1	Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land
2	Snail Species, Achatina fulica Bowdich, 1822, Achatina albopicta E.A. Smith (1878) and
3	Achatina reticulata Pfeiffer 1845 (Gastropoda:Achatinidae) in Southwest Nigeria
4	
5	
6	
7	
8	
9	Alexander B. Odaibo ¹ and Suraj O. Olayinka ²
10	
11	^{1,2} Department of Zoology, University of Ibadan, Ibadan, Nigeria
12	
13	Corresponding author: Alexander B. Odaibo
14	E.mail :alexodaibo@yahoo.com (AB)
15	
16	
17	
18	

19 Abstract

The aim of this study was to determine the differences in the shell, radula and genital 20 structures of 3 new invasive species, Achatina fulica Bowdich, 1822, Achatina albopicta E.A. 21 Smith (1878) and Achatina reticulata Pfeiffer, 1845 collected from southwestern Nigeria and to 22 23 determine features that would be of importance in the identification of these invasive species in 24 Nigeria. This is the first report of Achatina albopicta and A. reticulata in Nigeria, but Achatina *fulica* have since been reported in Nigeria and other African countries outside coastal East 25 26 Africa. No study has described the external or internal morphology of any of the invasive species 27 in Nigeria. Five to ten live specimens of each species, with complete shell characters, of each 28 species were used for this study. Vernier caliper was used to obtain all shell measurements, with 29 the shell held vertically and the aperture facing the observer. The genital structures were dissected out and fixed in 70% alcohol for 10-15 minutes and examined. The buccal mass was 30 31 dissected out and digested in 7.5% sodium hydroxide for 24 hrs to free the radula from snail 32 tissues and then examined under the compound microscope.

The shells of the 3 new species were dextral, conical with pointed spire and narrow apex. 33 34 The whorls were separated by deep sutures. The parietal walls and the columella of the three 35 species were white but columella of A. reticulata had a characteristic thick deposit of white porcelain-like material. There were dark brown markings on the whorls of the three species on 36 dirty brown background for A. fulica and A. reticulata and dirty yellowish background for A. 37 38 albopicta. The shell of A. albopicta was slightly glossy on the body whorl. The whorls of A. albopicta were much more convex than the whorls of A. fulica and A. reticulata. The columella 39 of A. albopicta was truncate above the base of the peristome, moderately concave and slightly 40

41	curved up at the base, while the columella of A. fulica was truncate sharply at the base of the
42	peristome and straight and the columella of A. reticulata was slantly truncate at the base of the
43	peristome and straight. The genitalia of the three species were very identical but differed slightly
44	in the emergence of the basal vas deferens from the penis. The penes were slender and
45	completely enclosed by the penial sheaths. The length of the penis varied from 10 to 12 mm. The
46	vas deferens, free oviduct and the spermatheca duct were very long. The radula could be
47	differentiated by the structure of central teeth and the first lateral tooth. The study showed that
48	the shell morphology, radula and genital structures can be of importance in the identification of
49	members of the family Achatinidae in Nigeria.
50	Key words: Achatina fulica, Achatina albopicta, Achatina reticulata, invasive species, shell
51	morphology, radula, genital structures.
52	
53	
54	
55	
56	
57	
58	
59	
60	

61 Introduction

62	Species of Achatinidae are endemic in African countries south of the Sahara. They are
63	characterized by large to medium sized, broadly ovate shells, with regular conical spires. With
64	increase in mobility of humans and globalization of travel and trade, several achatinids, have
65	been accidentally or purposefully transported to areas outside their native range, where they
66	cause significant economic and ecological impacts [1]. Achatina fulica Bowdich, 1822 and its
67	subspecies are native to the coastal East Africa, particularly Kenya and Tanzania but have now
68	been introduced to many other African countries like Cote d'Ivoire, Togo, Ghana, Nigeria [2-6],
69	Benin Republic were A. fulica has already overtaken the west African land giant snails in
70	population density [7], and many countries in tropical and subtropical regions [1].
71	The Giant African land snails Achatina fulica Bowdich, 1822 is considered to be among the
72	world's 100 worst invasive species and also ranked among the worst snail pests of tropical and
73	sub-tropical regions, causing significant damages to farms, commercial plantations and domestic
74	gardens [8]. It is an intermediate host of the rat lungworm, Angiostrongylus cantonensis, which
75	causes eosinophilic meningoencephalitis in humans and Angiostrongylus costaricencis, the
76	etiological agent of abdominal angiostrogylosis [9, 10]. A. fulica can consume several species of
77	native plants, agricultural and horticultural crops, modify habitats and outcompete native species
78	[11]. In Nigeria the West African species of Archachatina and Achatina (subgenus Achatina) are
79	usually favoured and they grow to reasonable sizes than any other known land snails. The genus
80	Achatina had been represented by Achatina achatina (Linne) and its subspecies, but in recent
81	times Achatina fulica (subgenus Lissachatina) has been reported in some parts of the

82	country [5,6]. A recent study of the live specimens of Achatina spp collected from Itori, in
83	Ogun state and the University of Ibadan, Ibadan, Nigeria in Oyo state, showed that the samples
84	collected were represented by three separate species (Achatina fulica, Achatina albopicta and A.
85	reticulata), following the original descriptions of Bequaert [12]. Shell morphology alone could
86	not reveal clearly the differences between these species, hence a combination of shell, radula and
87	genital structures known to be important in the classification molluscs [13] were investigated for
88	their significance in the identification of the invasive snail species. This study was undertaken to
89	reveal the differences in the shell, radula and genital structures of the three invasive species and
90	provide notes on characters that can be important for their identification in areas where they have
91	been recently introduced and to contribute to the available information on the terrestrial
92	molluscan species richness in Nigeria that is still poorly investigated.
93	
94	
95	
96	
97	
98	
99	
100	
101	

102 Materials and Methods.

103 Snail samples

104 The samples of *Achatina fulica* used for this study were collected from Itori, headquarter of

Ewekoro Local Government Area in Ogun State, Nigeria, located at 6°93'23"N and 3°22'47"E.

106 The average monthly temperature ranges from 23°C to 32.2°C and it is a tropical rain forest area

107 undergoing transition to guinea savannah due to farming and mining activities. The samples of

108 Achatina albopicta and A. reticulata were collected from the residential areas of University of

109 Ibadan, Ibadan, Oyo state, Nigeria, located at 7º 23'28.19" and 3º 54'59.99" E "Fig.1". Five to

ten live snails were used for the study. Snails were identified using Bequaert [12].

111 Snailery

Snail samples collected from the field were maintained in the snailery in the Department of Zoology, University of Ibadan, Ibadan, Nigeria, before examination. Snails were kept in rectangular glass containers (93 x 62 x 58 cm), with metal mesh covers, field half way with moist humus soil. The snails were maintained under the natural regime of 12hr light and 12hr darkness, fed *ad libitum* with *Carica papaya* leaves, *Tridax triangulare* leaves and unripe pawpaw fruits before examination.

118

Fig 1. Map of Oyo and Ogun States Showing the Collection Sites for the Invasive *Achatina*Species in Nigeria

122 Shell morphometrics

123 Vernier caliper was used to obtain the conchological character measurements [14]. All 124 measurements were taken with the shell held vertically with the aperture facing the observer, and only complete shells i.e. shells with no missing parts, were used for the study. The shell height 125 (SH) was the longest vertical axis of the shell, measured from the tip of the spire to the basal 126 127 edge of the outer lip. The shell width (SW) was the largest diameter, measured at right angle to the vertical axis, from the left margin of the body whorl to the outer edge of outer lip. The 128 aperture height (AH) was the longest distance from the insertion of the outer lip on the parietal 129 130 wall to the basal edge of the outer lip, while the aperture width (AW) was the greatest distance 131 from the inner edge of the columella to the edge of the outer lip. The spire height (SpH) was measured from the tip of the apex to the suture separating the spiral whorls from the body whorl, 132 133 and the body whorl height was the measured from the suture separating the spire from the body whorl to the base of the peristome (BwH).All measurements were in millimeters. 134

135 Shell parameter indices

136 From the values obtained for each linear measurement, the following indices were determined,

137 following the methodology of Medeiros et al.[15]: the shell height/shell width (SH/SW); body

138 whorl height/shell width (BwH/SW); shell aperture height/shell aperture width (AH/AW); and

spire height/ body whorl height (SpH/BwH).

140

142 Number of whorls

143 The number of whorls corresponds to the number of complete turns of the shell beginning from

the embryonal whorls at the tip of the spire.

145 **Dissection of genital structures**

Each specimen was placed in a jar filled with boiling water for 10 - 15 minutes to loosen the columellar muscle and the soft body was extracted from the shell with hooked metal. The shell was preserved for shell morphometrics. The genital structure was dissected out of the soft body and fixed in 70% alcohol for 10 minutes and examined. The genital structure was then preserved in 10% formalin.

151 Radula preparation

The buccal mass was dissected out of the head region of the soft body and macerated in 7.5% sodium hydroxide for 24 hours at room temperature. The freed radula was washed in water and any leftover tissues were removed under the dissecting microscope. The radula was mounted in glycerine and view under the compound microscope. After observation the radula was preserved in 70% alcohol. Photographs of radula were taken with UCMOS series microscope camera MU500 with Toupview 3.2 image software.

158 **Statistical analysis**

159 To detect variations in shell morphology between species, the linear measurements and ratios

160 were subjected to logarithmic transformation (log_{10}) before using Analysis of Variance

161 (ANOVA, p≤0.05).

Results and Discussion

The three new species in this study, Achatina fulica, A. albopicta, and A. reticulata were 163 collected from residential areas in Ibadan, an urban community and from farmlands in Itori, a 164 semi urban community in southwest Nigeria. The invasive species are known to thrive in the 165 166 presence of man, especially in urban sites and farms or disturbed areas [8], and they have 167 superior competitive abilities over endemic species, whose distributions are often affected, due to the high fecundity and reproductive rates of the invasive species [11]. This invasion will 168 169 significantly impact the species richness of land snails in Nigeria. It is therefore important that 170 the extent of this invasion in Nigeria is monitored and properly managed before they assume pest 171 status or dominance over the West Africa species of achatinidae that have served as cheap 172 sources of protein for the rural populace and have not been incriminated in the transmission of any known parasitic infections of public health importance. The invasive A. fulica has achieved 173 174 dominance in the achatinid communities in Ivory Coast, Ghana and central Benin Republic [1, 7]. While it is not precisely known how the invasive species got to Nigeria; it is most likely that 175 they were introduced for economic reasons and subsequent uncontrolled uses may increase their 176 ranges in future as they are moved around for sale, food or farming by humans. What should 177 also be of concern, apart from the effect on ecology and biodiversity, is that the invasive species 178 179 can act as intermediate hosts of Metastrongylidae nematodes, particularly now that Angiostrongylus cantonensis Cheg, 1935, which causes eosinophilic meningitis is spreading 180 rapidly to many parts of the world [10]. 181

The shell morphology of the three invasive species (*Achatina fulica*, *A. albopicta* and *A. reticulata*) in this study conformed to the original descriptions of the three species from East

184	Africa [12]. The shells were dextral, conical with pointed spires and narrow apex. They had a
185	minimum of 8 whorls and the whorls were separated by deep sutures. The parietal walls and
186	columella of the three species were whitish. There were dark brown markings on the whorls of
187	the three species, but on dirty brown background for A. fulica "Fig 2" and A. reticulata "Fig 3",
188	and dark brown or yellowish background for A. albopicta "Fig 4", which was also slightly glossy
189	on the body wall. The major differences in shell features are shown in "Table 1".
190	
191	Fig 2. Apertural and abaperural views of shell of Achatina fulica collected
192	From Itori, Ogun State, Nigeria. Scale bar = 1.0cm
193	Fig 3. Apertural and abaperural views of shell of Achatina reticulata collected
194	from Ibadan. Scale bar = 1.0 cm
195	Fig 4. Apertural and abaperural views of shell of Achatina reticulata collected
196	from Ibadan. Scale bar = 1.0 cm
197	
198	The three invasive species exhibited considerable morphometric similarities "Table 2". They
199	were high-spired species (shell height> shell width), and the shell spired index (SH/SW) ranged
200	from 1.8-2.0. The shell of A. fulica was most slender (SH/SW= 2.0 ± 0.04) followed by the shell of
201	the shell of <i>A. reticulata</i> (SH/SW=2.0±0.1) and <i>A. albopicta</i> (SH/SW=1.8±0.1). However, the

- mean values of the shell parameters were significantly (p < 0.05) larger for *A. reticulata* than *A*.
- 203 *fulica* and *A. albopicta* "Table 2". The shells of *Achatina reticulata* had a mean height of

- 134.0.3 \pm 17.4 mm and was larger than the shell of *A*. *fulica* (90.0 \pm 2.7 mm) and *A*. *albopicta*
- 205 $(104.1 \pm 7.6 \text{ mm})$ "Table 2". The aperture index (AP/AW) ranged from 1.9-2.3 among the three
- species. The shell shapes fit into the patterns described for invasive achatinidae [16]; this study
- showed that the three species had elongated spire with narrow body whorl and narrow aperture.
- 208 Achatina reticulata was the largest of the three species in this study with conspicuous
- 209 longitudinal sculptures on the body whorl. The high shell-spired indices of the three species may
- account for the ease with which they burrow or burry in the soil.

211 Table 1. Showing differences in shell characters of the invasive Achatina species in

212 southwestern Nigeria.

Shell	Achatina species			
characters	Achatina fulica	Achatina albopicta	Achatina reticulata	
Spire	The spire occupied 30% of the total height of the shell, with longitudinal brown stripe or patches. The whorls were slightly convex.	The spire occupied 32% of the total shell height, with light brown irregular patches or stripes. The whorls were strongly convex.	The spire occupied 29 % of the total shell height, with dirty white background and zigzag/ longitudinal brown patches or stripes The whorls were strongly convex.	
Body whorl	Slightly glossy and terminates almost at the end of the columella.	Slightly glossy, and extends below the truncated end of the columella.	Very rough with longitudinal sculptures visible to the naked eyes.	
Columella	White, nearly straight and sharply truncated at the base of the aperture.	White, concave, bent upwards and sharply truncated above the base of the aperture.	White porcelain-like deposit, straight and strongly truncated at a slant above the base of the aperture.	
Parietal wall	Dark brown background with faint white	White with faint dark brown background	Thick white porcelain-like deposit	
Inside of shell	White with bluish tinge on a dark brown background	White with bluish tinge	Very white with bluish tinge	

Outer lip of peristome	Blackish brown and thin	Light brown and thin	Thick and white with broken brown patches
------------------------	-------------------------	----------------------	---

213

214 Table 2. Morphometric characterization of invasive Achatinidae collected from

215 southwestern Nigeria

216

Character/Index	Achatina fulica	Achatina	Achatina	
		albopicta	reticulata	
	X±SD(Range)	X±SD (Range)	X±SD (Range)	P value
	mm	mm	mm	
No. of whorls	8.3±0.1(8.25-	8.3±0.1(8.25-	8.4±1.4 (8.25-8.5)	F=0.303;p=0.741 ^a
	8.5)	8.5)		
Shell height(SH)	90.0±2.7(87-93)	104.1±7.6(98-	134.0±17.4 (103-	F= 200.1;p=0.0001
		120)	145)	
Shell width(SW)	44.4±0.8(43-45)	56.4±4.4(52-	70.6±3.0 (69-75)	F=374.4;p=0.0000
		65)		
Spire	27.4±2.5(25-31)	30.5±1.3(29-	41.0±1.0(40-42)	F=54.0;p=0.0000
height(SpH)		32)		
Body whorl	57.3±3.9(52-64)	77.0±5.8(70-	88.8±2.3(88-92)	F=0.0949;p=0.9098 ^a
height(BwH)		85)		
Aperture	44.4±0.7(43-45)	53.1±3.2(50-	56.0±1.2(55-58)	F=104.8;p=0.0000
height(AH)		58)		
Aperture	22.0±1.2(20-24)	23.0±2.4(21-	30.6±1.5(29-33)	F=64.0;p=0.0000
width(AW)		28)		
SH/SW	2.0±0.1(2.0-2.1)	1.8±0.1(1.8-	2.0±0.1(1.9-2.0)	F=27.1;p=0.0000
		1.9)		
AH/AW	2.0±0.1(1.9-2.1)	2.3±0.1(2.1-	1.9±0.1(1.8-2.0)	F=28.9;p=0.0000
		2.5)		
BwH/SH	1.3±0.1(1.2-1.5)	2.3±0.1(2.1-	1.9±0.1(1.8-2.0)	F=1.157;p=0.335 ^a
		2.5)		
SpH/BwH	0.5±0.0(0.4-0.5)	0.4±0.0(0.4-	$0.5 \pm 0.0(0.5 - 0.5)$	F=41.1;p=0.0000
		0.4)		

217

218 ^aNon-significant difference between mean values

219	The genitalia of three species were very identical, the basal genital structures were similar;
220	the penes were slender and completely enclosed by the penial sheath "Fig 5". The length of the
221	penes varied from 10 mm to 12 mm in the three species "Table 3". The vas deferens, free oviduct
222	and the spermatheca duct were very long. The basal uterus is slightly greenish and the apical
223	uterus is yellowish to pale cream. The hermaphroditic duct is highly convoluted and the basal
224	part is pale cream in colour while the apical part is black in colour. The major differences in the
225	basal genital structures are shown in "Table 3". The genital structures were significantly
226	different from the genital structures of the West African Achatinidae [17].
227	
228	Fig 5. Diagrammatic illustrations of the basal portion of the genital system of Achatina
229	albopicta (A), Achatina reticulata (B), Achatina fulica (C), showing the basal portion of
230	uterus and prostrate (a), spermatheca (b), spermatheca duct, basal portion of the vagina
231	(d), penis (e), basal portion of vas deferens (f) and the flagellum (g). Scale bar = 1.0 cm
232	
233	
234	Table 3. Main features of the basal genital structures of Achatina fulica, Achatina albopicta
235	and Achatina reticulata collected from southwestern Nigeria
236	
237	
238	
239	

240

241

242

Basal	Achatina fulica	Achatina albopicta	Achatina reticulata
Genital			
structures			
Penis	10-11mm long	10-11 mm long	11-12 mm long
Penis sheath	Completely encloses the	Completely encloses the	Completely encloses
	penis; basal portion of	penis, swollen at the extreme	the penis
	penis is swollen	end joining the basal vagina	
Basal vas	Emerges from the	Emerges from the sheath at	Emerges from the
deferens	sheath almost at the	the upper $\frac{1}{4}$ of the sheath	sheath close to the
	upper end of sheath		middle of the sheath
Basal vagina	Swollen and corm-like	Swollen and corm-like	Swollen and corm-
			like

243

244

The radulae of the three species followed the basic pattern for the pulmonata. There were a set of 245 246 teeth on either side of the median tooth, the lateral teeth and another set of marginal teeth. The median teeth in the three species were very small compared to the lateral and marginal teeth and 247 they were bicuspid. The shape of the median tooth differed in the three species "Table 4". The 248 249 lateral teeth of the three species were usually tricuspid, with a large centrally located cusp 250 (mesocone) and two poorly developed accessory cusps(endocone and ectocone) on both sides of the central cusp. However, the first lateral tooth on the right side of the median tooth of Achatina 251 reticulata "Fig 6" had well developed accessory cusps (endocone) next to the median tooth; the 252 253 ectocone was not conspicuous. The radulae could be differentiated by the structures of their median teeth "Figs 6A, 7A, and 8A". The accessory cusps, increased in number and levels of 254 development from the first lateral tooth toward the margin, in the three species. The marginal 255 teeth of the three species "Figs 6C, 7C and 8C" were characterized by larger number of cusps, 256 with the mesocone and the accessory cusps (ectocone and endocone) further divided into smaller 257

- cusps. This study appears to be the first to present a detail study of the radula structures of the
- three invasive species. The radulae differed in the shape of median teeth, the development of the
- accessory cusps, particularly the endocone on the first lateral teeth.

261

262

263 Table 4. Main features of the radulae of Achatina fulica, Achatina albopicta and Achatina

264 reticulata collected from southwestern Nigeria

265

	1		
Radula structures	Achatina fulica	Achatina albopicta	Achatina reticulata
Median tooth	Bicuspid with two	Bicuspid and the two	Bicuspid with two
	unequal cusps, the	cusps are nearly of the	unequal cups, the
	larger cusp was	same heights and	smaller cusp was
	pointed and taller than	sizes, with flat	pointed and taller than
	the smaller one with	surfaces.	the larger cusp. The
	flat surface		median tooth was
			almost obscured by
			the well-developed
			ectocone of the first
			right lateral tooth.
Lateral teeth	Tricuspid with well-	Tricuspid with well-	Tricuspid with well-
	developed mesocone	developed serrated	developed mesocone.
		mesocone	The ectocone of the
			first right lateral tooth
			was well developed.
Marginal teeth	Numerous with the	Numerous with the	Numerous with the
	ectocone and	ectocone further	ectocone further
	endocone further	divided into smaller	divided into smaller
	divided into smaller	cusps	cusps and the
	cusps		endocone greatly
			reduced.

266

267

269	Fig 6. Micrograph of Achatina reticulata radula showing the bicuspid median tooth and the
270	first right lateral teeth with well-developed endocone (A), tricuspid lateral teeth (B) and
271	the marginal teeth (C). Scale bar = 1 μ m.
272	
273	Fig 7. Micrograph of Achatina albopicta radula showing bicuspid median teeth (A),
274	tricuspid lateral teeth and a serrated mesocone and the marginal teeth (C).
275	Scale bar = 1 μm
276	Fig 8. Micrograph of Achatina fulica radula showing bicuspid median teeth (A), tricuspid
277	lateral teeth (B) and the marginal teeth (C). Scale bar = $1\mu m$
278	

279

280 **Conclusions**

This study has shown that the invasive achatinids have become established in Nigeria and 281 apart from A. fulica, other new subspecies A. albopicta and A. reticulata have been introduced. 282 The reproductive structures, shell morphology and radula structures can be useful in the 283 taxonomy of land snails. The study also suggests that the invasive species generally referred to as 284 A. fulica in other areas, where they have been introduced, may be a mixture of subspecies of 285 Achatina (subgenus Lissachatina) which were probably introduced together. It is therefore, 286 likely that the other subspecies of the subgenus *Lissachatina* may be more widely spread outside 287 288 East Africa than is currently documented due to misidentification.

289

290

291 Acknowledgments

292	V	We thank Chris Odeh and TundeDisu, both of the Department of Zoology, University of
293	Ibadar	, Ibadan, Nigeria for their technical assistance. We are also grateful to Mr. Femi Balogun
294	of the	Department of Archaeology and Anthropology, University of Ibadan, Ibadan, Nigeria for
295		
296		
297		
298	Refe	erences
299	1.	Raut SK, Barker GM. Achatina fulica Bowdich and other Achatinidae as pests in
300		Tropical Agriculture, In: Barker editor, Molluscs as Crop Pests. UK: CABI International,
301		2002.
302	2.	Winter AJ.de. New records of Achatina fulica Bowdich from the Cote d' Ivoire. Basteria.
303		1989; 53 (4-6): 71-72.
304	3.	Monney, K. Explaining the facts about giant African snails. Bulletin of the
305		Malacological Society of London. 2001; 37.
306	4.	Ekoue, S and Kuevi-Akue, K. Investigations on consumption, distribution and breeding
307		of giant snails in Togo. Tropicultura. 2002; 20 (1): 17-22,.

308	5.	Ademolu, K.O., fantola, F.O., Bamidele, J.A., Dedeke, G.A., and Idowu, A.B. Formation
309		and composition of epiphragm in three giant African land snails (Archachatina
310		marginata, Achatina fulica and Achatina achatina). Ruthenica. 2016; 26 (3-4): 165-169.
311	6.	Igbinosa I.B., Isaac, C., Adamu, H.D., Adeleke, G. Parasites of edible land snails in Edo
312		State, Nigeria. Helminthologia. 2016; 53, (4): 331-335.
313	7.	Idohou, R.D, Djagoun C,A.M,S, Kassa, B, Assogbadjo, A.E., Codjia, J.T.C. (2013). Soil
314		factors affecting density of three giant land snail species in different habitats of Dass-
315		Zoume district (central Benin). QScience Connect. 2013;
316		31.doi.org/10.5339/connect.2013.31.
317	8.	Albuqueque, F.S., Peso-Aguiar, M.C., Assuncao-Albuquerque, M.I.T (2008).
318		Distribution, feeding behaviour and control strategies of the exotic land snail Achatina
319		fulica (Gastropoda: Pulmonata) in the northeast Brazil. Brazil Journal of Biology. 2008;
320		68 (4): 837-842.
321	9.	Alicata, J.E. The discovery of Angiostrongylus cantonensis as a cause of human
322		eosinophilic meningitis. Parasitology Today. 1991;7: 151-153.
323	10	. Cowie R.H. (2013). Biology, systematics, life cycle, and distribution of Angiostrogylus
324		cantonensis, the cause of rat lungworm disease. Hawaii Journal of Medicine & Public
325		Health. 2013; 72 (6): 6-9, Supp. 2.
326	11	. Rekha, S.R, Munsi, M. and Neelavara A.A. (2015). Effect of climate change on invasion
327		risk of giant African snail (Achatina fulica, Ferussac, 1821: Achatinidae) in India. PLoS
328		ONE. 2015; 10 (11): e0143724.doi:10.1371/journal.pone.0143724
329	12	. Bequaert J.C. Studies in the Achatininae, a group of African land snails. Bulletin of the
330		Museum of Comparative Zoology. 1950; 105 (1): 291 pp.

331	13. Oso, O.G., and Odaibo, A.B. Shell morphology and the radula structure of two closely
332	related bulinid snail intermediate host of Schistosoma haematobium in Nigeria. African
333	Journal of Biotechnology. 2018; 17 (9):269-278.
334	14. Madjos, G.G., and Demayo, C.G. (2018). Macro-Geographic variations of the Invasive
335	giant African snail Achatina fulica populations in Mindanao, Philippines. Transactions on
336	Science and Technology. 2018; 5 (2): 143-154.
337	15. Medeiros, C., Caldeira, R.L, Mendonca, C.L.F., Carvalho, O dos santos and Davila, S.
338	Ontogeny and morphological variability of shell in populations of Leptinaria unilamellata
339	(d' orbigny, 1835) (Mollusca: Pulmonata:Subulinidae). SpringerPlus. 2015; 4: 191. DOI
340	10.1186.s40064-015-0959-x.
341	16. Sobrepena JMM, Demayo CG. Banding pattern and shape morphology variations on
342	shells of the invasive giant African land snail Achatina fulica (Bowdich 1822) from the
343	Philippines
344	17. Mead, A.R. Comparative genital anatomy of some African Achatinidae (Pulmonata).
345	Bulletin of the Museum of Comparative Zoology. 1950; 105 (2); 219-294.
346	
347	

348 Supporting information

349 S1 Table. Shell morphometrics of three invasive Achatinidae in southwest Nigeria

350

A

В

В

A

В

