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19 Abstract

20 Pathogens deploy effector proteins that interact with host proteins to manipulate the host 

21 physiology to the pathogen’s own benefit. However, effectors can also be recognized by host 

22 immune proteins leading to the activation of defense responses. Effectors are thus essential 

23 components in determining the outcome of plant-pathogen interactions. Despite major efforts to 

24 decipher effector functions, our current knowledge on effector biology is scattered and often 

25 limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to 

26 detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial 

27 pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an 

28 interactomic network focused on Arabidopsis and effector proteins from a wide variety of 

29 bacterial, oomycete, fungal and animal pathogens. This network contains our experimental data 

30 and protein-protein interactions from 2,035 peer-reviewed publications (48,200 Arabidopsis-

31 Arabidopsis and 1,300 Arabidopsis-effector protein interactions). Our results show that effectors 

32 from different species interact with both common and specific Arabidopsis targets suggesting dual 

33 roles as modulators of generic and adaptive host processes. Network analyses revealed that effector 

34 targets, particularly effector hubs and bacterial core effector targets, occupy important positions 

35 for network organization as shown by their larger number of protein interactions and centrality. 

36 These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database 

37 that allows users to navigate the network, search for homology or find possible paths between host 

38 and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit 

39 their own interactomic data.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2019. ; https://doi.org/10.1101/2019.12.16.878074doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878074
http://creativecommons.org/licenses/by/4.0/


3

40 Author summary

41 Plant pests and diseases caused by bacteria, oomycetes, fungi or animals are threatening 

42 food security worldwide. Understanding how these pathogens infect and manipulate the host is 

43 key to develop sustainable crop resistance in the long term. Effector proteins are secreted by 

44 pathogens to subvert the host immune responses. The roles of several effector proteins have been 

45 described; however, it is yet poorly understood how effectors interact with host proteins at a global 

46 level. To address this issue, we have generated EffectorK, an interactive database focused on the 

47 model plant species Arabidopsis thaliana. This database contains manually curated Arabidopsis-

48 effector protein interactions from the available literature on a wide variety of pathogens. It also 

49 contains new experimental data on effectors from two vascular pathogens: Ralstonia 

50 pseudosolanacearum and Xanthomonas campestris. This work integrates all the gathered 

51 knowledge over the last decades and allows to identify general patterns of how effectors interact 

52 with the host proteome. This knowledge is easily accessible and searchable at www.effectork.org.

53 Introduction

54 Plants are continuously confronted with a wide variety of pathogens including bacteria, 

55 oomycetes, fungi, nematodes and insects. To prevent their proliferation, plants have evolved a 

56 complex multilayered immune system [1]. The first layer of defense corresponds to constitutive 

57 physical and chemical barriers such as the cuticle, cell wall or secondary metabolites [2,3]. Plants 

58 are also able to recognize highly conserved pathogen-associated molecular patterns (PAMPs) 

59 through pattern-recognition receptors triggering induced defense responses collectively known as 
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60 ‘PAMP-triggered immunity’ (PTI) [4]. These responses are usually enough to prevent most 

61 potential invaders; however, some pathogens secrete effector proteins to subvert the defense 

62 responses and alter diverse cellular processes to ease their proliferation [5]. Plants, on the other 

63 hand, have evolved several intracellular nucleotide-binding site-leucine-rich repeat (NBS-LRR) 

64 receptors recognizing these effectors and activating potent defense responses collectively known 

65 as ‘effector-triggered immunity’ (ETI) [6].

66 Although the targets and molecular functions of some effectors have been well 

67 characterized [7–10], for most effectors they are still unknown. The main factors complicating the 

68 large-scale identification and characterization of effector-host protein interactions are: the wide 

69 diversity of pathosystems, the difficulty to identify bona fide effector genes, the collective 

70 contribution of effector proteins, the complexity of the host responses and the lack of robust high 

71 throughput techniques. For the model species Arabidopsis thaliana (Ath), to our knowledge, there 

72 are only two studies in which systematic effector-host protein interactions at the effectome-scale 

73 have been identified [11,12]. In these studies plant targets of effector proteins from Pseudomonas 

74 syringae (Psy, bacterium), Hyaloperonospora arabidopsidis (Hpa, oomycete) and Glovinomyces 

75 orontii (Gor, fungus) were identified by yeast two-hybrid (Y2H). They reported that the effectors 

76 of these three species converged onto a limited set of Ath proteins. These studies also demonstrated 

77 that many effector targets are important for plant immunity and showed that their importance 

78 correlates with the level of effector convergence.

79 Bacterial wilt, caused by Ralstonia pseudosolanacearum (Ralstonia solanacearum 

80 phylotype I, Rps), and black rot, caused by Xanthomonas campestris pathovar campestris (Xcc) 
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81 are listed among the top five plant bacterial diseases in the world [13]. Both Rps and Xcc are 

82 xylem-colonizing pathogens and rely on their type III secretion systems for full virulence [14,15]. 

83 This ‘molecular syringe’ allows the pathogen to deliver type III effector proteins (T3Es) directly 

84 into the host cell in order to promote disease. The roles of several of their T3Es have been 

85 characterized [16,17], but most knowledge on T3E functions comes from the study of Psy, which 

86 resides on leaf surfaces and in the leaf apoplast [7,18]. Focusing mainly on a few species offers a 

87 partial view of effector biology. It is therefore crucial to expand our studies to other species to 

88 grasp most of the existing diversity of effector proteins and pathogen lifestyles.

89 To obtain a deeper understanding of the global Ath-effector protein interactome, we 

90 conducted two systematic large-scale screenings with T3Es from Rps and Xcc, the first vascular 

91 pathogens screened in this manner. Additionally, we conducted an extensive literature survey to 

92 gather published Ath targets of effector proteins from pathogens from four different kingdoms of 

93 life: Bacteria, Chromista, Fungi and Animalia. Combining all these data allowed us to identify 100 

94 new ‘effector hubs’ (i.e., Ath proteins interacting with two or more effectors). Together with Ath-

95 Ath protein interactions retrieved from public databases, we generated a comprehensive Ath-

96 effector protein network that captures the wide diversity of Ath pathogens. This network allowed 

97 us to detect general trends of effector interference with the host proteome. We have created a 

98 publicly available interactive knowledge database called EffectorK (for Effector Knowledge) 

99 which allows users to access and augment this network.
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100 Results

101 Systematic identification of Arabidopsis targets of R. pseudosolanacearum and X. campestris 

102 effectors.

103 Multiple Y2H screenings were performed to identify Ath targets of Rps and Xcc effector 

104 proteins. In a first screening, we identified 42 Ath targets for 21 out of 56 T3Es from Rps strain 

105 GMI100 screened against a library of more than 8,000 full-length Ath cDNAs (8K space). In the 

106 second and third screenings, we identified 176 Ath targets for 32 out of 48 T3Es from Rps strain 

107 GMI1000 and 52 Ath targets for 18 out of 25 T3Es from Xcc strain 8004 screened against an 

108 extended version of the previous library containing more than 12,000 Ath full-length cDNAs (12K 

109 space) (S1 Fig and S1 Table). On average, T3Es from Rps interacted with 10.7 Ath proteins while 

110 T3Es from Xcc interacted with 5.3 Ath proteins. These Ath cDNA libraries had been previously 

111 used to test interactions with effector proteins from Hpa, Psy (8K space) and Gor (12K space) 

112 [11,12]. The subset of interactions of effectors from Rps, Xcc and Gor in the 8K space was used 

113 to compare with previously published Hpa and Psy data (Fig 1). In general, Rps effectors interacted 

114 on average with more Ath proteins than the other screened species; however, this difference is only 

115 statistically significant when compared to Gor effectors (one-tailed Wilcoxon signed-rank test p-

116 value = 0.0005). These data show that effector proteins from these five different species, on 

117 average, tend to interact with a similar number of Ath proteins regardless the kingdom, lifestyle or 

118 effectome size.
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119 Effectors converge onto a limited set of Arabidopsis proteins 

120 We compared the Rps and Xcc effector targets identified in our screenings with the targets 

121 previously identified for Hpa, Psy and Gor effector proteins [11,12]. To avoid bias related to the 

122 size of the screened library, we considered only the subset of effector targets present in the 8K 

123 space (S2 Fig). At the kingdom level, the highest target specificity was found in Bacteria with 158 

124 exclusive out of a total of 217 targets (72.8%) followed by Chromista, with 31 out of 117 (51.7%), 

125 and Fungi, with 16 out of 45 (35.6%). In total, 235 out of 299 effector targets (78.6%) were 

126 kingdom-specific. At the species level, when comparing all five pathogens, the percentage of 

127 exclusive targets was 58.9% for Psy, 58.7% for Rps, 51.7% for Hpa, 48.8% for Xcc and 35.6% for 

128 Gor. The total number of species-specific effector targets was 221 out of 299 (73.9%). These data 

129 show that most effector targets are kingdom- and species-specific.

130 To evaluate whether Rps and Xcc effectors interact randomly or converge onto a common 

131 set of Ath protein we performed simulations rewiring effector-Ath protein interactions. In these 

132 simulations, each effector was assigned randomly as many Ath proteins as it had interacted with 

133 in our screenings. Then, the number of targets found on all simulations was plotted and compared 

134 with the experimental data (Fig 2A). The number of effector targets observed in our screenings 

135 was significantly lower than the numbers obtained in the random simulations for both Rps and 

136 Xcc. Similar results had been reported for effectors from Hpa, Psy and Gor [11,12]. This shows 

137 that, similarly to other species, both Rps and Xcc effectors also interact with a common subset of 

138 Ath proteins (i.e., intraspecific convergence).
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139 These random rewiring simulations also allowed us to determine whether effectors from 

140 different species interact randomly or convergently with Ath proteins. For this, the number of 

141 common interactors of effectors from different species was compared with the experiment data 

142 (Fig 2B). When comparing all three kingdoms, the number of common targets observed was 

143 significantly higher than expected by random rewiring. We then analyzed all possible binary, 

144 ternary, quaternary and quinary combinations of species and in all cases, the number of common 

145 targets observed was higher than expected randomly (Fig 2C). These differences were all 

146 statistically significant except for the common targets of effectors from Psy and Xcc (p-value = 

147 0.0579) (S3 Fig). This could indicate that these two species are the most different in terms of 

148 effector targeting. However, considering that Psy and Xcc are precisely the two species with the 

149 lowest number of effectors for which targets have been identified (Psy: 32 and Xcc: 18 effector 

150 proteins), it is likely that the high p-value is caused by the limited sample size. This shows that 

151 effectors from all these five species interact with a common subset of Ath proteins (i.e., 

152 interspecific convergence).  

153 Altogether, our data indicate that Rps and Xcc effectors converge both intra- and 

154 interspecifically onto a set of limited Ath proteins, behaving similarly to effectors from other 

155 previously screened pathogen species. This suggests the existence of a convergent set of effector 

156 targets common to evolutionary distant pathogens that might have a predominant role in the 

157 general modulation of the host responses.

158 Manual curation of the literature to gather new Arabidopsis-effector protein interactions
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159 In order to gather more knowledge on Ath-effector protein interactions, we conducted an 

160 extensive literature search compiling data from a wider spectrum of bacterial, fungal, oomycete 

161 and animal effector proteins. We only considered published direct protein-protein interactions that 

162 had been confirmed by classic techniques such as Y2H, co-immunoprecipitation, pull-down, 

163 protein-fragment complementation, fluorescence resonance energy transfer or mass spectrometry. 

164 We compiled 287 interactions found in 80 peer-reviewed publications involving 218 Ath proteins 

165 and 72 effectors from 22 pathogen species (S2 Table). Among these 22 pathogens, there were nine 

166 bacterial species, mostly proteobacteria but also a phytoplasma species; eight animal species 

167 including both nematodes and insects; four oomycete and one fungal species. While this collection 

168 of species does not represent the full diversity of Ath pathogens, it covers the majority of pathogens 

169 for which effector targets have been found. We can notice that despite being one of the major 

170 pathogen classes, few studies have described fungal effector interactors. This illustrates one of the 

171 current gaps in our knowledge of effector targets.

172 Identification of 100 new effector hubs

173 To compare experimental and published data, we combined all the interactions curated 

174 from the published data together with data from our large-scale Y2H screenings. This resulted in 

175 a total of 564 different Ath proteins targeted by pathogen effectors. Our screenings on Rps and Xcc 

176 effectors identified 235 targets. Similar published screenings on Psy, Gor or Hpa effectors had 

177 identified 200 targets [11,12]. The literature curation allowed us to identify 218 effector targets. 

178 From the 235 Rps and Xcc effectors targets found in our screening, 166 were new which represents 

179 29.4% of the total targets compiled in this study (Fig 3). This highlights the potential of such 
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180 systematic and high throughput large-scale screenings in identifying novel effector targets. The 

181 average effector degree (i.e., number of effectors interacting with an Ath protein) was 2.3 but it 

182 was unevenly distributed among the 564 targets with 350 of them interacting with only one effector 

183 (62%) and 14 interacting with more than 10 effectors (2.5%) (S4 Fig). The contribution of our 

184 experimental data was important in the identification of single targets as we identified 93 out of 

185 the 350 (26.6%). More remarkable was our contribution in the identification of “effector hubs”, 

186 what we defined as Ath proteins interacting with two or more effectors (Fig 4). The definition of 

187 hub has been debated and it has been traditionally associated with proteins that are highly 

188 connected in interactomic networks [19]. Our definition of “effector hub” came from the need to 

189 designate the Ath proteins that interact with several effectors and is based exclusively on the 

190 number of interacting effector proteins. We identified 100 new effector hubs and increased the 

191 degree of 42 previously described effector hubs (S3 Table).

192 To evaluate the potential relevance of the newly identified effector hubs in plant immunity, 

193 we conducted a second literature survey to check if the corresponding Ath genes had been 

194 previously characterized to be involved in plant immunity or pathogen fitness in planta (Table 1). 

195 16 out of the 100 new effector hub genes, have already been described for their altered infection 

196 or other immunity-related phenotype when mutated, silenced or overexpressed. Additionally, the 

197 orthologs of 3 other new hubs in other plant species, also produced altered infection phenotypes 

198 when silenced or overexpressed. A total of 19 out of the 100 newly identified effector hubs have 

199 already been shown to be involved in biotic stress responses. Considering that many of the 

200 remaining newly defined effector hubs have been poorly characterized (e.g., hypothetical proteins 
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201 or descriptions based on homology or belonging to a protein family), it is likely that the number 

202 of effector hubs involved in immunity was underestimated. This constitutes a valuable source of 

203 novel candidates for further functional characterization.

204 Table 1. List of 19 new effector hubs involved in plant immunity.

Effector 

hub

Protein name Effector 

degreea

Description of observed phenotype Reference

AT1G58100 TCP domain protein 

8 (TCP8)

13 Triple tcp8 tcp14 tcp15 mutant showed enhanced 

Pseudomonas syringae strain DC3000 ∆avrRps4 

growth.

[20]

AT1G71230b COP9-signalosome 

5B (CSN5B)

8 Wheat TaCSN5 mutant showed enhanced disease 

symptoms caused by Puccinia triticina.

[21]

AT3G12920 BOI-related gene 3 

(BRG3)

7 brg3 mutant showed increased Botrytis cinerea 

lesion size.

[22]

AT5G08330b TCP domain protein 

21 (TCP21)

7 Rice OsTCP21 silenced and overexpressing plants 

showed enhanced and reduced disease symptoms 

caused by rice rust stunt virus (RRSV) respectively.

[23]

AT5G61010 Exocyst subunit 

EXO70 family 

protein E2 

(EXO70E2)

6 exo70e2 mutant showed reduced flg22-induced 

callose deposition.

[24]
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AT4G00270 STOREKEEPER-

related 1 (STKR1)

6 STKR1 overexpressing plants showed reduced 

Hyaloperonospora arabidopsidis spore formation.

[25]

AT3G01670 SIEVE ELEMENT 

OCLUSSION-

related 2 (SEOR2)

4 Myzus persicae feeding from seor2 mutant showed 

reduced progeny.

[26]

AT5G17490 RGA-like protein 3 

(RGL3)

3 rgl3 mutant showed reduced P. syringae growth 

and increased SA content upon infection.

[27]

AT3G54230 Suppressor of abi3-

5 (SUA)

3 sua mutant showed enhanced P. syringae growth 

and reduced chitin-induced ROS production.

[28]

AT3G11410 Protein phosphatase 

2CA (PP2CA)

3 pp2ca mutant showed reduced P. syringae 

colonization and stomatal aperture. PP2CA 

overexpressor showed enhanced stomatal aperture.

[29]

AT2G17290 Calcium-dependent 

protein kinase 6 

(CPK6)

3 Double cpk5-cpk6 mutant showed enhanced P. 

syringae growth and reduced flg22-induced ROS 

production.

[30]

AT5G41410b Homeobox protein 

BEL1 homolog 

(BELL1)

3 Rice OsBIHD1 mutant and overexpressing plants 

showed increased and reduced Magnaporthe oryzae 

lesion area respectively.

[31]

AT4G26750 LYST-interacting 

protein 5 (LIP5)

2 lip5 mutant showed enhanced P. syringae growth 

and disease symptoms and reduced endosomal 

structure formation upon infection.

[32]
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AT4G35090 Catalase-2 (CAT2) 2 cat2 mutant showed increased ROS accumulation 

upon infection with incompatible P. syringae strain.

[33]

AT3G02870 Inositol-phosphate 

phosphatase 

(VTC4)

2 vtc4 mutant showed reduced P. syringae growth. [34]

AT5G53060 Regulator of CBF 

gene expression 3 

(RCF3)

2 rcf3 mutant showed reduced percentage of diseased 

plants and higher percentage of plant survival upon 

Fusarium oxysporum infection.

[35]

AT3G02540 RAD23 family 

protein C 

(RAD23C)

2 rad23BCD mutant (and not rad23BD) did not show 

Candidatus Phytoplasma-induced flower virescence 

and phyllody.

[36]

AT5G38470 RAD23 family 

protein D 

(RAD23D)

2 rad23D mutant did not show flower virescence and 

phyllody upon transgenic expression of C. 

Phytoplasma SAP54 effector.

[36]

AT2G37630 Asymmetric leaves 

1 (AS1)

2 as1 mutant showed reduced lesion size caused by B. 

cinerea and Alternaria brassicicola and enhanced 

Pseudomonas fluorescens and P. syringae growth.

[37]

205 a Ranked in decreasing order.

206 b Orthologous gene in other plant species, as defined by EnsemblPlants [38], characterized for a 

207 role in immunity.
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208 In terms of organism of origin, most of the 564 targets are bacterial effector targets as it 

209 could be expected considering that 132 out of the 266 total effectors compiled came from bacteria 

210 (S4 Fig). In the case of effector hubs, it is noteworthy that 133 out of the 214 hubs described in 

211 this work are targeted by effectors from a single kingdom while there are only 64, 16 and 1 hubs 

212 interacting with effectors from 2, 3 or 4 different kingdoms respectively. Although biased by the 

213 structure of the data, this could suggest kingdom specificity of effector targeting.

214 Effector targets tend to occupy key positions for the network organization 

215 We constructed an Ath-effector protein interaction network compiling the previously 

216 described experimental and literature-compiled data with Ath-Ath protein interactions from public 

217 databases and the literature [39–42]. From the total of 49,500 interactions compiled in this study, 

218 48,597 were grouped into a single connected component constituting what we defined as our Ath-

219 effector interactomic network (Table S4). This network was constituted of 47,314 Ath-Ath and 

220 1,283 Ath-effector protein interactions between 8,036 Ath proteins and 245 effector proteins. 

221 Effectors came from 23 different species including bacteria (128 effectors), oomycetes (61 

222 effectors), fungi (46 effectors) and animals (10 effectors). The uneven distribution of effectors 

223 among kingdoms highlights the contribution of the large-scale screenings in the identification of 

224 effector targets as 1,002 out of 1,283 Ath-effector protein interactions came from either our 

225 experimental data or previous screenings of the same library [11,12].

226 To further investigate the potential impact of effectors on the plant interactome, we 

227 evaluated the importance of their targets for the organization of the network. We focused on two 

228 main network topology parameters: degree and betweenness centrality (Fig 4). The degree of a 
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229 protein represents the number of proteins that it interacts with. In this study we differentiated two 

230 types of degrees depending on the nature of the interacting proteins: the Ath degree of a given 

231 effector or Ath protein (i.e., number of interacting Ath proteins) and effector degree for a given Ath 

232 protein (i.e., number of interacting effector proteins). The betweenness centrality of a protein is 

233 the fraction of all shortest paths connecting two proteins from the network that pass through it. 

234 There are two main types of key proteins in a network [43]: 1) proteins important for local network 

235 organization, typically showing high degree, and 2) proteins important for the global diffusion of 

236 the information through the network, characterized by high betweenness centrality. It had been 

237 previously reported in more limited networks that effectors tend to target host proteins with high 

238 degree and centrality [43–45]. We then analyzed whether this was the case in our network 

239 comparing effector targets with the rest of the Ath proteins (Fig 5). The fraction of proteins 

240 decreased rapidly as the Ath degree increased. This indicates that most Ath proteins present low 

241 Ath degree and only a few of them show high Ath degree values. This tendency was significantly 

242 shifted towards higher Ath degree values in effector targets compared to the rest of Ath proteins. 

243 To represent this tendency shift we estimated and compared the area under the curve values of the 

244 cumulative distribution of Ath degree for effector targets and the rest of Ath proteins (Table 2). 

245 Effectively, the area under the curve value of effector targets was higher than the value of the rest 

246 of Ath proteins. This indicates that effector targets present generally higher Ath degree than the 

247 rest of Ath proteins. Similarly, we compared the betweenness centrality of these two groups of 

248 proteins (Table 2 and Fig S5). Effector targets also presented significantly higher betweenness 

249 centrality values than the rest of Ath proteins. Altogether, these results indicate that effectors 
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250 preferentially interact with Ath proteins that are more connected to other Ath proteins and that 

251 occupy more central positions in the interactomic network.

252 Table 2. Cumulative Ath and effector degrees and betweenness centrality of different groups 

253 of effector targets

 Area under the curvea Figureb p-valuec

 Effector targets Other Ath proteins  
Ath degree 2,737 1,010 5 < 0.0001
Betweenness centrality 0.23 0.033 S5A < 0.0001

 Multi-pathogen effector 
targets

Pathogen-specific effector 
targets

 

Ath degree 5,344 1,790 S5B < 0.0001
Betweenness centrality 0.657 0.136 S5C < 0.0001

 Effector hubs Single effector targets  
Ath degree 4,067 1,810 S5D < 0.0001
Betweenness centrality 0.407 0.118 S5E < 0.0001

 Bacterial core T3Es Rest of bacterial T3Es  
Ath degree 656 712 S7A 0.4571
Betweenness centrality 0.072 0.074 S7B 0.9198

 Targets of  bacterial core T3Es Other bacterial T3Es targets  
Effector degree 347 123 S7C < 0.0001
Ath degree 3,610 2,714 S7D 0.0131
Betweenness centrality 0.369 0.239 S7E 0.0007

254 a Estimated area under the curve of the cumulative distribution of Ath degree, effector degree and 

255 betweenness centrality for each group of proteins as represented in figures 5, S5 and S7. Estimation 

256 based on numerical integration using Simpson’s Rule. 
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257 b Figure illustrating the cumulative distribution graphic from which the areas under the curve 

258 compared were calculated. 

259 c One-tailed Wilcoxon signed-rank test p-value of the comparison of the Ath degree, effector 

260 degree or betweenness centrality values of all proteins from each compared group.

261 We then wanted to test if the Ath degree and betweenness centrality values differed among 

262 distinct types of effector targets (Table 2 and Fig S5). First we compared multi-pathogen and 

263 pathogen-specific targets as previously described (S2 Fig). Multi-pathogen effector targets 

264 presented significantly higher Ath degree and betweenness centrality compared to pathogen-

265 specific effector targets. We also compared effector hubs with single effector targets. Similarly, 

266 effector hubs also showed higher betweenness centrality and Ath degree than single effector 

267 interactors. This last observation implies that an Ath protein that interacts with several effectors 

268 tends to interact with more Ath proteins as well. To evaluate whether this is biologically relevant 

269 or a bias of the ‘stickiness’ of a protein, we compared the Ath and effector degree values of all 

270 targets. Our results showed that these two parameters are not correlated (Pearson correlation 

271 coefficient = 0.3221) (S6 Fig). This suggests that effector hubs interact with more Ath proteins 

272 than single effector targets and not because they might be stickier. 

273 In this work, by compiling our experimental interactomic data on Xcc and Rps and the 

274 literature-curated interactions from a wide variety of other pathogen effectors, we extended the 

275 notion that effectors tend to privilege interactions with host proteins with higher Ath degree and 

276 betweenness centrality [43,45]. Furthermore, we showed that this tendency is stronger among 

277 effector hubs compared to single targets and among multi-pathogen effector targets compared to 
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278 pathogen-specific targets. This reflects the importance of interfering with these key position 

279 proteins in the modulation of host-pathogen interactions.

280 Bacterial core T3Es interact with more connected and central Ath proteins

281 Our work on Rps and Xcc together with previous work on Psy T3Es [11] provided a large 

282 amount of interactomic data on bacterial pathogen species for which other resources have been 

283 generated, particularly in terms of abundance and diversity of sequenced genomes and thus curated 

284 T3E repertoires [18,46–50]. The most conserved set of T3Es, or ‘core effectome’, from each of 

285 the  three bacterial species has been previously defined [47,48,50]. We then tested whether these 

286 subsets of T3Es behaved differently from the rest of bacterial T3Es in terms of interaction with 

287 host proteins (Table 2 and Fig S7). Our data showed that core and variable T3Es from the three 

288 species do not differ in Ath degree nor betweenness centrality. We then tested if there were any 

289 differences between the network properties of the targets of core T3Es and the other bacterial T3E 

290 targets. Core T3Es targets showed higher effector degree, Ath degree and betweenness centrality 

291 than the rest of targets of bacterial T3Es. This suggests that, although core T3Es in general do not 

292 have more targets than the rest of bacterial T3Es, they do interact with more highly connected and 

293 central Ath proteins. This might imply that core T3Es have a larger potential to interfere with the 

294 host interactome what could explain the selective pressure to maintain them in the majority of 

295 strains.
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296 EffectorK, an online interactive knowledge database to explore the Arabidopsis-effector 

297 interactomic data

298 In order to facilitate the access and exploration of all the data presented in this work, we 

299 have generated EffectorK (for ‘Effector Knowledge’), an interactive web-based knowledge 

300 database freely available at www.effectork.org. The latest version (October 2, 2019) contains 

301 49,875 interactions 8,617 proteins coming from 2,035 publications. From these, 1,300 are Ath-

302 effector protein interactions. Searches can be done based on a wide range of supported identifiers 

303 such as different protein names, NCBI or TAIR accession numbers, PubMed identifiers and 

304 InterPro terms. Additionally, users can also query nucleotide or amino acid sequences directly with 

305 BLAST or use accession numbers from other model and crop plants to find homologs within the 

306 database. All proteins found by query are then listed in tabular format and hyperlinked to the 

307 corresponding interactomic data, external resources and amino acid sequences. Interactomic data 

308 for a given protein can be then explored and downloaded in graphical or tabular format. The visual 

309 interface for the graphical representation of the interactomic data allows users to expand or re-

310 center a local subnetwork based on a given protein, get information and access to external 

311 resources linked to either a protein (node) or an interaction (edge) or modify the layout and the 

312 position of the elements for optimal visualization. Additionally, EffectorK also allows users to find 

313 the shortest paths between two queried proteins in the network.

314 In order to update, expand and further improve EffectorK, we encourage users to submit 

315 their own interactomic data by filing in and sending the dedicated template. These data will be 

316 verified by the curator team prior to their incorporation in the database. More information about 
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317 usage, content and data submission is accessible online, under the tabs ‘Help’ and ‘Contribute’ of 

318 the database web server. Please contact us if you have any question or suggestions by email at 

319 contact@effectork.org.

320 Discussion

321 In this study we identified systematically Ath targets of effectors from the vascular bacterial 

322 pathogens Rps and Xcc. We combined this information with other Ath targets identified in similar 

323 experimental setups. Additionally, we conducted an extensive literature review to gather published 

324 Ath targets of effectors from a wide variety of pathogens including other bacterial species and also 

325 oomycete, fungal and animal pathogens. Studying this combined interactomic dataset allowed us 

326 to identify new trends of how effectors interfere with the plant proteome and evaluate whether 

327 previously described network principles were still supported on a wider scale. We showed that 

328 there are no substantial differences in terms of connectivity among the effectomes of five different 

329 pathogen species screened systematically (Fig 1). We have reinforced previously described intra- 

330 and interspecific convergence of effector targeting with effectors from two new species [11,12], 

331 and showed at the same time that most effector targets are pathogen specific (Fig 2 and S2). Our 

332 analyses also supported the previously described tendency of effectors to interact with plant 

333 proteins better connected and central in the network [43,45], and showed that this tendency is even 

334 stronger among effector hubs, multi-pathogen targets and bacterial core T3E targets (Table 2 and 

335 Fig S5).
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336 The balance between target specificity and convergence

337 Our data showed that most effector targets were pathogen-specific (S2 Fig) but at the same 

338 time, effectors converge interspecifically onto a small subset of Ath proteins (Fig 2B-C). These a 

339 priori contradictory observations open an interesting question: what is the balance between 

340 specificity and convergence of effector targets? At this point, it is impossible to assert whether this 

341 specificity is merely caused by the limited number of pathogens screened at the effectome-scale 

342 or if it is a reflection of the different and unique ways that each pathogen has evolved to interfere 

343 with the host physiology and immunity. This issue can only be addressed by increasing the number 

344 of pathogen effectors screened thoroughly and at a large-scale. Comparing large datasets of 

345 effector targets of a wider and more diverse set of pathogens would allow evaluating in which 

346 sense this balance between specificity and convergence tilts: 1) If the target specificity decreased, 

347 it would mean that the effectomes from the different pathogens tend to interact similarly with the 

348 host proteome. This was the case when we compared the percentage of species-specific targets of 

349 effectors from Hpa, Psy and Gor that passed from being 73.9%, 64.9% and 46.7% in previous 

350 works [11,12], to 51.7%, 58.9% and 35.6%, respectively in the present study (S2 Fig). 

351 Nevertheless, a total of five screened species is probably not powerful enough to sustain this claim. 

352 2) If, on the contrary, the target specificity increased with the number of screened species, it would 

353 mean that the different pathogens have evolved unique ways to modulate the interaction with the 

354 host. If this were be the case, deeper analyses comparing related pathogens (e.g., species with 

355 similar lifestyle or from the same kingdom) could allow identifying trait-specific targets (e.g., 

356 effector targets exclusive among vascular pathogen effectors). In any case, to better understand the 
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357 similarities and particularities on how effectors modulate host processes, it is essential to increase 

358 the number of pathogen species screened for effector targets at the effectome-scale. 

359  Large-scale screenings fill the gap in the identification of effector targets

360 Including manually curated data from literature has allowed us to broaden significantly the 

361 diversity of plant pathogen species compared to similar studies. However, 346 out the 564 

362 described Arabidopsis effector targets have been identified exclusively through large-scale Y2H 

363 screenings against partial libraries of Ath cDNAs. As with any other large-scale screening, the 

364 technical limitations together with the incompleteness of the library might have probably led to an 

365 underestimation of the plant-effector interactome of the five screened species [51]. The relatively 

366 small overlap between the large-scale Y2H screenings and manually curated literature datasets 

367 might be a consequence of this limitation (Fig 3). This small overlap illustrates the current 

368 knowledge gap in the characterization of the full plant interactome of pathogen effectors. 

369 Extensive work will be required to characterize further effector-host protein interactions in other 

370 pathosystems. As one of the simplest yet powerful high throughput techniques for protein-protein 

371 interaction detection, our work, like others before, highlights the potential of such large-scale Y2H 

372 screenings in the identification of novel effector targets in an easy, cheap and systematic manner.

373 EffectorK, an entry point to explore and make sense of plant-effector interactomics

374 To conclude, our work also provides valuable resources for the plant-pathogen interaction 

375 community. We described 540 new Ath-Rps and Ath-Xcc effector protein interactions that allowed 

376 us to identify 166 new effector targets (S1 Table). We also manually curated several publications 

377 to assemble a collection of 287 Ath-effector protein interactions from a wide variety of pathogens 
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378 (S2 Table). All this, allowed us to identify 100 novel effector hubs (S3 Table). The contribution to 

379 plant immunity of these effector hubs has been described for 19 of them, but remains untested for 

380 the majority (Table 1). This constitutes a list of promising candidates for further functional 

381 characterization. All these data were integrated in EffectorK, a knowledge database where users 

382 can have easy access to the Ath-effector protein interactions and explore the resulting interactomic 

383 network visually and interactively. While major efforts were done to capture the maximal diversity 

384 on the pathogen side, we limited our work to the Arabidopsis plant model. Thanks to the built-in 

385 homology search tools available, users can also use their own data as query regardless of the 

386 species studied. It is therefore feasible to use EffectorK as a starting point to build on and extend 

387 to crop plant-effector protein interactomics. In the long term, these data could be exploited to better 

388 understand how pathogens interact with these crops with the prospect of selecting breeding 

389 candidates for improved tolerance or resistance against pathogens.

390 Materials and Methods

391 Cloning of Rps and Xcc T3E genes

392 All the cloning of the T3E genes from Rps and Xcc was performed by BP gateway  BP or 

393 TOPO cloning (Thermo Fisher Scientific), to generate pENTRY plasmids, which were later 

394 transferred into the appropriate Y2H plasmids [11], using the LR gateway reaction (Thermo Fisher 

395 Scientific). S5 Table contains all the PCR primers and final plasmid identities describing the 

396 collection of plasmids used in this study. Gene sequence information from Rps strain GMI1000 
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397 can be obtained from www.ralsto-T3E.org [47] and from the published genome of Xcc strain 8004 

398 [52].

399 Y2H screenings

400 The Y2H screening was performed in semi-liquid (‘8K space’ screening) and liquid (‘12K 

401 space’ screening) media as recently reported [53], which is an adaptation of a previously developed 

402 Y2H-solid pipeline [54]. In both protocols the same low copy number yeast expression vectors 

403 and the two yeast strains, Saccharomyces cerevisiae Y8930 and Y8800, were used. The expression 

404 of the GAL1-HIS3 reporter gene was tested with 1 mM 3AT (3-amino-1,2,4-triazole, a competitive 

405 inhibitor of the HIS3 gene product), unless described otherwise. Prior to Y2H screening, DB-X 

406 strains were tested for auto-activation of the GAL1-HIS3 reporter gene in the absence of AD-Y 

407 plasmid. In case of auto-activation, DB-X were physically removed from the collection of baits 

408 and screened against the (DB)-Ath-cDNA collections using their AD-X constructs. Briefly, DB-X 

409 baits expressing yeasts were individually grown (30°C for 72 hours) into 50-ml polypropylene 

410 conical tubes containing 5 ml of fresh selective media (Sc-Leucine, Sc-Leu).  Pools were created 

411 by mixing a maximum of 72 and 50 individual bait yeast strains for the ‘8K space’ and ‘12K space’ 

412 respectively. Subsequently, 120 µl and 50 µl of these individual pools were plated into 96-well 

413 and 384-well low profile microplates for Ath-cDNA ‘8K space’ and ‘12K space’ collections 

414 respectively. Glycerol stocks of the (AD)-Ath-cDNA ‘8K space’ and ‘12K space’ collections were 

415 thawed, replicated by handpicking or using a colony picker Qpix2 XT into 96-well and 384-well 

416 plates filled with 120 µl and 50 µl of fresh selective media (Sc-Tryptophan; Sc-Trp) respectively, 

417 and incubated at 30°C for 72 hours. Culture plates corresponding to the DB-baits pools and AD-
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418 collection were replicated into mating plates filled with YEPD media and incubated at 30°C for 

419 24 hours. In liquid Y2H case (‘12K space’ screening), mating plates were then replicated into 

420 screening plates filled with 50 µl of fresh Sc-Leu-Trp-Histidine + 1 mM 3AT media and incubated 

421 at 30°C for 5 days. In order to identify primary positives, the OD600 of the 384-well screening 

422 plates was measured using a microplate-reader Tecan Infinite M200 PRO. In semi-liquid Y2H 

423 case (‘8K space’ screening), mated yeast were spotted onto Sc-Leu-Trp-Histidine + 1 mM 3AT 

424 media agar plates, and incubated at 30 °C for 3 days.  Protein pairs were identified by depooling 

425 of DB-baits in a similar targeted matricial liquid or semi-liquid assays in which all the DB-baits 

426 were individually tested against all the previously identified AD-proteins. Identified pairs were 

427 picked and checked by PCR and DNA sequencing.

428 Database content and manual curation

429 Binary interactions between Ath proteins with each other and with pathogen effector 

430 proteins were compiled on tabular form keeping track of the protein names and accessions, species 

431 and ecotypes/strains of origin, techniques used to detect the interactions and the reference. Ath-Ath 

432 protein interactions were compiled from the Arabidopsis Interactome  [41,42] and the public 

433 databases BioGrid (www.thebiogrid.org [39]; downloaded in September 2019) and IntAct 

434 (www.ebi.ac.uk/intact [40]; downloaded in September 2019). We only kept the direct interactions 

435 with the evidence codes ‘co-crystal structure’, ‘FRET’ (fluorescence resonance energy transfer), 

436 ‘PCA’ (protein-fragment complementation assay), ‘reconstituted complex’ or ‘two-hybrid’ on 

437 BioGrid and ‘physical association’ on IntAct. At-effector protein interactions were gathered from 

438 our experimental Y2H data together with the similarly produced data on Hpa, Psy and Gor 
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439 effectors [11,12]. In addition, an extensive keyword search on effector-Arabidopsis literature was 

440 done to retrieve interactions from 80 published articles. A confidence level was assigned to each 

441 interaction depending on the number of independent techniques used in a publication for 

442 validation: “1” if the interaction was detected by only one technique and “2” if the interaction was 

443 validated by at least a second technique. Some interactions lacked important information but, in 

444 order to maximize the extent of our network, several assumptions were taken instead of discarding 

445 useful data. First, gene models for Ath proteins were rarely mentioned on publications so we 

446 assumed the first gene model available on the latest version of the Arabidopsis genome (Araport11 

447 [55]). Secondly, when the ecotype/strain of the organism was not explicitly stated, a generic ‘NA’ 

448 (not available) was assigned.

449 In silico analyses

450 Computational simulations of random targeting of Ath proteins by single pathogen effectors 

451 (intraspecific convergence). Significance of the intraspecific convergence was tested comparing 

452 our experimental data with random simulations as previously published [12]. Briefly, for each 

453 effector of Xcc and Rps we assigned randomly the same number of Ath targets as experimentally 

454 observed from the degree-preserved list of 8K proteins. The distribution obtained from 10,000 

455 simulations was plotted and compared to the experimentally obtained data. The p-value of the 

456 experimental data was calculated as follows: number of simulations where the number of targets 

457 is lower or equal than experimentally observed is divided by the number of simulations. When the 

458 number of simulations with less targets than observed was zero, the p-value was set to < 0.001.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2019. ; https://doi.org/10.1101/2019.12.16.878074doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878074
http://creativecommons.org/licenses/by/4.0/


27

459                       (1)𝑝 ‒ 𝑣𝑎𝑙𝑢𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑜𝑟𝑠

≤ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑜𝑟𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

460 Computational simulations of random targeting of Ath proteins by several pathogen 

461 effectors (interspecific convergence). Significance of the interspecific convergence was tested 

462 comparing our experimental data and previously published data with random simulations as 

463 published [11,12]. Briefly, for each effector of all compared pathogens we assigned the same 

464 number of Ath targets as experimentally observed/published from the list of 8K proteins. The 

465 distribution obtained from 10,000 simulations was plotted and compared to experimentally and 

466 published data. The p-value of the experimental data was calculated as follows: number of 

467 simulations where the number of common targets between species was higher or equal than the 

468 experimentally observed is divided by the number of simulations. When the number of simulations 

469 with more common targets than observed was zero, the p-value was set to < 0.001. 

470                  (2)𝑝 ‒ 𝑣𝑎𝑙𝑢𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑜𝑟𝑠

≥ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑜𝑟𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠

471 Overlap of effector targets. The overlaps of effector targets between the different kingdoms and 

472 species were calculated taking into account the targets found in the different large-scale screening 

473 and limiting to the 8K space. For representation of the data, Venn diagrams were generated using 

474 the Venn Diagrams tool from VIB-UGent Center for Plant Systems Biology 

475 (www.bioinformatics.psb.ugent.be/webtools/Venn/). The overlap of effector targets from the 

476 different datasets was calculated not limiting to any limited space. For an area-proportional 

477 representation of the data, a Venn diagram was generated using BioVenn [56].
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478 Network topology analyses. The topology parameters of the Ath-effector interactomic network 

479 were calculated on Cytoscape 3.7.2 [57]. Our analyses focused on two key node parameters: degree 

480 and betweenness centrality. The degree of a protein is a measure of its connectivity and denotes 

481 the number of proteins interacting with it. Throughout this work, we have differentiated two kinds 

482 of degrees: 1) effector degree (i.e., number of interacting effector proteins) and 2) Ath degree (i.e., 

483 number of interacting Ath proteins). The betweenness centrality measures the proportion of 

484 shortest pathways between two proteins that passes through a given node. These parameters were 

485 compared against different subset of data and statistical tests were performed in R language [58]. 

486 The cumulative distribution of these parameters among different subset of data was plotted and 

487 the area under the curve was estimated using Simpson’s rule with the ‘Bolstad2’ package [59].

488 Database construction

489 The database was built using the software architecture recently described [60]. The files 

490 submitted by the curator team were automatically checked for typographic mistakes using ad-hoc 

491 Perl scripts and loaded into a Neo4J database and indexed in an ElasticSearch search engine. Each 

492 release was rebuilt from scratch. Data were made accessible through a web interface (see Results 

493 and discussion section) built upon Cytoscape.js library [61]. The raw data used for the database 

494 setup are available in the ‘Data’ section of www.effectork.org and the source code is available at 

495 https://framagit.org/LIPM-BIOINFO/KGBB.
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694 S1 Fig. Ath degree of T3E proteins from Rps strain GMI1000 and Xcc strain 8004.
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695 Ath degree (i.e., number of Ath targets per effector) in the in the 12,000 (12K space, light blue) 

696 and 8,000 Ath cDNA collections (8K space, dark blue) of T3E proteins from Rps strain GMI1000 

697 (A) and Xcc strain 8004 (B). For Rps strain GMI1000: in the first screening RipA3, RipAA, 

698 RipAB, RipAC, RipAG, RipAL, RipAM, RipAN, RipAO, RipAP, RipAQ, RipAR, RipAZ1, 

699 RipB, RipBA, RipG3, RipG4, RipG6, RipG7, RipH2, RipH3, RipI, RipK, RipM, RipN, RipO1, 

700 RipP1, RipQ, RipR, RipS2, RipS6, RipT, RipTPS, RipX and RipZ were screened but no targets 

701 were found. In the second screening RipAB, RipAC, RipAI, RipAX1, RipAY, RipBM, RipC1, 

702 RipE1, RipH1, RipN, RipR, RipS4, RipU, RipX and RipZ were screened but no targets were 

703 found, and RipAN and RipM could not be screened because of recalcitrant problems with yeast 

704 transformation. For Xcc strain 8004: AvrXccA2, HpaA, HrpW, XopAN, XopN and XopQ were 

705 screened but no targets were found, and AvrBs2, XopAH, XopAL2, XopD and XopE2 could not 

706 be screened because they showed autoactivation in yeast.

707 S2 Fig. Overlap of Ath targets of effector proteins from Hpa, Psy, Gor, Rps and Xcc.

708 Venn diagrams showing the overlap among Ath targets found in the 8,000-Ath-cDNA collection 

709 (8K space) of effector proteins from Hpa, Psy, Gor, Rps and Xcc at the kingdom (A) and species 

710 level (B). The total number of effector targets for each kingdom/species is indicated in brackets.

711 S3 Fig. Interspecific convergence of Psy and Xcc effector proteins.

712 Number of Ath targets in the 8K space of effectors from Psy and Xcc and Rps strain found in 

713 10,000 degree-preserving simulations (grey) versus the observed number (red arrow).

714 S4 Fig. Effector degree distribution for Ath effector targets.
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715 Effector degree (i.e., number of effectors that interact with an Ath protein) distribution among the 

716 564 identified Ath effector targets (A), according to the origin the data: published large-scale 

717 screenings in light green, manual curation of literature in mid-green and this study in dark grey or 

718 (B), according to the kingdom of the corresponding effector pathogen: Bacteria in light blue, 

719 Chromista in dark blue, Fungi in light orange and Animalia in dark orange.

720 S5 Fig. Ath degree and betweenness centrality of different groups of Ath effector targets.

721 Cumulative distribution of Ath degree (B and D) and betweenness centrality (A, C and E) for Ath 

722 proteins targeted (orange) or not (purple) by effectors (B), multi-pathogen (green) and pathogen-

723 specific (pink) effector targets (B and C) and effector hubs (red) and single effector targets (blue) 

724 (D and E). The significance of the differences were evaluated by one-tailed Wilcoxon signed-rank 

725 test. The illustration in the upper right corner of each graph represents each compared group: 

726 effectors are represented by squares, Ath proteins by circles, numbers represent different pathogens 

727 species and the color code matches the respective cumulative distribution graph. The estimation 

728 of the area under the curve of each distribution is compiled in Table 2.

729 S6 Fig. Ath and effector degree of effector targets.

730 (A) Scatterplot of Ath degree versus effector degree of all Ath effector targets. Squared in a grey 

731 dashed line is the close-up area represented in (B).

732 S7 Fig. Degrees and betweenness centrality of bacterial core and non-core T3Es and their 

733 targets.

734 Cumulative distribution of Ath degree (A and D), effector degree (C) and betweenness centrality 

735 (B and D) for bacterial core T3Es (yellow) and other bacterial T3Es (cyan) (A and B) and their 
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736 targets (brown and blue respectively) (C-E). The significance of the differences were evaluated by 

737 one-tailed Wilcoxon signed-rank test. The illustration in the upper right corner of each graph 

738 represents each compared group: bacterial T3Es are represented by squares, Ath proteins by circles 

739 and stars represents bacterial core T3Es. The estimation of the area under the curve of each 

740 distribution is compiled in Table 2.

741  S1 Table. List of Rps and Xcc effector-Ath protein interactions detected experimentally in 

742 this study and composition of the Ath-cDNA screening libraries. 

743 S2 Table. List of manually curated Ath-effector protein interactions from the literature.

744 S3 Table. List of effector hubs and single effector targets identified.

745 S4 Table. List of protein interactions constituting the Ath-effector interactomic network.

746 S5 Table. List of pENTRY for T3E genes from Rps and Xcc.

747 Figure captions

748 Fig 1. Ath degree of effector proteins from Gor, Hpa, Psy, Xcc and Rps.

749 Comparison of the Ath degree (i.e., number of Ath targets per effector) of effector proteins from 

750 Gor, Hpa, Psy, Xcc and Rps found in the 8,000-Ath-cDNA collection (8K space). Horizontal black 

751 bars represent the median. Colors represent the kingdom (orange: Fungi, yellow: Chromista and 

752 blue: Bacteria).

753 Fig 2. Effectors converge intra- and interspecifically onto a common set of Ath proteins.
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754 (A) Left: random and intraspecific convergent interactions of effectors (purple squares) with Ath 

755 proteins (green circles) can be distinguished by random network rewiring and simulation. Adapted 

756 from Weßling et al. [12].  Middle and right: number of Ath targets in the 8K space of effectors 

757 from Xcc strain 8004 and Rps strain GMI1000 found in 10,000 degree-preserving simulations 

758 (grey) versus the observed number (red arrow). (B) Left: random and interspecific convergent 

759 interactions of effectors from different species (purple and orange squares) with Ath proteins 

760 (green circles) can be distinguished by random network rewiring and simulation. Right: number 

761 of common Ath targets in the 8K space of effectors from Chromista, Bacteria and Fungi found in 

762 10,000 simulations (grey) versus the observed number (red arrow). (C) Scatterplot of observed 

763 versus simulated number of common Ath targets between all binary, ternary, quaternary and 

764 quinary combinations of species. x=y regression is represented with a dashed grey line.

765 Fig 3. Overlap among effector targets depending on the origin of the dataset.

766 Area-proportional Venn diagram showing the overlap among effector targets identified in the 

767 large-scale Y2H screenings performed in this study, in similar large-scale Y2H already published 

768 [11,12] and in the manual curation of the literature. The total number of effector targets coming 

769 from each dataset is indicated in brackets. 

770 Fig 4. Network topology parameters.

771 Example of a simple interactomic network of three effector proteins (purple squares) and eight Ath 

772 proteins (green circles) to illustrate our definition of “effector hub” (i.e., Ath protein interacting 

773 with two or more effectors; highlighted in red) and the three network topology parameters analyzed 

774 in this study. 1) Effector degree: number of effectors that interact with a given Ath protein. 2) Ath 
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775 degree: number of Ath proteins that interact with a given effector or Ath protein. 3) Betweenness 

776 centrality: fraction of all shortest paths connecting two proteins from the network that pass through 

777 a given protein.

778 Fig 5. Ath degree of Ath proteins targeted or not by effectors.

779 Cumulative distribution of Ath degree of Ath proteins targeted (orange) or not (purple) by effectors. 

780 The significance of the difference was validated by one-tailed Wilcoxon signed-rank test. The 

781 illustration in the upper right corner represents each compared group. Effectors are represented by 

782 squares, Ath proteins by circles and the color code matches the cumulative distribution graph.
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