Abstract
A lysosomal transmembrane protein SLC29A3 transports nucleosides from lysosomes to the cytoplasm. Loss-of-function mutations of the SLC29A3 gene cause lysosomal nucleoside storage in monocyte/macrophages, leading to their accumulation called histiocytosis in humans and mice. Little is known, however, about a mechanism behind nucleoside-dependent histiocytosis. TLR7, an innate immune sensors for single stranded RNA, bind and respond to nucleosides. We here show that they drive nucleoside-mediated histiocytosis. Patrolling monocyte/macrophages accumulate in the spleen of Slc29a3−/− mice but not Slc29a3−/− Tlr7−/− mice. Accumulated patrolling monocyte/macrophages stored nucleosides derived from cell corpse. TLR7 was recruited to phagosomes and activated as evidenced by TLR7-dependent phagosomal maturation. TLR7 induced hyper-responsiveness to M-CSF in Slc29a3−/− monocyte/macrophages. These results suggest that TLR7 drives histiocytosis in SLC29A3 disorders.
One Sentence Summary SLC29A3 disorders are caused by activation of TLR7 with accumulated nucleosides in lysosomes.