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Abstract	17	

Background:		18	

DNA	methylation	is	associated	with	body	mass	index	(BMI),	but	it	is	not	clear	if	19	

methylation	scores	are	biomarkers	for	extant	BMI,	or	predictive	of	future	BMI.	20	

Here	we	explore	the	causal	nature	and	predictive	utility	of	DNA	methylation	21	

measured	in	peripheral	blood	with	BMI	and	cardiometabolic	traits.		22	

Methods:	23	

Analyses	were	conducted	across	the	life	course	using	the	ARIES	cohort	of	24	

mothers	(n=792)	and	children	(n=906),	for	whom	DNA	methylation	and	genetic	25	

profiles	and	BMI	at	multiple	time	points	(3	in	children	at	birth,	in	childhood	and	26	

in	adolescence,	2	in	mothers	during	pregnancy	and	in	middle	age)	were	27	

available.	Genetic	and	DNA	methylation	scores	for	BMI	were	derived	using	28	

published	associations	between	BMI	and	DNA	methylation	and	genotype.	Causal	29	

relationships	between	methylation	and	BMI	were	assessed	using	Mendelian	30	

randomisation	and	cross-lagged	models.	31	

Results:	32	

The	DNA	methylation	scores	in	adult	women	explained	10%	of	extant	BMI	33	

variance.	However,	less	extant	variance	was	explained	by	scores	generated	in	the	34	

same	women	during	pregnancy	(2%	BMI	variance)	and	in	older	children	(15-17	35	

years;	3%	BMI	variance).	Similarly,	little	extant	variance	was	explained	in	36	

younger	children	(at	birth	and	at	7	years;	1%	and	2%,	respectively).	These	37	
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associations	remained	following	adjustment	for	smoking	exposure	and	38	

education	levels.	The	DNA	methylation	score	was	found	to	be	a	poor	predictor	of	39	

future	BMI	using	linear	and	cross-lagged	models,	suggesting	that	DNA	40	

methylation	variation	does	not	cause	later	variation	in	BMI.	However,	there	was	41	

some	evidence	to	suggest	that	BMI	is	predictive	of	later	DNA	methylation.	42	

Mendelian	randomisation	analyses	also	support	this	direction	of	effect,	although	43	

evidence	is	weak.	Finally,	we	find	that	DNA	methylation	scores	for	BMI	are	44	

associated	with	extant	cardiometabolic	traits	independently	of	BMI	and	genetic	45	

score.	46	

Conclusion:	47	

The	age-specific	nature	of	DNA	methylation	associations	with	BMI,	lack	of	causal	48	

relationship,	and	limited	predictive	ability	of	future	BMI,	indicate	that	DNA	49	

methylation	is	likely	influenced	by	BMI	and	might	more	accurately	be	considered	50	

a	biomarker	of	BMI	and	related	outcomes	than	a	predictor.	Future	epigenome-51	

wide	association	studies	may	benefit	from	further	examining	associations	52	

between	early	DNA	methylation	and	later	health	outcomes.	53	

Keywords:	BMI	-	DNA	methylation	-	ALSPAC	-	ARIES	-	Longitudinal	-	Mendelian	54	

randomization	55	
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Background	59	

Obesity	has	a	considerable	burden	on	healthcare	and	has	been	shown	to	be	60	

predictive	of	mortality	[1].	In	recent	years	there	has	been	a	gradual	increase	in	61	

body	mass	index	(BMI)	in	many	countries	[2]	and	interventions	to	decrease	BMI	62	

have	had	limited	success	[3,4].	Predicting	BMI	early	on	and	performing	targeted	63	

interventions	is	an	alternative	strategy	that	could	be	more	effective.		64	

The	aetiology	of	BMI	comprises	both	genetic	and	environmental	factors,	with	65	

heritability	likely	below	0.5	[5,6].	It	has	been	suggested	that	natural	variation	in	66	

DNA	methylation	levels	may	be	a	risk	factor	for	certain	diseases	and	play	a	role	67	

in	the	phenotypic	variation	of	many	traits	[7–9].	In	some	cases,	DNA	methylation	68	

may	provide	the	molecular	link	between	environmental	factors	and	associated	69	

disease	risk,	for	example,	recent	studies	have	suggested	that	DNA	methylation	70	

may	be	the	mechanism	allowing	environmental	factors	or	increased	BMI	to	lead	71	

to	obesity-related	health	outcomes	[10–12].	Therefore,	it	could	be	useful	as	a	72	

predictor	of	such	health	outcomes.	73	

Recent	studies	[13–15]	suggest	that	DNA	methylation	associates	with	BMI	trait	74	

variance	independent	of	genetic	variation.	Associated	genes	have	been	shown	to	75	

be	involved	in	processes	such	as	metabolism,	inflammation,	metabolic	disease	76	

and	cardiovascular	disease	amongst	others.	This	suggests	that	associated	DNA	77	

methylation	loci	may	belong	to	causal	pathways	linking	BMI	and	metabolic,	78	

cardiovascular	and	other	obesity-related	health	outcomes,	but	this	requires	79	

further	exploration.	80	
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Since	genetic	variants	are	fixed	at	conception,	genetic	variants	associated	with	81	

BMI	can	be	used	early	in	life	to	predict	later	BMI	[16].	The	relationship	of	DNA	82	

methylation	at	BMI	associated	loci,	however,	is	more	complex.	Methylation	levels	83	

vary	over	time	and	may	change	in	response	to	environmental	or	phenotypic	84	

changes	so	earlier	methylation	variation	is	not	guaranteed	to	predict	later	BMI	85	

levels.	Recent	work	[14]		has	suggested	that	change	in	BMI	is	more	likely	to	be	86	

causal	for	changes	in	DNA	methylation	than	vice	versa.	This	would	suggest	that	87	

current	DNA	methylation	scores	are	simply	biomarkers	for	extant	BMI.	However,	88	

the	utility	of	DNA	methylation	as	a	predictor	for	future	trajectories	of	BMI	would	89	

be	of	considerably	greater	utility.	90	

The	first	aim	of	our	study	was	to	investigate	if	there	is	a	temporal	association	91	

between	DNA	methylation	and	BMI.	We	approached	this	question	by	using	92	

genome-wide	DNA	methylation	profiles	from	the	Accessible	Resource	for	93	

Integrated	Epigenomics	Studies	(ARIES)	[17]	subset	of	the	Avon	Longitudinal	94	

Study	of	Parents	and	Children	(ALSPAC)	[18,19].		ALSPAC	is	a	prospective	cohort	95	

of	children	born	in	the	former	county	of	Avon,	England	during	1991	and1992.		96	

DNA	methylation	profiles	were	generated	in	children	from	blood	collected	at	97	

three	time	points	(birth,	childhood,	adolescence)	and	from	their	mothers	at	two	98	

time	points	(during	pregnancy	and	at	middle-age).	We	used	these	DNA	99	

methylation	profiles	along	with	multiple	measurements	of	BMI	genetic	profiles	100	

to	determine	if	DNA	methylation	predicted	BMI	later	in	life,	independently	of	101	

genetic	variation	and	BMI	itself,	and	vice	versa.	In	doing	so,	our	objective	was	to	102	

determine	if	DNA	methylation	is	a	predictor	for	BMI	or	simply	a	biomarker	that	103	

proxies	current	or	previous	BMI	values.	104	
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DNA	methylation	scores	for	BMI	may	be	useful	for	the	detection	of	adverse	105	

health	outcomes	related	to	BMI.	For	example,	Wahl	et	al	found	that	DNA	106	

methylation	could	be	used	to	identify	individuals	at	high	risk	of	incident	type	2	107	

diabetes,	independently	of	other	explanatory	factors,	including	BMI	itself	[14].	108	

Therefore,	the	second	aim	of	our	study	was	to	see	if	DNA	methylation	scores	for	109	

BMI	contributed	anything	above	BMI	itself	in	predicting	related	adverse	health	110	

outcomes.	111	

	112	
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Methods	123	

Cohort	description	124	

We	used	children	and	mothers	data	from	the	Avon	Longitudinal	Study	of	Parents	125	

and	Children	(ALSPAC)	cohort	in	this	study	[18,19].	The	ALSPAC	cohort	is	a	126	

prospective	birth	cohort	study	in	which	14,541	pregnant	women	living	in	Avon,	127	

UK,	with	an	expected	delivery	date	from	1st	April	1991	to	the	31st	December	128	

1992	were	initially	recruited.	Of	these,	13,988	children	were	still	alive	1	year	129	

later	and	have	been	followed-up	with	regular	questionnaires	and	clinical	130	

measures,	providing	behavioural,	lifestyle	and	biological	data.	When	the	children	131	

were	approximately	7	years	of	age,	an	attempt	was	made	to	bolster	the	initial	132	

sample	with	eligible	cases	who	had	failed	to	join	the	study	originally.	As	a	result,	133	

when	considering	variables	collected	after	age	7,	the	total	sample	size	for	those	134	

alive	at	1	year	of	age	is	14,901.	The	study	website	contains	details	of	all	the	data	135	

that	is	available	through	a	fully	searchable	data	dictionary	and	variable	search	136	

tool	http://www.bristol.ac.uk/alspac/researchers/our-data/.		137	

We	only	included	participants	that	were	also	in	the	sub-study	Accessible	138	

Resource	for	Integrated	Epigenomic	Studies	(ARIES),	where	methylation	data	139	

was	available	for	these	individuals	[17].	After	excluding	those	without	140	

methylation	or	phenotypic	data	and	those	that	had	withdrawn	consent,	we	had	141	

data	available	for	analyses	from	823	children	at	birth,	906	for	childhood	(age	7),	142	

770	for	adolescence	(age	15)	and	792	for	pregnant	mothers	and	726	for	middle-143	

aged	mothers.	The	mean	age	and	BMI	are	presented	in	Table	1.	Sex	is	also	144	

included	for	children	only,	as	adults	were	all	female.		145	
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Table	1.	Cohort	description	146	

	 Children	 Mothers	
	 Birth	

(n=823)	
Childhood	
(n=906)		

Adolescence	
(n=770)	

Pregnancy	
(n=792)	

Middle-age	
(n=726)	

Mean	age	in	
years	(SD)	

NA	 7.45	(0.15)	 17.35	(0.88)	 28.87	
(4.30)	

47.66	
(4.26)	

Percentage	
of	females	

51.03%	 50.44%	 53.38%	 100%	 100%	

Mean	BMI	
(kg/m2)	or	
birthweight	
(grams)	
(SD)	

3490.93	
(477.76)	

16.20	
(2.04)	

22.58	(3.83)	 22.72	
(3.63)	

26.41	
(5.09)	

SD	=	Standard	Deviation,	BMI=	Body	Mass	Index		147	

Ethics	148	

Ethical	approval	for	the	study	was	obtained	from	the	ALSPAC	Ethics	and	Law	149	

Committee	and	the	Local	Research	Ethics	Committees.	Informed	consent	for	the	150	

use	of	data	collected	via	questionnaires	and	clinics	was	obtained	from	151	

participants	following	the	recommendations	of	the	ALSPAC	Ethics	and	Law	152	

Committee	at	the	time.	153	

Phenotypic	measures	154	

The	time	points	investigated	in	this	study	are	pregnancy	and	middle-age	data	for	155	

the	mothers	and	birth,	childhood	(age	7)	and	adolescence	(age	15-17	for	156	

methylation	data	and	age	17	for	BMI	data)	data	for	the	children.	157	

Measures	of	height	and	weight	were	collected	at	research	clinic	visits.	Height	158	

was	measured	to	the	nearest	millimetre	using	the	Harpenden	Stadiometer.	159	
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Weight	was	measured	using	the	Tanita	Body	Fat	Analyser	to	the	nearest	50g.	160	

BMI	was	calculated	by	dividing	weight	(kilograms)	by	height	(meters)	squared	161	

(kg/m2).	For	measurements	at	birth,	birth	weight	was	collected	and	is	used	here	162	

instead	of	BMI.		163	

Data	for	smoking	and	highest	education	level	of	mothers,	age,	sex,	sample	type	164	

and	cell	type	proportions	(B	cell,	CD4T,	CD8T,	Gran,	Mono	and	NK)	were	used	as	165	

covariates	in	analyses	(for	children,	information	on	matched	mothers	smoking	166	

and	maternal	education	were	used).	Various	answers	from	questions	regarding	167	

smoking	in	mothers	(in	pregnancy	and	currently)	were	used,	from	questionnaire	168	

data.	These	included	the	number	of	cigarettes	smoked	per	day	before	pregnancy,	169	

during	the	first	three	months	of	pregnancy	and	the	number	of	cigarettes	smoked	170	

in	the	last	2	weeks	during	or	just	after	pregnancy.	These	measures	were	171	

combined	to	create	a	variable	for	whether	the	mother	smoked	in	pregnancy.	We	172	

also	used	data	on	the	number	of	cigarettes	smoked	per	day,	whether	they	173	

responded	as	being	a	current	smoker	and	the	time	passed	since	they	stopped	174	

smoking	if	this	was	within	the	last	12	months	to	create	a	variable	for	current	or	175	

recent	(within	the	last	12	months)	smoker.	Education	level	for	the	mother’s	was	176	

also	taken	from	questionnaire	data,	where	participants	were	asked	“What	177	

educational	qualifications	do	you,	your	partner,	your	mother,	and	your	father	178	

have?”.	They	were	asked	to	select	all	options	that	applied	to	them	and	we	used	179	

the	highest	education	qualification	for	the	participant.	The	options	for	this	were	180	

CSE/none,	vocational,	O	level,	A	level	or	degree.	181	

Variables	for	cardiovascular	outcomes	for	middle-aged	mothers	and	adolescents	182	

were	also	used.	These	variables	were	from	blood	samples,	obtained	during	clinic	183	
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visits	and	included	fasting	glucose	and	insulin,	triglycerides	and	low-density	184	

lipoprotein	(LDL).	Sitting	diastolic	and	systolic	blood	pressures	(SBP)	from	the	185	

right	arm	were	collected	during	clinic	visits.	An	Omron	M6	upper	arm	blood	186	

pressure/pulse	monitor	was	used	to	take	2	readings	of	blood	pressure	and	then	187	

mean	values	were	used.	The	data	for	triglycerides,	glucose	and	insulin	were	188	

skewed	so	we	log	transformed	this	data	for	use	in	analyses.	189	

Methylation	data	190	

Methylation	profiling	in	the	ARIES	subset	was	conducted	using	DNA	samples	191	

from	blood	taken	at	clinic	visits	or	after	delivery	from	the	umbilical	cord	in	the	192	

case	of	the	birth	time	point.	Blood	from	1,018	mother–child	pairs	(children	at	193	

three	time	points	and	their	mothers	at	two	time	points)	were	selected	for	194	

analysis	as	part	of	the	Accessible	Resource	for	Integrative	Epigenomic	Studies	195	

(ARIES,	http://www.ariesepigenomics.org.uk/)	[17].	Following	DNA	extraction,	196	

samples	were	bisulphite	converted	using	the	Zymo	EZ	DNA	Methylation™	kit	197	

(Zymo,	Irvine,	CA,	USA).	Following	conversion,	genome-wide	methylation	was	198	

measured	using	the	Illumina	Infinium	HumanMethylation450	(HM450)	199	

BeadChip.	The	arrays	were	scanned	using	an	Illumina	iScan,	with	initial	quality	200	

review	using	GenomeStudio.	ARIES	data	were	pre-processed	and	normalised	201	

using	the	meffil	R	package	[20].	ARIES	consists	of	5,469	DNA	methylation	profiles	202	

obtained	from	1,022	mother-child	pairs	measured	at	five	time	points.	Low	203	

quality	profiles	were	removed	from	further	processing,	and	the	remaining	4,593	204	

profiles	were	normalised	using	the	Functional	Normalization	algorithm	[21]	205	

with	the	top	10	control	probe	principal	components.	From	the	ARIES	dataset,	206	

sample	type	and	normalised	methylation	data	was	extracted	and	cell	type	207	
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proportion	data	were	estimated	using	the	Houseman	method	[22].	Full	details	of	208	

the	pre-processing	and	normalization	of	ARIES	has	been	described	previously	209	

[20].	210	

Genotyping	211	

Genetic	data	were	collected	from	blood	samples	obtained	in	clinic	visits.	212	

Genotyping	was	conducted	with	the	Illumina	HumanHap550	quad	chip	for	213	

children	and	the	Illumina	human660W-quad	array	for	mothers.	Quality	control	214	

measures	were	carried	out	and	haplotypes	estimated	using	ShapeIT.	A	phased	215	

version	of	the	1000	genomes	reference	panel	from	the	Impute2	reference	data	216	

repository	was	used	and	Imputation	of	the	target	data	was	performed	with	this,	217	

using	all	reference	haplotypes.	A	large	proportion	of	the	cohort	has	genome-wide	218	

data	from	these	samples	and	a	subset	of	this	data	is	used	in	this	study	[18].	219	

Genetic	and	epigenetic	scores	220	

To	investigate	whether	reported	DNA	methylation	associations	with	BMI	could	221	

be	observed	in	an	independent	cohort,	we	calculated	DNA	methylation	scores	222	

from	published	effect	sizes	for	135	CpG	sites	from	the	Mendelson	et	al	[15]	meta-223	

analysis	of	DNA	methylation	and	BMI.	Scores	were	obtained	for	each	ARIES	224	

methylation	profile	by	multiplying	the	CpG	site	methylation	levels	in	that	profile	225	

with	the	corresponding	published	effects	estimates	and	then	summing	the	226	

products.	227	

Genetic	scores	were	similarly	derived	using	effect	sizes	for	97	SNPs	from	the	228	

GIANT	consortium	BMI	genome-wide	association	study	(GWAS)	[23].	Scores	229	
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were	created	using	Plink	V1.9	(https://www.cog-genomics.org/plink2)	with	the	230	

score	and	sum	commands,	however	one	of	the	SNPs	did	not	meet	imputation	231	

score	filters	(rs12016871),	so	the	score	was	constructed	using	only	96	SNPs.	232	

To	perform	simplified	versions	of	Mendelian	randomisation	(MR),	we	used	233	

summary	statistics	from	methylation	quantitative	trait	loci	(mQTL).	mQTLs	are	234	

genetic	variants	associated	with	DNA	methylation	[24].	To	identify	mQTLs	we	235	

looked	these	up	in	mQTLdb	[25],	which	contains	mQTLs	below	a	conservative	p-236	

value	threshold	of	1e-07.	If	multiple	mQTLs	were	identified	for	an	individual	CpG	237	

site,	the	one	with	the	lowest	p-value	reported	in	the	GIANT	study	for	BMI	was	238	

used	as	the	mQTL	for	the	MR	analysis.	If	these	mQTLs	were	unavailable,	then	239	

proxies	of	these	SNPs	were	obtained.	These	were	SNPs	with	the	next	lowest	p-240	

value	for	that	CpG,	which	were	also	present	in	the	BMI	GWAS	data.	We	used	the	241	

last	p-value	available	in	the	BMI	GWAS	for	each	mQTL	to	maximise	power.	Of	the	242	

135	CpG	sites	we	queried,	89	had	an	instrument	at	this	threshold.	243	

Statistical	analysis	244	

Observational	associations	at	the	same	time	point	245	

Linear	regression	models,	with	adjustments	for	covariates,	were	used	to	test	246	

observational	associations.	When	testing	for	association	between	genetic	and/or	247	

methylation	scores	of	BMI,	BMI	was	the	dependent	variable	and	the	methylation	248	

and/or	genetic	score	the	independent	variables.	For	models	including	a	genetic	249	

score,	age	was	included	as	a	covariate.	For	models	including	a	methylation	score,	250	

the	covariates	included	were	age,	sample	type	and	estimated	blood	cell	type	251	
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proportions.	Sex	was	additionally	included	as	a	covariate	in	all	models	analysing	252	

child	data.		For	predicting	BMI,	BMI	was	used	as	the	dependent	variable,	and	253	

when	predicting	methylation,	methylation	score	was	used	as	the	dependent	254	

variable.	255	

To	compare	the	relative	contributions	of	genetic	score	and	methylation	score	to	256	

BMI,	an	analysis	of	variance	(ANOVA)	test	was	carried	out	comparing	the	257	

following	three	models,	with	the	full	model	(model	3)	being	compared	to	each	of	258	

the	reduced	models	(models	1	and	2):	259	

1. BMI	~	methylation	score	+	covariates	260	

2. BMI	~	genetic	score	+	covariates	261	

3. BMI	~	methylation	score	+	genetic	score	+	covariates	262	

Finally,	we	investigated	how	BMI	and	DNA	methylation	change	over	the	life	263	

course.	Firstly,	we	calculated	correlations	of	BMI	and	DNA	methylation	score	at	264	

different	time	points	for	mothers	and	children	separately.	We	then	examined	the	265	

correlation	of	BMI	and	DNA	methylation	scores	between	paired	children	and	266	

mothers	at	the	different	time	points.	Thirdly,	we	also	calculated	correlations	for	267	

all	individual	CpG	sites	across	the	different	timepoints	and	between	paired	268	

child’s	cord	blood	DNA	and	mother’s	antenatal	peripheral	blood	DNA	values.	269	

Observational	associations	across	the	life	course	270	

To	investigate	whether	DNA	methylation	might	be	predictive	of	later	BMI	or	vice	271	

versa,	we	assessed	associations	between	different	time	points	in	mothers	and	272	
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children,	using	linear	regression	models,	similar	to	those	used	in	the	273	

observational	analyses	within	the	same	time	point.	274	

Exploration	of	a	causal	relationship	between	BMI	and	DNA	methylation	275	

Cross-lagged	model	276	

We	analysed	the	temporal	relationship	of	BMI	and	DNA	methylation,	using	a	277	

cross-lagged	model.	This	approach	allows	exploration	of	the	relationships	278	

between	earlier	BMI	and	later	methylation	score	in	two	separate	systems,	one	in	279	

the	children	(using	childhood	and	adolescence)	and	one	in	the	mothers	(using	280	

the	antenatal	and	middle	age	time	points).	The	R	package	OpenMx	(version	281	

2.13.2)	[26]	was	used	to	build	a	cross-lagged	model,	shown	in	Figures	3	and	4.		282	

Values	for	each	of	the	free	parameters	or	paths	are	estimated	in	the	model.		The	283	

paths	were	from	earlier	BMI	to	methylation	at	the	same	time	point,	later	284	

methylation	and	later	BMI;	and	from	earlier	methylation	to	later	BMI	and	285	

methylation;	and	from	later	BMI	to	methylation	at	the	same	time	point.	Each	286	

path	was	sequentially	tested	in	a	sub	model	analysis,	where	that	path	was	fixed	287	

to	0	and	this	sub	model	was	compared	against	the	full	model	using	a	likelihood	288	

ratio	test.	If	a	sub	model	had	a	significantly	worse	fit	then	that	path	was	retained,	289	

but	otherwise	dropped	because	it	was	not	important	to	the	overall	system.	290	

Mendelian	randomisation	291	

To	investigate	causal	inference	more	directly,	an	approach	based	on	MR	was	292	

adopted.	To	test	if	changes	in	BMI	cause	changes	in	DNA	methylation,	we	293	

calculated	genetic	scores	for	BMI,	as	previously	described,	and	tested	the	294	
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association	of	this	score	with	each	of	the	135	BMI-associated	CpG	sites.	A	295	

Fisher’s	test	was	then	applied	to	combine	the	association	p-values	for	all	135	296	

association	tests.	To	increase	power,	the	adolescent	and	middle-aged	mother’s	297	

data	was	subsequently	combined,	and	the	association	was	tested	again	using	a	298	

mixed	model	to	account	for	relatedness.	299	

Two-sample	MR	was	applied	to	explore	the	reverse	direction,	i.e.	a	causal	effect	300	

of	DNA	methylation	on	BMI.	In	this	approach,	summary	statistics	from	the	BMI	301	

GWAS	were	obtained	for	the	mQTLs	(or	proxies	of	these,	if	these	SNPs	were	302	

unavailable)	for	the	135	BMI-associated	CpG	sites.	303	

Confounder	analysis	304	

To	investigate	whether	any	associations	found	between	methylation	and	BMI	305	

were	due	to	confounding	by	smoking	or	education,	we	compared	linear	models	306	

of	BMI	and	DNA	methylation	with	and	without	smoking	(prenatal	smoking	307	

during	pregnancy	for	children	and	own	smoking	for	adults)	and	education	as	308	

covariates.		309	

Cardiovascular	trait	analyses	310	

Linear	regression	models	were	used	to	test	observational	associations	between	311	

the	methylation	and	genetic	scores	for	BMI	against	cardiovascular	outcomes.	312	

These	were	performed	with	and	without	adjustment	for	BMI	and	using	other	313	

covariates,	as	with	other	models.	ANOVA	tests	were	used	to	compare	the	relative	314	

contributions	of	BMI	and	the	genetic	and	methylation	scores	and	results	are	315	

reported	for	these	comparisons.	316	
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Results	317	

Establishing	associations	between	DNA	methylation	and	BMI	within	time-points	318	

The	methylation	score	for	BMI,	derived	from	the	Mendelson	et	al	epigenome-319	

wide	association	study	(EWAS)	[15],	was	strongly	associated	with	BMI	in	middle	320	

aged	mothers,	explaining	10%	of	the	variation	in	BMI	(p=1.58E-23).	The	321	

association	was	weaker	in	mothers	during	pregnancy	(2%	variance	explained,	322	

p=2.31E-06)	and	in	children	at	birth	(2%	variance	explained,	p=6.83E-05),	323	

childhood	(1%	variance	explained,	p=2.23E-04)	and	adolescence	(3%	variance	324	

explained,	p=3.91E-11).	Full	results	are	presented	in	Table	2.	325	

Table	2.	Associations	between	methylation	and	genetic	scores	and	BMI/birth	326	

weight	at	the	same	time	point.	327	

	 N	 Associations	between	
methylation	score	and	
BMI/birth	weight	

Associations	between	
genetic	score	and	
BMI/birth	weight	

Effect	size1,	
in	kg/m2	
per	SD	in	
methylation	
score	(CI)	

p-
value	

Adjusted	
R-
squared3	

Effect	
size2	
(CI)	

p-
value	

Adjusted	
R-
squared3	

Birth	 823	 69.27	
(35.35,	
103.18)	

6.83E-
05	

0.02	 -
219.75	
(-
412.59,	
-26.90)	

0.03	 0.004	

Childhood	 906	 0.25	(0.12,	
0.39)	

2.23E-
04	

0.01	 2.24	
(1.45,	
3.02)	

2.72E-
08	

0.03	

Adolescence	 770	 0.97	(0.69,	
1.26)	

3.91E-
11	

0.03	 5.25	
(3.65,	
6.85)	

2.12E-
10	

0.05	

Pregnancy	 792	 0.62	(0.36,	
0.87)	

2.31E-
06	

0.02	 2.91	
(1.38,	
4.43)	

1.95E-
04	

0.02	
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Middle-age	 726	 2.06	(1.67,	
2.46)	

1.58E-
23	

0.10	 4.72	
(2.54,	
6.90)	

2.45E-
05	

0.02	

1	From	model	adjusting	for	age	(except	at	birth),	sex	(where	applicable),	sample	type	328	

(where	applicable),	and	cell	type	proportions	(B	cell,	CD4T,	CD8T,	Gran,	Mono	and	NK).	329	

2	From	model	adjusting	for	age	and	sex	(where	applicable)	330	

3	Adjusted	R-squared	obtained	from	model	with	only	the	methylation	score	or	genetic	score	331	

and	no	other	covariates.	332	

Genetic	scores	for	BMI,	derived	from	published	GWAS	summary	statistics		[23],	333	

were	also	associated	with	BMI,	with	the	strongest	association	found	for	children	334	

in	adolescence	with	5%	variance	explained	in	BMI	(p=2.12E-10)	and	weaker	335	

associations	found	at	all	other	time	points	(see	Table	2	for	full	results).	336	

The	genetic	and	methylation	score	associations	appear	to	be	mostly	independent	337	

(Table	3),	as	the	combined	model	with	both	genetic	and	methylation	scores	338	

performed	better	than	both	the	methylation	score	(ANOVA	test	p-values	ranged	339	

from	1.93E-10	to	0.04)	and	genetic	score	models	(ANOVA	test	p-values	ranged	340	

from	4.55E-21	to	1.28E-03)	alone	for	all	time	points.	This	validates	previous	341	

findings	that	the	genotype	and	DNA	methylation	explain	independent	subsets	of	342	

BMI	variation	[13,15].		343	

Table	3	Results	from	combined	model	and	ANOVA	comparing	this	with	models	344	

for	methylation	and	genetic	scores.	345	
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	 Combined	model	
adjusted	R-
squared1	

ANOVA	(model	
1	vs	model	3)	

ANOVA	(model	2	
vs	model	3)	

Birth	 0.03	 0.04	 1.56E-09	
Childhood	 0.04	 9.03E-09	 1.28E-03	
Adolescence	 0.08	 1.93E-10	 5.28E-11	
Pregnancy	 0.04	 2.22E-04	 5.36E-05	
Middle-age	 0.12	 2.77E-05	 4.55E-21	

1	Adjusted	R-squared	obtained	from	model	with	both	the	methylation	and	the	genetic	346	

scores	and	no	other	covariates	347	

Model	1	includes	the	methylation	score,	model	2	includes	the	genetic	score	and	model	3	is	348	

the	combined	model	including	the	methylation	and	genetic	score.	All	models	also	included	349	

the	relevant	covariates	350	

Stability	of	phenotypic	values	over	time	and	between	generations	351	

We	evaluated	the	extent	to	which	individual	BMI	levels	correlated	over	time	and	352	

between	mothers	and	children.	The	strongest	BMI	correlations	were	observed	in	353	

children	between	age	7	and	adolescence	and	in	mothers	between	pregnancy	and	354	

middle	age	(R	~	0.7).		Intermediate	correlations	were	observed	between	355	

children	and	mothers	at	all	time	points	(R	~	0.3)	except	birth.	Lowest	BMI	356	

correlations	(R	~	0.15)	were	observed	with	birth,	likely	because	birthweight	is	a	357	

different	measure	than	BMI	(Figure	1).		358	

Figure	1.	Correlation	matrix	of	BMI	in	children	(birth,	childhood,	adolescence)	359	

and	mothers	(pregnancy	and	middle-age).	360	
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Legend:	This	correlation	matrix	shows	the	correlations	over	time	for	BMI	at	all	time	points	361	

in	children	and	mothers.	There	is	a	correlation	of	BMI	in	children	and	mothers	over	time	362	

and	between	paired	mother	and	children’s	BMI.		363	

The	BMI	methylation	score	correlations	exhibited	similar	patterns	but	were	364	

generally	lower	than	for	BMI.	Strongest	correlations	were	observed	in	children	365	

between	age	7	and	adolescence	and	in	mothers	between	pregnancy	and	middle	366	

age	(R	~	0.5).		All	other	correlations	were	between	0.2	and	0.25.		Thus,	367	

methylation	scores	at	birth	were	more	highly	correlated	with	later	time	points	368	

and	with	maternal	methylation	scores	than	birthweight	and	BMI	(Figure	2).	369	

Given	the	weak	association	of	methylation	in	childhood	with	BMI,	factors	other	370	

than	BMI	likely	contribute	to	the	correlation	of	DNA	methylation	over	time	and	371	

between	mothers	and	children.		372	

Figure	2.	Correlation	matrix	of	methylation	score	in	children	(birth,	childhood,	373	

adolescence)	and	mothers	(pregnancy	and	middle-age).	374	

Legend:	This	correlation	matrix	shows	the	correlations	over	time	for	overall	methylation	375	

score	at	all	time	points	in	children	and	mothers.	There	is	a	correlation	of	methylation	score	376	

in	children	and	mothers	over	time	and	between	paired	mother	and	children’s	methylation	377	

scores.	378	

Finally,	to	examine	whether	there	are	particular	CpG	sites	that	correlate	more	379	

strongly	over	time	and	between	paired	children	and	mothers,	we	tested	the	380	

correlation	of	each	site	at	different	time	points	(Supplementary	Table	1,	381	

Additional	file	1).	We	observe	that	median	correlations	across	all	CpG	sites	382	

follow	a	similar	pattern	to	correlations	of	the	methylation	scores	over	time,	383	
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where	the	strongest	correlations	were	observed	in	children	between	age	7	and	384	

adolescence	and	in	mothers	between	pregnancy	and	middle	age	(R	~	0.2).		Only	385	

these	two	sets	of	timepoints	have	CpG	sites	with	correlation	R	>	0.5.		There	are	386	

six	such	CpG	sites	for	each	and	two	of	these	are	common	to	both	(cg16611584,	387	

cg24145109).		Both	of	these	CpG	sites	are	highly	correlated	across	all	time	388	

points.		389	

Predicting	future	BMI	with	past	DNA	methylation	scores	390	

We	next	investigated	whether	the	BMI	methylation	score	was	predictive	of	BMI	391	

at	later	timepoints	(Table	4)	or	vice	versa	(if	BMI	was	predictive	of	methylation	392	

score	at	later	timepoints;	Table	5).	We	observed	some	evidence	that	methylation	393	

score	in	childhood	could	be	predictive	of	BMI	in	adolescence	(p=0.004),	although	394	

the	association	disappeared	when	adjusting	for	childhood	BMI	(p=0.20)	and	395	

there	was	stronger	evidence	for	the	converse,	that	is	BMI	in	childhood	predicting	396	

adolescent	DNA	methylation	(p=1.52E-06	even	when	adjusting	for	childhood	397	

methylation	score).	We	observed	the	same	in	the	mothers	between	pregnancy	398	

and	middle	age;	that	is,	the	association	between	antenatal	(earlier)	methylation	399	

score	and	middle-age	(later)	BMI	(p=0.02)	essentially	disappears	when	adjusting	400	

for	antenatal	(earlier)	BMI	(p=0.13).	Also,	the	association	between	antenatal	401	

(earlier)	BMI	and	middle	age	(later)	DNA	methylation	is	much	stronger	even	402	

when	adjusting	for	antenatal	(earlier)	methylation	score	(p=5.48E-11).		403	

Table	4.	Associations	between	methylation	score	and	BMI	at	later	time	points.	404	

	 N	 Unadjusted	for	current	
BMI/birthweight1	

Adjusted	for	current	
BMI/birthweight1	
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Effect	
size1	

CI	 p-
value	

Adjusted	R-
squared2	

Effect	
size1	

CI	 p-
value	

Methylation	
score	at	birth,	
BMI	in	
childhood	

830	 -0.03	 -0.18,	
0.13	

0.72	 -0.0004	 -0.07	 -0.22,	
0.07	

0.36	

Methylation	
score	at	birth,	
BMI	in	
adolescence	

712	 0.06	 -0.25,	
0.36	

0.70	 -0.001	 -0.05	 -0.35,	
0.25	

0.73	

Methylation	
score	in	
childhood,	
BMI	in	
adolescence	

762	 0.41	 0.13,	
0.69	

0.004	 0.005	 0.13	 -0.07,	
0.34	

0.20	

Antenatal	
methylation	
score,	BMI	in	
middle-age	

765	 0.80	 0.44,	
1.17	

1.92E-
05	

0.02	 0.19	 -0.06,	
0.44	

0.13	

1	From	model	adjusting	for	age	(except	at	birth),	sex	(where	applicable),	sample	type	405	

(where	applicable),	and	cell	type	proportions	(B	cell,	CD4T,	CD8T,	Gran,	Mono	and	NK).	406	

2	Adjusted	R-squared	obtained	from	model	with	only	the	methylation	score	and	no	other	407	

covariates	408	

Table	5.	Associations	between	BMI/birthweight	and	methylation	score	at	later	409	

time	points.	410	

	 N	 Unadjusted	for	current	methylation	
score1	

Adjusted	for	current	
methylation	score1	

Effect	
size1	

CI	 p-
value	

Adjusted	
R-
squared2	

Effect	
size1	

CI	 p-
value	

Birthweight,	
methylation	
score	in	
childhood	

814	 -0.0001	 -0.0002,	
0.00004	

0.17	 0.003	 -0.0002	 -0.0003,	
-
0.00006	

0.006	

Birthweight,	
methylation	

812	 0.000003	 -0.0001,	
0.0001	

0.96	 0.002	 -
0.00008	

-0.0002,	
0.00005	

0.22	
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score	in	
adolescence	
BMI	in	
childhood,	
methylation	
score	in	
adolescence	

891	 0.09	 0.06,	
0.12	

3.05E-
09	

0.02	 0.06	 0.04,	
0.09	

1.52E-
06	

Antenatal	
BMI,	
methylation	
score	in	
middle-age	

851	 0.07	 0.05,	
0.08	

1.42E-
16	

0.06	 0.05	 0.03,	
0.05	

5.48E-
11	

1	From	model	adjusting	for	age	(except	at	birth),	sex	(where	applicable),	sample	type	411	

(where	applicable),	and	cell	type	proportions	(B	cell,	CD4T,	CD8T,	Gran,	Mono	and	NK).	412	

2	Adjusted	R-squared	obtained	from	model	with	only	the	methylation	score	and	no	other	413	

covariates	414	

Exploration	of	temporal	relationships	between	BMI	and	DNA	methylation	415	

To	further	evaluate	the	temporal	associations	between	DNA	methylation	and	416	

BMI,	we	used	cross-lagged	models	to	test	which	paths	from	earlier	trait	417	

measures	and	scores	were	important	for	later	trait	measures	and	scores.		418	

Agreeing	with	the	results	from	adjusted	linear	models,	these	did	reveal	a	419	

pathway	between	BMI	in	childhood	and	methylation	score	in	adolescence.	420	

Figure	3	shows	the	estimates	and	variances/covariances	obtained	from	the	421	

main	model.	The	only	path	that	could	be	dropped	from	the	model	without	422	

affecting	model	fit	was	between	childhood	methylation	and	adolescent	BMI	423	

(p=0.35	for	this	path	and	p	<	1.79E-4	for	all	other	paths;	Supplementary	Figure	1,	424	

Additional	file	1).	Cross-lagged	model	fits	in	mothers	(Figure	4)	also	revealed	a	425	

pathway	from	(earlier)	BMI	in	pregnancy	to	(later)	DNA	methylation	in	middle-426	

age.	The	only	path	that	could	be	dropped	from	the	model	without	affecting	427	
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model	fit	was	from	DNA	methylation	in	pregnancy	(earlier)	and	BMI	in	middle-428	

age	(later)	(p=0.20	for	this	path	and	p<3.65E-09	for	all	other	paths;	429	

Supplementary	Figure	2,	Additional	file	1).	430	

Figure	3.	Pathway	diagram	for	the	cross-lagged	model	for	childhood	and	431	

adolescence.	432	

Legend:	This	diagram	shows	the	observed	variables	in	boxes.	Single	headed	arrows	433	

indicate	linear	regressions	and	double	headed,	curved	arrows	indicate	434	

variances/covariances.	Estimates	for	the	linear	relationships	are	shown	on	the	arrows,	as	435	

are	the	values	for	variances	and	covariances.	436	

Figure	4.	Pathway	diagram	for	the	cross-lagged	model	for	pregnancy	and	middle-437	

aged	mothers.	438	

Legend:	This	diagram	shows	the	observed	variables	in	boxes.	Single	headed	arrows	439	

indicate	linear	regressions	and	double	headed,	curved	arrows	indicate	440	

variances/covariances.	Estimates	for	the	linear	relationships	are	shown	on	the	arrows,	as	441	

are	the	values	for	variances	and	covariances.	442	

Mendelian	randomisation	does	not	support	a	causal	relationship	of	DNAm	on	443	

BMI	444	

We	used	two-sample	MR	to	explore	causal	relationships	between	DNA	445	

methylation	and	BMI	(Supplementary	Table	2,	Additional	file	1).	Using	the	BMI	446	

genetic	score	as	an	instrumental	variable	for	BMI,	we	found	little	evidence	for	a	447	

causal	link	of	BMI	on	each	of	the	135	CpG	sites	used	to	construct	the	methylation	448	

score	(p-value	range:	1.63E-03	–	9.99E-01,	for	all	timepoints,	with	a	Bonferroni-449	
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adjusted	p-value	threshold	of	3.7E-04).	A	combined	p-value	for	all	135	CpG	sites	450	

obtained	using	Fisher’s	method	similarly	indicated	no	strong	association	451	

between	the	genetic	score	and	methylation	(p-value	range:	0.82	–	1.00,	for	all	452	

timepoints).	Furthermore,	even	when	this	analysis	was	repeated	with	a	mixed	453	

model	including	data	from	both	adolescents	and	middle-aged	mothers	to	454	

increase	the	power	(Supplementary	Table	3,	Additional	file	1),	there	was	still	455	

little	evidence	of	association	(p-value	range:	2.13E-02	–	9.98E-01).		456	

The	reverse	causal	direction,	methylation	variation	causing	BMI	variation,	was	457	

investigated	using	mQTLs	for	the	135	methylation	score	CpG	sites	as	458	

instrumental	variables.		These	individual	tests	did	not	indicate	a	causal	link	459	

(Bonferroni-adjusted	p-value	threshold	of	3.7E-04;	Supplementary	Table	4,	460	

Additional	file	1)	although	combining	the	test	p-values	using	Fisher’s	method	did	461	

provide	weak	evidence	for	a	causal	association	(Fisher’s	p-value	=	0.03).		462	

Confounder	analyses	463	

Sensitivity	analyses	showed	that	associations	between	BMI	and	methylation	464	

score	remained	unaffected	by	the	inclusion	of	potential	confounders	in	the	465	

majority	of	models	(Supplementary	Table	5,	Additional	file	1).	Smoking	and	466	

education	appeared	to	be	associated	with	methylation	score	in	some	models,	467	

however,	most	of	the	associations	between	BMI	and	methylation	score	survived	468	

these	adjustments	(p	<	0.007	=	0.05/7).		469	

Associations	with	cardiovascular	traits	470	
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Finally,	given	that	BMI	is	a	risk	factor	for	cardiovascular	disease,	we	tested	471	

within-timepoint	associations	between	the	DNA	methylation	and	genetic	scores	472	

for	BMI	and	cardiovascular	traits	to	examine	if	the	specificity	of	these	scores.	473	

Firstly,	we	observed	that	methylation	associations	were	partially	independent	of	474	

BMI	for	LDL	(p=0.02)	and	glucose	(p=0.03)	in	adolescence	and	triglycerides	475	

(p=3.00E-03),	LDL	(p=0.01)	and	SBP	(p=0.05)	in	mothers	at	middle	age.	476	

Similarly,	we	observed	that	methylation	associations	were	partially	independent	477	

of	genetic	effects	on	SBP	in	adolescence	(p=0.05)	and	triglycerides	in	mothers	478	

(p=3.27E-03)	(Supplementary	Table	6,	Additional	file	1).		We	also	observed	that	479	

genetic	effects	were	partially	independent	of	BMI	for	LDL	(p=0.03),	glucose	480	

(0.05)	and	SBP	(0.03)	in	adolescence	and	triglycerides	(2.01E-04),	LDL	(0.02)	481	

and	SBP	(0.02)	in	mothers.	Finally,	we	observed	that	the	genetic	effects	were	482	

partially	independent	of	methylation	and	BMI	for	LDL	(p=0.02)	and	glucose	483	

(p=0.03)	in	adolescence	and	triglycerides	(p=3.80E-03),	LDL	(p=0.01)	and	SBP	484	

(p=0.02)	in	mothers	(Supplementary	Table	7,	Additional	file	1).	485	

	486	

	487	

	488	

	489	

	490	

	491	
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Discussion	492	

In	this	study	we	have	demonstrated	strong	associations	between	DNA	493	

methylation	and	genetic	scores	for	BMI	[15]	in	both	adults	and	children.	494	

Importantly,	the	use	of	temporal	data	indicates	that	the	DNA	methylation	scores	495	

are	not	predictive.	While	the	association	between	DNA	methylation	scores	and	496	

BMI	within	time	point	are	strong,	the	associations	between	earlier	methylation	497	

scores	later	BMI	are	weak,	and	these	signals	do	not	improve	the	model	of	simply	498	

using	earlier	BMI	as	a	predictor	for	later	BMI.	Hence,	it	may	be	more	appropriate	499	

to	term	the	DNA	methylation	score	as	a	biomarker	rather	than	a	cause	or	500	

predictor	of	BMI.		501	

We	observed	within-timepoint	associations	between	DNA	methylation	score	for	502	

BMI	and	health	outcomes	for	which	BMI	is	a	risk	factor.	These	associations	were	503	

independent	of	BMI	and	genotype,	suggesting	that	the	DNA	methylation	–	BMI	504	

associations	might	arise	due	to	unmeasured	confounders	that	also	influence	505	

those	outcomes.	DNA	methylation	could	be	used	as	a	biomarker	for	these	506	

outcomes,	above	and	beyond	BMI	and	genetic	variation.		507	

Our	study	builds	upon	previous	research	in	this	field	showing	that	both	genetic	508	

and	environmental	factors	contribute	to	variance	in	BMI	[5,23].	Previous	work	509	

investigating	the	relationship	between	DNA	methylation	and	BMI	has	found	510	

associations	with	specific	DNA	methylation	sites	[10–12].	However	results	from	511	

these	studies	are	fairly	inconsistent	and	practical	implications	of	these	512	

associations	have	not	yet	been	identified	[27].	In	extension	of	this	previous	513	

research	we	have	used	135	CpG	sites,	identified	in	an	EWAS	meta-analysis	[15],		514	
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to	create	methylation	scores	that	are	also	associated	with	BMI	in	an	independent	515	

cohort.	The	main	novel	component	of	our	study	is	that	we	look	across	the	life	516	

course	in	children	and	adults.	Another	study	investigating	DNA	methylation	517	

profile	and	obesity	in	children	aged	6-14	years	also	found	an	association	518	

between	childhood	obesity	and	a	separate	set	of	differentially	methylated		CpG	519	

sites,	supporting	our	finding	that	DNA	methylation	is	associated	with	BMI	in	520	

adolescents	[28].	Our	findings	in	younger	children	were	however	weaker	and	521	

could	be	due	to	basing	our	analysis	on	methylation	at	CpG	sites	associated	with	522	

BMI	in	adults.		523	

We	have	also	investigated	the	nature	of	these	associations	further	and	found	that	524	

there	may	be	some	predictive	capability	of	earlier	BMI	to	later	DNA	methylation	525	

at	multiple	time	points,	however	we	found	no	evidence	to	suggest	this	526	

association	is	causal,	which	could	be	due	to	several	reasons.	Firstly,	it	may	be	527	

that	there	is	a	lack	of	power	in	these	analyses	for	MR	to	detect	a	causal	528	

relationship.	The	Wahl	et	al	paper	[14]	suggests	that	with	larger	sample	sizes	the	529	

direction	of	effect	is	likely	to	be	from	BMI	to	DNA	methylation.	Therefore,	it	is	530	

possible	that	with	a	larger	sample	size	we	could	confirm	this	direction	of	531	

causality.	It	could	also	be	that	there	are	other	unknown	confounders,	which	are	532	

mediating	this	effect	and	future	research	should	focus	on	investigating	this	533	

further.	Our	MR	analyses	suggest	a	weak	aggregate	causal	association	from	DNA	534	

methylation	to	BMI,	however	due	to	the	DNAm	instruments	being	enriched	for	535	

genic	regions,	this	association	is	unlikely	to	be	stronger	than	expected	against	a	536	

more	appropriate	null	that	reflects	that	BMI	is	more	strongly	influenced	by	537	

genetic	variants	in	genic	regions	[23].	We	also	found	associations	of	the	BMI	538	
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DNAm	scores	with	cardiovascular	outcomes.	If	BMI	causes	changes	in	DNAm,	as	539	

our	analyses	seem	to	suggest,	then	DNAm	changes	may	fall	on	the	causal	540	

pathway	between	BMI	and	these	cardiovascular	outcomes.	Therefore,	DNAm	541	

scores	may	have	potential	use	as	predictors	of	cardiovascular	outcomes,	542	

although	generalisability	to	other	populations	would	need	to	be	confirmed.	This	543	

has	been	suggested	in	previous	studies	for	diabetes	[14,29]	and	insulin-544	

resistance	[30].	545	

Limitations	546	

This	study	is	subject	to	a	number	of	limitations.	Firstly,	whilst	the	size	of	the	547	

ARIES	cohort	is	larger	than	or	equivalent	to	samples	used	in	other	DNA	548	

methylation	studies,	it	may	still	be	too	small	to	detect	some	associations,	and	this	549	

may	be	why	we	do	not	find	any	causal	association	for	BMI	to	DNA	methylation,	550	

as	discussed	above.	The	ARIES	mQTL	database	used	in	the	two-sample	MR	had	a	551	

total	sample	size	of	3,948,	although	this	was	split	across	three	time	points	in	552	

approximately	the	same	children	and	two	time	points	in	the	mothers.	We	used	553	

the	GIANT	cohort	for	BMI	in	the	two-sample	MR	and	included	235,522	554	

participants	in	these	analyses.	The	GIANT	sample	size	is	much	larger	and	555	

therefore	it	is	difficult	to	directly	compare	the	strength	of	causal	evidence	in	each	556	

direction	between	these	samples.	Secondly,	whilst	it	is	a	strength	of	our	study	557	

that	we	use	multiple	time	points,	in	the	mothers	one	of	these	is	during	pregnancy	558	

so	these	findings	may	not	be	generalizable	outside	of	pregnancy,	or	generalizable	559	

to	males.	As	with	any	epidemiological	study	there	may	also	be	measurement	560	

error	present	in	our	phenotypic	data,	for	example	smoking	data	was	collected	via	561	

self-report	and	there	may	be	biases	present	in	this	data	because	of	this.	In	562	
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addition,	measurement	error	may	be	present	in	the	genotyping	data	and	563	

methylation	data.	Finally,	the	DNA	methylation	data	was	collected	from	blood	564	

samples	which	may	not	be	indicative	of	other	tissue	methylation	levels	such	as	565	

adipose	tissue	which	may	be	more	relevant	in	a	study	looking	at	potential	causal	566	

relationships	between	BMI	and	DNAm,	however	we	assume	the	two	may	be	567	

correlated	to	an	extent.	568	

Conclusions 569	

In	conclusion,	our	study	finds	that	DNA	methylation	scores,	as	have	so	far	been	570	

generated,	are	unlikely	to	be	predictive	of	future	BMI	using	earlier	DNA	571	

methylation	levels,	and	therefore	is	more	appropriately	considered	a	biomarker.	572	

This	indicates	that	conducting	EWAS	using	DNAm	values	and	trait	values	573	

measured	at	the	same	time	point	is	not	an	effective	strategy	when	attempting	to	574	

create	predictors.	Therefore,	future	studies	should	perform	EWAS	that	test	for	575	

early	DNAm	values	against	later	health	outcomes	to	evaluate	whether	this	may	576	

enable	creating	an	effective	predictor,	which	could	then	be	tested	in	other	577	

populations.	578	

	579	

	580	

	581	

	582	
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Abbreviations:	583	

BMI:	Body	mass	index;	ARIES:	Accessible	Resource	for	Integrated	Epigenomic	584	

Studies;	ALSPAC:	Avon	Longitudinal	Study	of	Parents	and	Children;	LDL:	Low-585	

density	lipoprotein;	SBP:	Systolic	blood	pressure;	MR:	Mendelian	randomisation;	586	

mQTL:	methylation	quantitative	trait	loci;	ANOVA:	Analysis	of	variance;	EWAS:	587	

Epigenome-wide	association	study;	GWAS:	Genome-wide	association	study.	588	
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