from
ConductionDelay, which would avoid code duplication.

Finally, the model ModularConduction combines the aforementioned com-
ponents using connect() equations to connect the input and output variables.
These equations are represented as lines in the graphical representation which
are again defined in annotation() statements:

model ModularConduction
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Heart;
import SI = Modelica.SIunits;
RefractoryGate refrac_av(T_refrac=0.364)

"refractory component for AV node" annotation(...);
Pacemaker pace_av(period=1.7)

"pacemaker effect of AV node" annotation(...);
AVConductionDelay delay_sa_v

"delay between SA node and ventricles" annotation(...);
discrete SI.Duration d_interbeat(start=1, fixed=true)

"duration of last heart cycle";
discrete SI.Time cont_last(start=0, fixed=true)

"time of last contraction";
equation

41

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

connect(inp, pace_av.inp) annotation(...);
connect(pace_av.outp, refrac_av.inp) annotation(...);
connect(refrac_av.outp, pace_av.reset) annotation(...);
connect(refrac_av.outp, delay_sa_v.inp) annotation(...);
connect(delay_sa_v.outp, outp) annotation(...);
when outp then

d_interbeat = time - pre(cont_last);
cont_last = time;

end when;
end ModularConduction;

As already mentioned in Section 2.3, this model also shows how parameters
like d_refrac and period can be adjusted when the components are imported.
Note also that the model ModularConduction is again an UnidirectionalConductionComponent
and can therefore be used as a component in a larger model such as the SHM.

4.3 Modular contraction experiment setup
Simulation experiments can also be defined directly in Modelica syntax. The
following code was used to produce Supplementary Figure 2:

model ModularExample
ModularConduction modC;
MonolithicConduction monC;

equation
modC.inp = monC.inp;
if time < 5 then

monC.inp = sample(0,1);
elseif time < 15 then

monC.inp = sample(0,3);
elseif time < 20 then

monC.inp = sample(0,0.05);
elseif time < 30 then

monC.inp = sample(0,0.8);
elseif time < 40 then

monC.inp = sample(0,0.2);
else

monC.inp = sample(0,1.8);
end if;
annotation(

experiment(
StartTime = 0, StopTime = 50,
Tolerance = 1e-6, Interval = 0.002

),
__OpenModelica_simulationFlags(s = "dassl")

);
end ModularExample;

Here, the built-in function sample(start, interval) is used to issue sig-
nals from the SA node at a precise interval. The interval length is switched every
five to ten seconds using an if statement. In addition to the experiment setup,
the experiment protocol is also given by the experiment() annotation, which
defines the start and stop times of the interval, the requested step size for the
output and the tolerance used in the solver settings. The vendor-specific annota-
tion __OpenModelica_simulationFlags is used to define the DASSL [88] as the
default solver. For Supplementary Figure 2, the variables monC.d_interbeat
and modC.d_interbeat were plotted against simulation time.

42

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

Acknowledgements
We thank our four anonymous reviewers for their much valued input which
greatly improved the quality of this article. C. Schölzel would like to thank
Denis Noble, Peter Hunter, James Bassingthwaighte, Maxwell Neal and Herbert
Sauro for insightful discussions about the IUPS and NSR Physiome projects,
CellML and present and future challenges for systems biology. We also thank
Alexander Goesmann for his advice regarding the focus of the article and Jochen
Blom, Björn Pfarr and Annina Hofferberth for proofreading the manuscript.

Author contributions
C.S., V.B. and A.D. conceived the project, C.S. implemented the models and
performed the experiments, V.B. and G.E. provided physiological consultation
and criticism, C.S. drafted the manuscript and V.B., G.E. and A.D. revised it.

Competing Interests
The authors declare no competing interests.

Data availability
The full code of the models and experiments used in this article can be found on
GitHub, https://github.com/CSchoel/shm-conduction. The data for figures
in the data supplement can be generated from this model code.

References
1. Hodgkin, A. L. & Huxley, A. F. A Quantitative Description of Membrane

Current and Its Application to Conduction and Excitation in Nerve. The
Journal of Physiology 117, 500–544 (1952).

2. Bardini, R., Politano, G., Benso, A. & Di Carlo, S. Multi-Level and Hybrid
Modelling Approaches for Systems Biology. Computational and Structural
Biotechnology Journal 15, 396–402 (2017).

3. Uhrmacher, A. M., Degenring, D. & Zeigler, B. Discrete Event Multi-Level
Models for Systems Biology in Transactions on Computational Systems
Biology I (ed Priami, C.) 66–89 (Springer, Berlin; Heidelberg, 2005).

4. Dada, J. O. & Mendes, P. Multi-Scale Modelling and Simulation in Systems
Biology. Integrative Biology 3, 86 (2011).

5. Yu, J. S. & Bagheri, N. Multi-Class and Multi-Scale Models of Com-
plex Biological Phenomena. Current Opinion in Biotechnology 39, 167–
173 (2016).

43

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://github.com/CSchoel/shm-conduction
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

6. Waltemath, D. & Wolkenhauer, O. How Modeling Standards, Software,
and Initiatives Support Reproducibility in Systems Biology and Systems
Medicine. IEEE Transactions on Biomedical Engineering 63, 1999–2006
(2016).

7. Medley, J. K., Goldberg, A. P. & Karr, J. R. Guidelines for Reproducibly
Building and Simulating Systems Biology Models. IEEE transactions on
bio-medical engineering 63, 2015–2020 (2016).

8. Tiwari, K. et al. Reproducibility in Systems Biology Modelling preprint
10.1101/2020.08.07.239855 (bioRxiv, 2020).

9. Topalidou, M., Leblois, A., Boraud, T. & Rougier, N. P. A Long Jour-
ney into Reproducible Computational Neuroscience. Frontiers in Compu-
tational Neuroscience 9, 1–2 (2015).

10. Seidel, H. Nonlinear Dynamics of Physiological Rhythms PhD thesis (Tech-
nische Universität Berlin, Berlin, Germany, 1997).

11. Seidel, H. & Herzel, H. Bifurcations in a Nonlinear Model of the Baroreceptor-
Cardiac Reflex. Physica D: Nonlinear Phenomena 115, 145–160 (1998).

12. Schölzel, C., Goesmann, A., Ernst, G. & Dominik, A. Modeling Biology in
Modelica: The Human Baroreflex in Proceedings of the 11th International
Modelica Conference (Versailles, France, 2015), 367–376.

13. Sarma, G. P. et al. Unit Testing, Model Validation, and Biological Simu-
lation. F1000Research 5, 1946 (2016).

14. Miskovic, L., Tokic, M., Fengos, G. & Hatzimanikatis, V. Rites of Passage:
Requirements and Standards for Building Kinetic Models of Metabolic
Phenotypes. Current Opinion in Biotechnology 36, 146–153 (2015).

15. Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A. & Delp, S. L. Is My
Model Good Enough? Best Practices for Verification and Validation of
Musculoskeletal Models and Simulations of Movement. Journal of Biome-
chanical Engineering 137, 020905 (2015).

16. Grimm, V. & Railsback, S. F. Pattern-Oriented Modelling: A ’multi-Scope’
for Predictive Systems Ecology. Philosophical Transactions of the Royal
Society B: Biological Sciences 367, 298–310 (2012).

17. Zhao, P., Rowland, M. & Huang, S.-M. Best Practice in the Use of Phys-
iologically Based Pharmacokinetic Modeling and Simulation to Address
Clinical Pharmacology Regulatory Questions. Clinical Pharmacology &
Therapeutics 92, 17–20 (2012).

18. Smith, N. P., Crampin, E. J., Niederer, S. A., Bassingthwaighte, J. B.
& Beard, D. A. Computational Biology of Cardiac Myocytes: Proposed
Standards for the Physiome. Journal of Experimental Biology 210, 1576–
1583 (2007).

19. Goldberg, A. P. et al. Emerging Whole-Cell Modeling Principles and Meth-
ods. Current Opinion in Biotechnology 51, 97–102 (2018).

44

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

20. Bartocci, E. & Lió, P. Computational Modeling, Formal Analysis, and
Tools for Systems Biology. PLOS Computational Biology 12, e1004591
(2016).

21. Walpole, J., Papin, J. A. & Peirce, S. M. Multiscale Computational Models
of Complex Biological Systems. Annual Review of Biomedical Engineering
15, 137–154 (2013).

22. Hucka, M. et al. Promoting Coordinated Development of Community-
Based Information Standards for Modeling in Biology: The COMBINE
Initiative. Frontiers in Bioengineering and Biotechnology 3 (2015).

23. Wolstencroft, K. et al. SEEK: A Systems Biology Data and Model Man-
agement Platform. BMC Systems Biology 9 (2015).

24. Cooling, M. T., Hunter, P. & Crampin, E. J. Modelling Biological Modu-
larity with CellML. IET Systems Biology 2, 73–79 (2008).

25. Neal, M. L. et al. A Reappraisal of How to Build Modular, Reusable Models
of Biological Systems. PLOS Computational Biology 10, e1003849 (2014).

26. Waltemath, D. et al. The First 10 Years of the International Coordination
Network for Standards in Systems and Synthetic Biology (COMBINE).
Journal of Integrative Bioinformatics 17, 20200005 (2020).

27. Malik-Sheriff, R. S. et al. BioModels—15 Years of Sharing Computational
Models in Life Science. Nucleic Acids Research 48, D407–D415 (2019).

28. Cooling, M. T. et al. Standard Virtual Biological Parts: A Repository of
Modular Modeling Components for Synthetic Biology. Bioinformatics 26,
925–931 (2010).

29. Clerx, M., Collins, P., de Lange, E. & Volders, P. G. Myokit: A Simple
Interface to Cardiac Cellular Electrophysiology. Progress in Biophysics and
Molecular Biology 120, 100–114 (2016).

30. Mulugeta, L. et al. Credibility, Replicability, and Reproducibility in Simu-
lation for Biomedicine and Clinical Applications in Neuroscience. Frontiers
in Neuroinformatics 12 (2018).

31. Olivier, B. G., Rohwer, J. M. & Hofmeyr, J.-H. S. Modelling Cellular
Systems with PySCeS. Bioinformatics 21, 560–561 (2005).

32. Clewley, R. Hybrid Models and Biological Model Reduction with PyD-
STool. PLoS Computational Biology 8, e1002628 (2012).

33. Lopez, C. F., Muhlich, J. L., Bachman, J. A. & Sorger, P. K. Programming
Biological Models in Python Using PySB. Molecular Systems Biology 9,
646 (2013).

34. Choi, K. et al. Tellurium: An Extensible Python-Based Modeling Environ-
ment for Systems and Synthetic Biology. Biosystems 171, 74–79 (2018).

35. Smith, L. P., Bergmann, F. T., Chandran, D. & Sauro, H. M. Antimony:
A Modular Model Definition Language. Bioinformatics 25, 2452–2454
(2009).

45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

36. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A Fresh
Approach to Numerical Computing. SIAM Review 59, 65–98 (2017).

37. Mattsson, S. E. & Elmqvist, H. Modelica – An International Effort to
Design the next Generation Modeling Language in 7th IFAC Symposium on
Computer Aided Control Systems Design, CACSD’97 30 (Gent, Belgium,
1997), 151–155.

38. Mateják, M. et al. Physiolibrary - Modelica Library for Physiology in Pro-
ceedings of the 10th International Modelica Conference 96 (Lund, Sweden,
2014), 499–505.

39. Maggioli, F., Mancini, T. & Tronci, E. SBML2Modelica: Integrating Bio-
chemical Models within Open-Standard Simulation Ecosystems. Bioinfor-
matics 36, 2165–2172 (2019).

40. Hellerstein, J. L., Gu, S., Choi, K. & Sauro, H. M. Recent Advances in
Biomedical Simulations: A Manifesto for Model Engineering. F1000Re-
search 8, 261 (2019).

41. Blochwitz, T. et al. The Functional Mockup Interface for Tool Independent
Exchange of Simulation Models in Proceedings of the 8th International
Modelica Conference (Dresden, Germany, 2011), 105–114.

42. Blochwitz, T. et al. Functional Mockup Interface 2.0: The Standard for
Tool Independent Exchange of Simulation Models in Proceedings of the 9th
International Modelica Conference (Munich, Germany, 2012), 173–184.

43. Zhu, X.-G. et al. Plants in Silico: Why, Why Now and What?-An Integra-
tive Platform for Plant Systems Biology Research. Plant, Cell & Environ-
ment 39, 1049–1057 (2016).

44. Mirschel, S., Steinmetz, K., Rempel, M., Ginkel, M. & Gilles, E. D. Pro-
MoT: Modular Modeling for Systems Biology. Bioinformatics 25, 687–689
(2009).

45. Kell, D. The Virtual Human: Towards a Global Systems Biology of Multi-
scale, Distributed Biochemical Network Models. IUBMB Life 59, 689–695
(2007).

46. Hasenauer, J., Jagiella, N., Hross, S. & Theis, F. J. Data-Driven Mod-
elling of Biological Multi-Scale Processes. Journal of Coupled Systems and
Multiscale Dynamics 3, 101–121 (2015).

47. Oliveira, A., Kohwalter, T., Kalinowski, M., Murta, L. & Braganholo, V.
XChange: A Semantic Diff Approach for XML Documents. Information
Systems 94, 101610 (2020).

48. Drager, A. et al. SBML2LaTeX: Conversion of SBML Files into Human-
Readable Reports. Bioinformatics 25, 1455–1456 (2009).

49. Lincoln, P. & Tiwari, A. Symbolic Systems Biology: Hybrid Modeling and
Analysis of Biological Networks in Hybrid Systems: Computation and Con-
trol (eds Alur, R. & Pappas, G. J.) Lecture Notes in Computer Science
2993, 660–672 (Springer, Berlin; Heidelberg, 2004).

46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

50. Bortolussi, L. & Policriti, A. Hybrid Systems and Biology in Formal Meth-
ods for Computational Systems Biology (eds Bernardo, M., Degano, P. &
Zavattaro, G.) 424–448 (Springer, Berlin; Heidelberg, 2008).

51. Rejniak, K. A. & Anderson, A. R. A. Hybrid Models of Tumor Growth.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine 3, 115–125
(2011).

52. Yu, T. et al. The Physiome Model Repository 2. Bioinformatics 27, 743–
744 (2011).

53. Bassingthwaighte, J. B. Strategies for the Physiome Project. Annals of
Biomedical Engineering 28, 1043–1058 (2000).

54. Holzhütter, H.-G., Drasdo, D., Preusser, T., Lippert, J. & Henney, A. M.
The Virtual Liver: A Multidisciplinary, Multilevel Challenge for Systems
Biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine
4, 221–235 (2012).

55. Zhu, H., Huang, S. & Dhar, P. The next Step in Systems Biology: Simu-
lating the Temporospatial Dynamics of Molecular Network. BioEssays 26,
68–72 (2004).

56. Loew, L. M. & Schaff, J. C. The Virtual Cell: A Software Environment for
Computational Cell Biology. Trends in Biotechnology 19, 401–406 (2001).

57. Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L. & Bassingth-
waighte, J. B. JSim, an Open-Source Modeling System for Data Analysis.
F1000Research 2, 288 (2013).

58. Yan, K. & Cui, W. Visualizing the Uncertainty Induced by Graph Layout
Algorithms in 2017 IEEE Pacific Visualization Symposium (PacificVis)
(Seoul, South Korea, 2017), 200–209.

59. Kerren, A. & Schreiber, F. Network Visualization for Integrative Bioin-
formatics in Approaches in Integrative Bioinformatics (eds Chen, M. &
Hofestädt, R.) 173–202 (Springer, Berlin; Heidelberg, 2014).

60. Le Novère, N. et al. The Systems Biology Graphical Notation. Nature
Biotechnology 27, 735–741 (2009).

61. Gonçalves, E., Iersel, M. & Saez-Rodriguez, J. CySBGN: A Cytoscape
Plug-in to Integrate SBGN Maps. BMC Bioinformatics 14, 17 (2013).

62. Alves, R., Antunes, F. & Salvador, A. Tools for Kinetic Modeling of Bio-
chemical Networks. Nature Biotechnology 24, 667–672 (2006).

63. Mangourova, V., Ringwood, J. & Van Vliet, B. Graphical Simulation En-
vironments for Modelling and Simulation of Integrative Physiology. Com-
puter Methods and Programs in Biomedicine 102, 295–304 (2011).

64. Keating, S. M. et al. SBML Level 3: An Extensible Format for the Ex-
change and Reuse of Biological Models. Molecular Systems Biology 16,
e9110 (2020).

47

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

65. Bornstein, B. J., Keating, S. M., Jouraku, A. & Hucka, M. LibSBML: An
API Library for SBML. Bioinformatics 24, 880–881 (2008).

66. Cuellar, A. A. et al. An Overview of CellML 1.1, a Biological Model De-
scription Language. SIMULATION 79, 740–747 (2003).

67. Garny, A. & Hunter, P. J. OpenCOR: A Modular and Interoperable Ap-
proach to Computational Biology. Frontiers in Physiology 6, 26 (2015).

68. Nickerson, D. & Buist, M. Practical Application of CellML 1.1: The In-
tegration of New Mechanisms into a Human Ventricular Myocyte Model.
Progress in Biophysics and Molecular Biology 98, 38–51 (2008).

69. Margolis, B. W. L. SimuPy: A Python Framework for Modeling and Sim-
ulating Dynamical Systems. The Journal of Open Source Software 2, 396
(2017).

70. Fritzson, P. et al. The OpenModelica Modeling, Simulation, and Develop-
ment Environment in Proceedings of the 46th Conference on Simulation
and Modelling of the Scandinavian Simulation Society (Trondheim, Nor-
way, 2005).

71. Åkesson, J. R., Gäfvert, M. & Tummescheit, H. JModelica—An Open
Source Platform for Optimization of Modelica Models in Proceedings of
the 6th Vienna International Conference on Mathematical Modelling 34
(Vienna, Austria, 2009).

72. Elmqvist, H., Henningsson, T. & Otter, M. Systems Modeling and Program-
ming in a Unified Environment Based on Julia in ISoLA 2016: Leveraging
Applications of Formal Methods, Verification and Validation: Discussion,
Dissemination, Applications 9953 (Corfu, Greece, 2016), 198–217.

73. Rackauckas, C. & Nie, Q. DifferentialEquations.Jl – A Performant and
Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal
of Open Research Software 5, 15 (2017).

74. Seidel, H. & Herzel, H. Modelling Heart Rate Variability Due to Respira-
tion and Baroreflex in Modelling the Dynamics of Biological Systems (eds
Mosekilde, E. & Mouritsen, O. G.) Springer Series in Synergetics 65, 205–
229 (Springer, Berlin; Heidelberg, 1995).

75. Kotani, K., Struzik, Z., Takamasu, K., Stanley, H. & Yamamoto, Y. Model
for Complex Heart Rate Dynamics in Health and Diseases. Physical Review
E 72, 041904 (2005).

76. Kotani, K., Takamasu, K., Ashkenazy, Y., Stanley, H. & Yamamoto, Y.
Model for Cardiorespiratory Synchronization in Humans. Physical Review
E 65, 051923 (2002).

77. Schölzel, C. Modelica Implementation of the Seidel-Herzel Model of the
Human Baroreflex version 1.6. Zenodo, 2020. https : / / zenodo . org /
record/4110400 (2020).

48

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://zenodo.org/record/4110400
https://zenodo.org/record/4110400
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

78. Duggento, A., Toschi, N. & Guerrisi, M. Modeling of Human Baroreflex:
Considerations on the Seidel–Herzel Model. Fluctuation and Noise Letters
11, 1240017 (2012).

79. Tiller, M. Modelica by Example https://mbe.modelica.university/
(2020) (Michael Tiller, 2020).

80. Schölzel, C., Blesius, V., Ernst, G. & Dominik, A. An Understandable, Ex-
tensible, and Reusable Implementation of the Hodgkin-Huxley Equations
Using Modelica. Frontiers in Physiology 11, 583203 (2020).

81. Karr, J. R. et al. A Whole-Cell Computational Model Predicts Phenotype
from Genotype. Cell 150, 389–401 (2012).

82. Freeman, E., Robson, E., Bates, B. & Sierra, K. Head First Design Patterns
638 pp. (O’Reilly, Sebastopol, CA, 2004).

83. Kofránek, J., Rusz, J. & Matoušek, S. Guyton’s Diagram Brought to Life
- From Graphic Chart to Simulation Model for Teaching Physiology in
Technical Computing Prague 2007: 15th Annual Conference Proceedings
(Prague, Czech Republic, 2007), 1–13.

84. Briese, L. E., Klöckner, A. & Reiner, M. The DLR Environment Library
for Multi-Disciplinary Aerospace Applications in Proceedings of the 12th
International Modelica Conference (Prague, Czech Republic, 2017), 929–
938.

85. Casella, F., Bartolini, A., Pasquini, S. & Bonuglia, L. Object-Oriented Mod-
elling and Simulation of Large-Scale Electrical Power Systems Using Mod-
elica: A First Feasibility Study in Proceedings of the IECON 2016 - 42nd
Annual Conference of the IEEE Industrial Electronics Society (Florence,
Italy, 2016), 6298–6304.

86. Sweller, J. Cognitive Load Theory in Advances in Cognitive Load Theory:
Rethinking Teaching (eds Tindall-Ford, S., Agostinho, S. & Sweller, J.)
1st ed., 1–11 (Routledge, Abingdon, England, 2019).

87. Inada, S., Hancox, J. C., Zhang, H. & Boyett, M. R. One-Dimensional
Mathematical Model of the Atrioventricular Node Including Atrio-Nodal,
Nodal, and Nodal-His Cells. Biophysical Journal 97, 2117–2127 (2009).

88. Petzold, L. R. Description of DASSL: A Differential/Algebraic System
Solver Sandia Report SAND82-8637 (Sandia National Laboratories, Albu-
querque, New Mexico; Livermore, California, 1982).

89. Hastings, J. et al. ChEBI in 2016: Improved Services and an Expand-
ing Collection of Metabolites. Nucleic Acids Research 44, D1214–D1219
(2016).

90. Cook, D. L., Bookstein, F. L. & Gennari, J. H. Physical Properties of
Biological Entities: An Introduction to the Ontology of Physics for Biology.
PLoS ONE 6, e28708 (2011).

49

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://mbe.modelica.university/
https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

91. Neal, M. L. et al. Semantics-Based Composition of Integrated Cardiomy-
ocyte Models Motivated by Real-World Use Cases. PLOS ONE 10, e0145621
(2015).

92. Justus, N., Schölzel, C., Dominik, A. & Letschert, T. Mo|E – A Communi-
cation Service between Modelica Compilers and Text Editors in Proceedings
of the 12th International Modelica Conference (Prague, Czech Republic,
2017), 815–822.

50

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 15, 2021. ; https://doi.org/10.1101/2019.12.16.875260doi: bioRxiv preprint

https://doi.org/10.1101/2019.12.16.875260
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Desirable characteristics for a mathematical modeling language for systems biology
	Existing languages exhibit MoDROGH criteria to varying extent
	Modularizing a model of the human cardiac conduction system facilitates reuse

	Discussion
	Methods
	Material
	Modular conduction model
	Modular contraction experiment setup

