
 
1 

iucn_sim: A new program to simulate future extinctions based on 1 

IUCN threat status 2 

Author information 3 

Tobias Andermann 1,2,*, Søren Faurby 1,2, Robert Cooke 1,2, Daniele Silvestro 1,2,**, Alexandre 4 

Antonelli 1,2,3,** 5 

 6 

1 Department of Biological and Environmental Sciences, University of Gothenburg, 7 

Göteborg, Sweden 8 

2 Gothenburg Global Biodiversity Centre, Göteborg, Sweden 9 

3 Royal Botanic Gardens, Kew, Richmond, UK 10 

 11 

* Corresponding author. Email: tobias.andermann@bioenv.gu.se, ORCID-ID: 12 

https://orcid.org/0000-0002-0932-1623 13 

** Joint last authorship 14 

 15 

Abstract 16 

The ongoing environmental crisis poses an urgent need to forecast the who, where, and when 17 

of future species extinctions, as such information is crucial for targeting conservation efforts. 18 

Commonly, such forecasts are made based on conservation status assessments produced by 19 

the International Union for Conservation of Nature (IUCN). However, when researchers 20 

apply these IUCN conservation status data for predicting future extinctions, important 21 

information is often omitted, which can impact the accuracy of these predictions. 22 
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Here we present a new approach and a software for simulating future extinctions based on 23 

IUCN conservation status information, which incorporates generation length information of 24 

individual species when modeling extinction risks. Additionally, we explicitly model future 25 

changes in conservation status for each species, based on status transition rates that we 26 

estimate from the IUCN assessment history of the last decades. Finally, we apply a Markov 27 

chain Monte Carlo algorithm to estimate extinction rates for each species, based on the 28 

simulated future extinctions. These estimates inherently incorporate the chances of 29 

conservation status changes and the generation length for each given species and are specific 30 

to the simulated time frame. 31 

We demonstrate the utility of our approach by estimating extinction rates for all bird species. 32 

Our average extinction risk estimate for the next 100 years across all birds is 6.98 × 10−4 33 

extinctions per species-year, and we predict an expected biodiversity loss of between 669 to 34 

738 bird species within that time frame. Further, the rate estimates between species sharing 35 

the same IUCN status show larger variation than the rates estimated with alternative 36 

approaches, which reflects expected differences in extinction risk among taxa of the same 37 

conservation status. Our method demonstrates the utility of applying species-specific 38 

information to the estimation of extinction rates, rather than assuming equal extinction risks 39 

for species assigned to the same conservation status. 40 

Keywords 41 

Aves, Bayesian, Death process, Biodiversity loss, Extinction risk, Generation length, IUCN, 42 

MCMC, Conservation status, Red List  43 
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Introduction 44 

We are in the middle of a massive biodiversity crisis (Barnosky et al. 2011, Davis et al. 2018, 45 

Díaz et al. 2019). Extinction risks have been steadily increasing for as long as we have been 46 

keeping record, with no indications of a slowdown (Ceballos et al. 2015). It is therefore 47 

crucial to predict the number of future extinctions that shape the future biodiversity, whether 48 

in terms of species, phylogenetic, or functional diversity (Davis et al. 2018, Cooke et al. 49 

2019, Pimiento et al. 2020). An important use of such predictions is to aid conservation 50 

prioritization (Mooers et al. 2008). However, all predictions require reliable estimates of 51 

extinction risk. 52 

The main global initiative to quantify extinction risks across animal and plant species is the 53 

IUCN Red List (IUCN Red List 2019), which categorizes the conservation status of 54 

organisms based on expert assessments. Since 2001, the IUCN has adopted the IUCN v3.1 55 

evaluation system for determining species' conservation statuses (IUCN Species Survival 56 

Commission 2001). By this standard, extant species are assessed as Least Concern (LC), 57 

Near Threatened (NT), Vulnerable (VU), Endangered (EN), or Critically Endangered (CR). If 58 

there is insufficient information available for a species to enable a proper status assessment, 59 

the species is categorized as Data Deficient (DD). Species that have not yet been reviewed by 60 

the IUCN are categorized as Non-Evaluated (NE). Species that are not found in the wild 61 

anymore are labeled as Extinct in the Wild (EW), and species with no living wild or captive 62 

individuals as Extinct (EX). As of the year 2020, IUCN has also introduced two additional 63 

subcategories for CR species (IUCN 2020): possibly extinct [CR(PE)], and possibly extinct 64 

in the wild [CR(PEW)]. 65 

For the IUCN to decide on assigning a species to one of the threatened categories VU, EN, or 66 

CR, this species must meet at least one of five assessment criteria (A-E). One of those criteria 67 
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(E) is associated with a specific extinction probability, while the other criteria (A-D) mostly 68 

encompass estimates of decreasing population trends and fragmentation. The IUCN 69 

extinction probability thresholds defined in criterion E are as follows: 70 

• VU: 10% extinction probability within 100 years 71 

• EN: 20% extinction probability within 20 years or 5 generations, whichever is longer 72 

(maximum 100 years) 73 

• CR: 50% extinction probability within 10 years or 3 generations, whichever is longer 74 

(maximum 100 years) 75 

IUCN conservation status assessments have been used in numerous scientific studies to 76 

project future biodiversity loss (e.g. Ricciardi and Rasmussen 1999, Veron et al. 2016, Davis 77 

et al. 2018, Cooke et al. 2019, Oliveira et al. 2019). One critical challenge in this approach is 78 

to meaningfully transform the IUCN-defined conservation statuses into explicit extinction 79 

probabilities. In these previous studies, researchers have applied the extinction probabilities 80 

associated with criterion E to model extinction risks for threatened species. Sometimes these 81 

risks are also extrapolated to species of the statuses LC and NT in order to make it possible to 82 

assign extinction probabilities to these species (Redding and Mooers 2006, Mooers et al. 83 

2008, Veron et al. 2016, Davis et al. 2018). 84 

Although these extinction probabilities only apply to species that are assessed under criterion 85 

E (see Akçakaya et al. 2006), they are commonly applied equally to all species sharing the 86 

same conservation status (e.g. Mooers et al. 2008, Davis et al. 2018). The underlying 87 

assumption that the minimum extinction risks defined for criterion E can be meaningfully 88 

transferred to species listed under one of the other four criteria (A-D) is difficult to test 89 

empirically, but is a necessary simplification in order to model the extinction probabilities for 90 

the majority of species. However, there are several other important aspects that can be easily 91 
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incorporated but are commonly neglected when translating IUCN conservation statuses into 92 

extinction probabilities for future extinction predictions. 93 

Neglected information 94 

To the best of our knowledge, there are two key elements that are usually not incorporated 95 

when using IUCN status data for future extinction predictions: generation length and 96 

expected changes in conservation status (but see Monroe et al. 2019).  97 

Generation length (GL) is defined as the average turnover rate of breeding individuals in a 98 

population (IUCN Standards and Petitions Committee 2019) and therefore reflects the 99 

turnover between generations. It is generally considered to be a more meaningful time unit 100 

for modeling extinction risk than time expressed in years (Frankham and Brook 2004). 101 

Generation length should not be confused with age of sexual maturity, which can be used in 102 

the calculation of generation length, but is not equivalent (with age of sexual maturity always 103 

being smaller than or equal to generation length). As per the IUCN definition, the extinction 104 

probability for the categories EN and CR is to be understood in context of the GL of the 105 

given species, if 5 × 𝐺𝐿 exceeds 20 years for EN species, or if 3 × 𝐺𝐿 exceeds 10 years for 106 

CR species (see criterion E definitions above). We argue that including GL should be the 107 

standard practice when modeling extinction risks based on IUCN data, particularly because 108 

GL data is readily available for many species (Pacifici et al. 2013, BirdLife International 109 

2019, IUCN Red List 2019) and can normally be approximated through a combination of 110 

body size and phylogenetic information (Cooke et al. 2018, Bird et al. 2020) for species 111 

missing GL data (Appendix 1). 112 

A second missing element in many future predictions relates to the fact that IUCN categories 113 

are generally treated as static entities that do not change over time. However, almost two 114 
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decades of IUCN re-assessments of species (IUCN Red List 2019), using the IUCN v3.1 115 

standard, have clearly shown this not to be the case. Instead, re-assessments (Butchart et al. 116 

2007, Rondinini et al. 2014) show that the conservation status of species can change 117 

significantly in a relatively short time span, for instance as a result of the effectiveness of 118 

conservation efforts. For a species classified as LC, the immediate extinction risk is 119 

negligibly small, while for a species classified as CR, the immediate extinction risk is very 120 

high. It is reasonable to assume that if we simulate, for example, 100 years into the future, 121 

categories may change due to new or intensified risks or thanks to conservation efforts, which 122 

will affect the extinction probabilities. 123 

An example of a change in IUCN status is the Mauritian Pink Pigeon (Nesoenas mayeri), 124 

which was listed as CR in the 1990s, with only 9 birds remaining, due to habitat loss and 125 

predation by introduced species (Swinnerton 2001, IUCN Red List 2019). However, 126 

following an intensive conservation recovery program, the Pink Pigeon is now listed as VU, 127 

with around 470 wild birds (IUCN Red List 2019). Unfortunately, most species show 128 

changes with the opposite trend, for example several species of vultures, which are declining 129 

due to poisoning and persecution (Green et al. 2007). There are 22 species of vulture 130 

(Accipitridae: Gypaetinae, Accipitridae: Aegypiinae, and Cathartidae) according to the IUCN 131 

Red List, 12 of these are classified as threatened (VU, EN or CR), including 9 CR species 132 

(IUCN Red List 2019), with sharp declines in population sizes. For instance, four species of 133 

vultures (the White-headed Vulture Trigonoceps occipitalis, White-backed Vulture Gyps 134 

africanus, Hooded Vulture Necrosyrtes monachus and Rüppell's Vulture Gyps rueppelli) 135 

were all listed as LC in 2004 but are now all classified as CR. Information about these 136 

changes can be accessed through the IUCN history record and can then be used to inform 137 

models of extinction risk. 138 
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While many previous studies have applied the IUCN-based extinction probabilities (criterion 139 

E) outlined above to model extinction risks, a recent study by Monroe et al. (2019) has 140 

presented an alternative approach, avoiding these probabilities altogether. Instead Monroe et 141 

al. (2019) modeled extinction risks based on observed transitions of species to the statuses 142 

EW or EX, which they then applied to model future biodiversity losses. While this approach 143 

avoids the above mentioned shortcomings of the IUCN extinction probability approach, 144 

namely the caveats surrounding the extrapolation of the criterion E specific extinction 145 

probabilities to species listed under other criteria (A-D), it is likely limited to groups of 146 

organisms with sufficient recorded transitions to EX in order to yield reliable extinction risk 147 

estimates. 148 

In this study we contrast different variations of both approaches, to which we refer to 149 

hereafter as "critE EX mode" (approach based on IUCN criterion E extinction probabilities, 150 

sensu Mooers et al. 2008) and "empirical EX mode" (approach based on historic transitions 151 

towards statuses EW/EX, sensu Monroe et al. 2019). We add improvements to both 152 

approaches, including the incorporation of GL data for the critE EX mode and the 153 

consideration of possibly extinct taxa in the empirical EX mode. Further we present a novel 154 

MCMC-based approach of estimating status transition rates from historical IUCN data, and 155 

we apply these rates to simulate future status changes and extinctions. All approaches 156 

presented in this study are available in the new open-access simulation program iucn_sim, 157 

which can be run via the bash command line and is tested for compatibility in Windows, 158 

MacOS, and Linux (Fig. 1, see Data availability statement). 159 
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Material and methods 160 

Here we describe our approach of simulating future extinctions and IUCN status transitions 161 

on the example of birds (Aves). We use the terms "reference group" and "target species" as 162 

follows: 163 

• Reference group: The group of species, whose IUCN history is being used to 164 

estimate status transition rates, i.e. the rates at which species change between IUCN 165 

statuses 166 

• Target species: The group of species, for which future extinctions are being 167 

simulated, while applying the estimated status transition rates 168 

In this study the reference group and target species list consist of the same taxa (all extant 169 

bird species), but this is not a requirement for this approach. For example, using our approach 170 

one could simulate future extinctions and status transitions for a specific bird family or local 171 

bird fauna, while using all birds as a larger reference group, in order to get reliable status 172 

transition rate estimates. 173 

To make this approach accessible and easy to use for future projects, we wrapped the 174 

complete workflow described below into the open-source command line program iucn_sim 175 

(Fig. 1, https://github.com/tobiashofmann88/iucn_extinction_simulator), which can be easily 176 

installed together with all software dependencies using the conda package manager 177 

(https://docs.conda.io). Installation instructions are available on the projects GitHub page of 178 

this project. Using iucn_sim, it is straight-forward to 1) model future changes in IUCN status, 179 

2) simulate possible times of extinction across species, and 3) estimate species-specific 180 

extinction rates for any given set of species over a user-defined time span. We executed all 181 
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steps outlined below using iucn_sim (except the downloading of GL data) and we report the 182 

iucn_sim command for each step in the Supplementary Code Sample 1. 183 

Generation length estimates 184 

We downloaded GL estimates for all bird species from Bird et al. (2020), following the 185 

IUCN 2019-v2 taxonomy of extant bird species. Since the collecting of GL data can be 186 

challenging for some groups, we provide instructions how to generate GL data via 187 

phylogenetic imputation on the example of birds in Appendix 1 in the Supplementary 188 

Material. See Cooke et al. (2018) and Bird et al. (2020) for more detailed instructions and 189 

information on generating GL estimates for species. 190 

Downloading IUCN data 191 

We downloaded the complete IUCN history for the reference group (class Aves) from the 192 

year 2001 onward, to ensure compatibility with the IUCN v3.1 standard (IUCN Species 193 

Survival Commission 2001), using the rl_history function of the R-package rredlist 194 

(Chamberlain 2017) and IUCN v2019-2. The taxon list for this download was generated by 195 

scanning through the entire IUCN Red List catalogue for species assigned to the class Aves, 196 

using the rl_sp function. In addition to the historic data, we extracted the current status (most 197 

recent status assessment) of all target species (all Aves species) using the rl_search function. 198 

For all following operations we set the status of all EW species to EX. 199 

Status transition rates 200 

Based on the IUCN history data, we counted all types of status changes that have occurred in 201 

the IUCN history of birds (Table 1), as well as the cumulative amount of time spent in each 202 

status across all bird species. For instance, if a given species was classified as NT from 2001 203 
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to 2005 and then EN from 2005 to today (2020), this species contributes 1 status change from 204 

NT to EN and 4 years in NT and 16 years in EN. 205 

From these counts we estimated the rates of transitions between all pairs of statuses using 206 

Bayesian sampling. For example, if Nij transitions were observed from status i to status j and 207 

the cumulative time spent in i across all species in the reference group is 𝑡𝑖, we used a 208 

Markov chain Monte Carlo (MCMC) algorithm to sample the annual transition rate qij from 209 

the following posterior: 210 

 𝑃(𝑞𝑖𝑗|𝑁𝑖𝑗 , 𝑡𝑖) ∝ 𝑃(𝑁𝑖𝑗 , 𝑡𝑖|𝑞𝑖𝑗) × 𝑃(𝑞𝑖𝑗) Eq. 1 

where the log likelihood function is that of a Poisson process describing status change  211 

 log P (Nij, ti|qij) ∝ Nij log(qij) − qijti Eq. 2 

and P(qij) ∼ 𝒰[0,1000] is a vague uniform prior on the transition rate.  212 

To incorporate the uncertainties in the transition rate estimates, we took 100 samples from the 213 

posterior distribution of the rate estimates (Eq. 1) for each transition type (Table 2). More 214 

specifically we populated 100 q-matrices containing the sampled rates for each type of status 215 

transition. These q-matrices were used for future simulations, allowing us to simulate 216 

potential future status changes of any species, given its starting status (see more detailed 217 

explanation below). In addition, we sampled 100 transition rates for all transition types from 218 

DD to any of the statuses LC, NT, VU, EN, and CR, which we used during the future 219 

simulations to draw a new valid status for DD species.  220 
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Finally, we modelled the transition rates towards extinction (EX) from any extant status i 221 

(𝑞𝑖→𝐸𝑋). Modelling these transition rates towards EX is non-trivial and we used two 222 

approaches to estimate these rates, which we refer to as the critE EX mode and the empirical 223 

EX mode. The critE EX mode is based on the IUCN criterion E extinction probabilities 224 

defined for threatened statuses (sensu Mooers et al. 2008), whereas the empirical EX mode is 225 

based on empirically observed transitions towards EW/EX in the IUCN history (sensu 226 

Monroe et al. 2019). 227 

The final q-matrices contain all status transition rates, including the rates towards extinction 228 

for each given status, determined with either the critE EX mode or the empirical EX mode 229 

outlined below (last column). Since in our simulations, species are not allowed to reappear 230 

after extinction, we set the rates from EX to any other status equal to 0:  231 

 

Eq. 3 

1) CritE EX mode 232 

In the critE EX mode approach (iucn_sim setting: --extinction_probs_mode 0) we 233 

transformed the extinction probabilities (𝐸𝑡) associated with threatened IUCN statuses (see 234 

Introduction), defined over specific time frames (t), into annual status-specific EX transition 235 

rates (𝑞𝑖→𝐸𝑋), using the formula provided by (Kindvall and Gärdenfors 2003): 236 

 𝑞𝑖→𝐸𝑋 = 1 − √1 − 𝐸𝑡
𝑡

 Eq. 4 
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Since the IUCN extinction probabilities are only defined for the statuses VU, EN, and CR, 237 

we extrapolated the annual EX transition rates for the remaining statuses LC and NT by 238 

fitting a power function to the calculated extinction rates for the statuses VU, EN, and CR, 239 

estimating the parameters a and b (Appendix 1): 240 

𝑞𝑖→𝐸𝑋 = axb 241 

where x represents the index of the IUCN category, sorted by increasing threat (i.e. xLC =242 

1, xNT = 2, … , xCR = 5). After estimating the parameters a and b, we calculated the annual 243 

transition rates to EX for statuses LC and NT, using the above power function. 244 

According to the IUCN definition, the extinction probabilities linked to the IUCN categories 245 

EN and CR for individual species are dependent on the GL of these species. In order to 246 

properly model the EX transition rates for these statuses on a species-specific basis, we 247 

applied GL data to adjust the time frame (t) associated with the extinction probabilities. For 248 

example for a species with a GL of 5 years, which is categorized as CR (IUCN definition: 249 

"50% extinction probability within 10 years or 3 generations, whichever is longer"), the 250 

annual EX transition rate according to Eq. 4 is 𝑞𝐶𝑅→𝐸𝑋 = 1 − √1 − 0.5
3∗𝐺𝐿

=  0.045, whereas 251 

for a species with a GL of 2 years with status CR the EX transition rate is 𝑞𝐶𝑅→𝐸𝑋 = 1 −252 

√1 − 0.5
10

=  0.067, because in the latter case 3 ∗ 𝐺𝐿 < 10 𝑦𝑒𝑎𝑟𝑠. From this follows that 253 

when ignoring GL information and setting 𝑡 = 10 for all species (e.g. Mooers et al. 2008), 254 

the extinction risk for species with moderate or long generation times (>3.33 years) will be 255 

overestimated (Fig 2). 256 

We therefore applied the GL estimates of all individual bird species (Bird et al. 2020) for the 257 

calculation of the yearly EX transition rates for the statuses EN and CR of each species. We 258 

then added these GL-adjusted EX transition rates to the q-matrices containing the extant 259 
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status transition rates (Eq. 3) to simulate future status changes and extinctions. Although the 260 

EX transition rates derived in this manner and the extant status transition rates are modelled 261 

based on two different data sources, they can be combined in the same q-matrix since all of 262 

these rates are expressed in the same unit (transition events per species and year). To evaluate 263 

how the presence of GL data effects future extinction predictions, we produced an additional 264 

set of q-matrices where we did not apply GL data ("no GL" scenario). Further, to evaluate the 265 

effect of modeling future status changes, we produced additional sets of q-matrices where all 266 

transition rates between extant statuses were set to 0 ("no status change" scenarios), for both 267 

the GL and no GL scenario. 268 

2) Empirical EX mode 269 

In the empirical EX mode approach (iucn_sim setting: --extinction_probs_mode 1) we 270 

estimated EX transition rates based on the observed transitions from any given extant status 271 

to EX in the IUCN history of birds, sensu Monroe et al. (2019). Following the same 272 

procedure we used to infer transition rates between other statuses, we counted the transitions 273 

from any status to EX (Table 1) and used MCMC to sample from the posterior transition rate 274 

distribution (Eq. 1), of which we randomly selected 100 samples for each type of transition. 275 

In contrast to the approach of Monroe et al. (2019), we estimated a specific transition rate 276 

from any given status to EX using our MCMC based approach, instead of only allowing 277 

transitions from CR to EW/EX. However, due to no observed occurrences of transitions of 278 

the statuses LC, NT, VU, and EN to EX in the IUCN history of birds, the estimated rates for 279 

these types of transitions are negligible, effectively making these transitions events very 280 

unlikely in our simulations of future extinctions. A further difference is that we did not 281 

distinguish between the statuses EW and EX, but instead treated both statuses as extinct. We 282 

inserted the 100 sampled rates into the last column of the q-matrix (Table 2). Since no GL 283 
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data replicates or other species-specific data were used in this approach, the same 100 q-284 

matrices were applied to all species for future simulations. 285 

The empirical EX mode approach is likely to underestimate the true transition rate, as for 286 

several threatened species there is insufficient evidence to categorize them as EX, although 287 

they are likely to be extinct (IUCN 2020). In order to better account for this underestimation 288 

bias, we generated another set of q-matrices, where we incorporated information on possibly 289 

extinct species [CR(PE) sensu IUCN 2020]. Prior to determining the numbers of transitions, 290 

we modeled these species as EX, starting from the date that they were categorized as PEX 291 

(the empirical EX mode + PEX approach). This modeling of PEX species was only done for 292 

the purpose of estimating EX transition rates, while these species were classified as CR as a 293 

departure point for future simulations (see below). 294 

Simulating future extinctions 295 

We used the transition rates from the estimated q-matrices (Eq. 3) to simulate for all bird 296 

species future transitions between extant statuses or to toward EX. Before simulating into the 297 

future, each species was assigned its current IUCN status as starting status. For all species 298 

currently assigned as DD, we randomly drew a new status based on a probability vector 299 

consisting of the estimated transition rates leading from DD to the valid statuses LC, NT, 300 

VU, EN, or CR. For all NE species we drew a new valid IUCN status based on the 301 

frequencies of valid IUCN statuses across all bird species. We treated species that are 302 

categorized as EW or EX by IUCN as irrevocably extinct and therefore did not include these 303 

species in future simulations. 304 
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We modeled transitions as a Poisson process, by generating time-forward simulations for 305 

each species based on exponentially distributed waiting times between transition events. For 306 

a given current status i the waiting time until the next event is  307 

Δt ∼ Exp ( ∑ qij

j∈S\i

) 308 

where 𝑆\𝑖 is the set of statuses excluding the current status i. The type of transition after the 309 

waiting time Δ𝑡 is then sampled randomly with probabilities proportional to the rates in 𝑆\𝑖. 310 

We repeated these time-forward simulations for each species up to a pre-defined time of 311 

𝑡𝑚𝑎𝑥 = 100 years after present, producing 10,000 simulations for all 6 approaches outlined 312 

above: i) critE EX mode, ii) critE EX mode no GL, iii) critE EX mode no status change, iv) 313 

critE EX mode no GL and no status change, v) empirical EX mode, vi) empirical EX mode + 314 

PEX. For each simulation replicate, we repeated the drawing of a valid IUCN status for DD 315 

and NE species, thus incorporating this uncertainty in the simulations. 316 

From the simulation output we extracted for each species a) the extinction times 𝑡{𝐸𝑋} for 317 

those simulation replicates where 𝑡𝐸𝑋 < 𝑡𝑚𝑎𝑥 or b) the waiting times of length 𝑡𝑚𝑎𝑥 for those 318 

simulation replicates where the species did not go extinct within the specified time window. 319 

Next we used these extinction times and waiting times to estimate species-specific annual 320 

extinction rates averaged across the simulated time window. 321 

For a given set of extinction times and waiting times simulated for species i, we applied a 322 

MCMC to obtain posterior samples of the extinction rate μ𝑖 using the likelihood function of a 323 

death process (Silvestro et al. 2019): 324 
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 𝑃(𝑤|μ𝑖) ∝ μ𝑖
𝐷 × exp(−μ𝑖 ∑ (𝑤𝑗)𝑗∈𝑤 ) Eq. 5 

where D is the number of instances in which 𝑤 ≤ 𝑡𝑚𝑎𝑥 , i.e. the number of simulation 325 

replicates in which the species went extinct within the considered time window. 326 

We sampled estimates of μ𝑖 for each species throughout the MCMC from the posterior 327 

distribution: 328 

 𝑃(μ𝑖|𝑤) ∝ 𝑃(𝑤|μ𝑖) × 𝑃(μ𝑖) Eq. 6 

where 𝑃(𝜇𝑖) is a uniform prior distribution (𝒰[0,1000]) set on the extinction rate. For each 329 

bird species we exported the mean and the 95% HPD interval of the posterior extinction rate 330 

estimates. 331 

To compare the extinction rates between different approaches, we calculated the average 332 

extinction rate for each approach by running an MCMC with the death process likelihood 333 

function (Eq. 5), based on the simulated extinction dates of all bird species across 10,000 334 

simulation replicates. 335 

Testing accuracy with synthetic data 336 

In addition to the empirical bird data, we validated our approach on simulated data to 337 

determine the accuracy of the estimated transition rates and extinction rates. 338 

To test the accuracy of the transition rates estimated from the IUCN history and the effect of 339 

the size of the chosen reference group on these estimates, we simulated status transitions data 340 

mimicking the empirical IUCN history data. We then simulated status changes over a time 341 

period of 20 years for reference groups of 100, 1,000, and 10,000 species. The starting status 342 
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for each species was drawn randomly, based on the empirical frequencies of the current 343 

IUCN status distribution across all birds. To produce realistic transition rates to use for our 344 

simulations, we randomly drew these rates from a uniform range in log-space, ranging 345 

between the minimum and the maximum empirical rate estimated for birds. We drew 30 rates 346 

to reflect the 30 possible transition types between the six main IUCN statuses (LC, NT, VU, 347 

EN, CR, and DD). We then simulated the change of IUCN statuses through time in the same 348 

manner as described above for the future simulations for the empirical bird data, with the 349 

difference that no extinction events were being modeled. We then used the simulated IUCN 350 

history for all species to infer transition rates using MCMC as done for the empirical bird 351 

data. 352 

To evaluate the accuracy of the species-specific extinction rates estimated with our approach, 353 

we simulated extinction times for 1,000 species under known extinction rates. The extinction 354 

rates (𝜇) that were used for these simulations were randomly drawn from a uniform range (in 355 

log-space) with a minimum and maximum value derived from the EX transition rates of the 356 

statuses LC and CR respectively, as modeled in this study with the outlined IUCN extinction 357 

probabilities approach. Based on the chosen number of simulation replicates, N extinction 358 

time replicates (𝑡𝑒) were drawn randomly from an exponential distribution with mean 𝜇−1 for 359 

each species. This simulation was repeated for 100, 1,000, and 10,000 replicates, in order to 360 

test how many replicates are necessary for an accurate rate estimation. 361 

Results 362 

Transition rates 363 

We counted a total of 919 status transitions between extant IUCN statuses in the IUCN 364 

history data of birds between the years 2001 and 2020 (Table 1). Additionally, we counted 6 365 
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transitions from CR to EX. This count increased to 20 when additionally modeling the PEX 366 

taxa as EX. The mean transition rates estimated from these counts, averaged across all 100 q-367 

matrix replicates for all species, can be found in Table 2. With our transition rate estimation 368 

method, even transition types with zero-counts in the IUCN history are assigned a positive 369 

transition rate, although these rates will be very small. Differences between estimated rates 370 

can occur even if based on identical counts because of differences in the cumulative times 371 

spent in each category (see Eq. 2), as can be seen when for example comparing the transition 372 

rate from LC to EX with that from EN to EX, which differ by orders of magnitude (Table 2). 373 

A comparison between the estimated EX transition rates based on the two main approaches 374 

tested in this study (critE EX mode and empirical EX mode) show, that the empirical EX 375 

mode, which uses empirical extinction events, leads to lower average transition rates towards 376 

status EX for the threatened categories (Table 2).  377 

The estimates based on our synthetic status transition data demonstrate that our approach 378 

accurately recovers the transition rates that were used to simulate the data, yet the precision 379 

of these estimates is strongly dependent on the size of the reference group (Fig. 3a). These 380 

results suggest that it is recommendable to choose reference groups of preferably more than 381 

1,000 species, because stochastic fluctuations of status counts below that threshold preclude 382 

the estimation of transition rates with meaningful precision, particularly so for low rates. 383 

Future extinctions 384 

Our future simulations for birds based on the critE EX mode approach resulted in 738 385 

predicted species extinction within the next 100 years (95% confidence interval: 669-809 386 

species, Fig. 2). In comparison the empirical EX mode approach resulted in 57 predicted 387 

extinctions within the same time frame (21-93), which increased to 127 (82-182) when 388 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2019.12.16.878249doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878249
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
19 

accounting for PEX species. The species-specific extinction rates for all birds are available in 389 

the Supplementary Data. 390 

The estimations of species-specific extinction rates from the simulated extinction times (Eq. 391 

5) produces accurate rate estimates, yet it requires around 10,000 future simulation replicates 392 

to ensure this accuracy also for very low rates, such as species starting as LC (Fig. 3b). These 393 

species-specific rates differ significantly between the approaches tested in this study (Fig. 4). 394 

The empirical EX mode consistently leads to lower rate estimates than the critE EX mode, 395 

which is a direct result of the differences in EX transition rates in the q-matrix between these 396 

two approaches (Table 2). 397 

The average rate estimated across all birds for the critE EX mode was 6.98 × 10−4 398 

extinctions per species-years (ESY) (95% credible interval 6.97 − 6.98 × 10−4). This rate is 399 

to be understood as the average bird extinction rate expected over the next 100 years. The 400 

rate for the empirical EX mode was estimated to be significantly lower at 5.09 × 10−5 401 

(5.08 − 5.11 × 10−5). When in addition modeling PEX taxa as extinct, the rate increased to 402 

1.16 × 10−4 E/SY (1.15 − 1.16 × 10−4). These rate estimates fall within the same level of 403 

magnitude as previous estimates for birds, such as the 2.17 × 10−4 E/SY estimated by 404 

Monroe et al. (2019). 405 

To further compare our results with those of Monroe et al. (2019), we additionally simulated 406 

extinctions and estimated extinction rates within a time window of 500 years, to match the 407 

time window addressed in their study, and we used the empirical EX mode setting to match 408 

the approach taken in their study. This resulted in an average rate estimate of 1.37 × 10−4 409 

E/SY (1.369 − 1.370 × 10−4) for the empirical EX mode approach, which represents the 410 

average rate expected for the next 500 years under this model. These rate estimates are 411 

significantly lower than the 2.17 × 10−4 E/SY estimated by Monroe et al. (2019). Yet, the 412 
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predicted number of extinctions under our approach ranged between 271 and 791, which 413 

largely overlaps with the 226 to 589 extinctions predicted by Monroe et al. (2019). 414 

This discrepancy in rate estimates reflects a difference in how the rates are estimated and 415 

what they represent. Monroe et al. (2019) calculated their rate as the inverse of the average 416 

expected longevity (time until extinction) based on all birds. This corresponds to the average 417 

extinction rate of a process running until the extinction of all species. Our rate estimate, on 418 

the other hand, is based on simulated extinction events over the next 500 years and therefore 419 

reflects the average extinction rate within that time frame. Because in both approaches 420 

species threat statuses evolve according to an asymmetric transition matrix (Eq. 3, Table 2), 421 

the extinction process is not time-homogenous, as also noted by Monroe et al. (2019). 422 

Extinction rates increase through time as a consequence of the trend towards increasing 423 

frequencies of high threat statuses (Fig. 2). Consequently, rates averaged over a shorter time 424 

window (as the 500 years simulated in our case) are expected to be lower than rates averaged 425 

over the much longer time window reaching until the time of the expected extinction of all 426 

birds (Monroe et al. 2019).  427 

Our rate estimates provide a representation of the extinction process specifically within the 428 

time window of interest and they change accordingly to the chosen simulation time. This is 429 

the reason why the rate estimates for the empirical EX mode approach, reported above, differ 430 

between the 100 year and the 500 years simulations (5.09 × 10−5, and 1.37 × 10−4 431 

respectively).  432 

To better compare the estimated rates between Monroe et al. (2019) and our study, we 433 

calculated the expected number of extinctions under each rate for the time interval of 500 434 

years. Using the properties of a death process and assuming time-homogeneous rates within 435 
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this interval we can compute the expected number of extinctions (D) based on a number N of 436 

initial species within a time interval t as: 437 

𝐷 = 𝑁 × (1 − 𝑒𝑥𝑝(−μt)) 438 

where the second term of the multiplication is the probability of surviving until time t given 439 

the extinction rate μ. Using this formula with N = 10,961 (number of extant bird species 440 

according to IUCN 2019-v2) and t = 500 years with our extinction rate (μ = 1.37 × 10−4) 441 

we obtain 726 expected number of extinctions, which is well within the range obtained from 442 

our simulations (271 - 791). In contrast, the 2.17 × 10−4 rate of Monroe et al. (2019) predicts 443 

1,127 extinctions for the same time frame.  This differs from their reported range of 226 to 444 

589 expected extinctions, which was not estimated based on that reported rate, but derived 445 

from the expected longevities of all species based on an IUCN status transition q-matrix, 446 

similar to the one used in our study. Their rate estimate was calculated subsequently as the 447 

inverse of the average longevity across all birds and thus represents an overall rate averaged 448 

across the complete time frame until the extinction of all birds. Our rate estimate on the other 449 

hand is specific to the chosen simulation time window and describes more adequately the 450 

extinction process within that window. This demonstrates the utility of our iucn_sim 451 

program, which can be applied in future studies to predict extinction rates for specified time 452 

frames for any organism group or for individual species. 453 

Effect of modeling status change and GL data 454 

Our empirical results show that accounting for GL data decreases the resulting extinction rate 455 

estimates (Fig. 5). As an example we highlight this effect for the Red-headed Vulture 456 

(Sarcogyps calvus), which is categorized as CR and has a relatively long generation length of 457 

15 years (IUCN Red List 2019). The reduction of extinction probability when including GL 458 
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is expected to be particularly strong for CR species with long GL times, since the immediate 459 

extinction probability applied in the simulations for EN and CR species decreases when 460 

incorporating the GL information, according to IUCN definition (critE EX mode). But the 461 

GL effect will also apply to LC species, as highlighted for the Turkey Vulture (Cathartes 462 

aura, GL = 9.9 years), where incorporating GL data leads to a small decrease in the 463 

extinction rate estimates, since occasionally these species will transition to the categories EN 464 

or CR in the future simulations, when allowing for future status changes (Fig. 5a). Overall, 465 

accounting for GL data leads to a decrease in the number of predicted extinctions across the 466 

whole target group (Fig. 6). 467 

The effect of modeling future IUCN status changes can increase or decrease the estimated 468 

extinction rates of a species, depending on its current status and on the transition rates 469 

between statuses. Therefore, this effect is expected to be dependent on the chosen reference 470 

group. However, for LC species this generally appears to lead to an increase in the estimated 471 

extinction rates (Fig. 5c), which is likely because these species can only change to a more 472 

threatened status (LC being the least threatened status). Similarly, for CR species, the effect 473 

of modeling future status changes generally leads to a decrease in extinction rates (Fig. 5d), 474 

since species can only switch to less threatened categories in the future (CR being the most 475 

threatened status). Overall, modeling future status changes leads to a sharp increase in the 476 

number of predicted extinctions across the whole target group (Fig. 6), compared to the 477 

scenario with no future status changes. 478 
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Discussion 479 

Utility of the iucn_sim program 480 

With our open-source program iucn_sim that accompanies this study, we are presenting 481 

improved versions of the two main approaches of previous studies for modeling future 482 

biodiversity losses based on IUCN status assessments (Fig. 1). Through this, we hope to 483 

facilitate future studies to apply these workflows for generating future diversity predictions 484 

and for estimating extinction rates for whole groups or individual species. The program is 485 

easy to use and to simulate future extinctions it requires only a list of target species names, or 486 

even just the name of the taxonomic group, as it automatically retrieves all available IUCN 487 

information. Moreover, iucn_sim also allows for additional data input for more specific 488 

estimates, such as GL data, that the user can choose to provide. 489 

One of the main outputs of the program is the predicted number of future species extinctions 490 

for a given group of species, as well as the future changes of the IUCN status distribution 491 

within the group (Fig. 2). The program also calculates the probabilities of each species being 492 

extinct by a user-defined date. Finally, the program estimates the extinction rates based on 493 

the simulated extinction dates separately for each species (Fig. 4). These species-specific 494 

extinction rates can be of interest for downstream analyses where species are required to be 495 

modeled individually based on biological or geographic data, and where the extinction 496 

dynamics of specific species or groupings of species are of interest (Davis et al. 2018, Cooke 497 

et al. 2019, Pimiento et al. 2020). 498 

We note that the actual extinction rates of a given species or group are expected to vary over 499 

time as a function of changes in the IUCN status, while the extinction rates inferred by 500 

iucn_sim are a time-averaged proxy of this process. Particularly during the current human-501 
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induced wave of extinctions, extinction rates are expected to vary within relatively short time 502 

frames of at least 100s of years (Ceballos et al. 2015). Therefore, our approach presented here 503 

may not be suitable for estimating extinction rates based on simulations that span across 504 

several hundred years or more. 505 

Our method further allows for modeling DD species for which IUCN statuses are imputed 506 

based on historical transition rates that reflect how frequently DD species change to other 507 

statuses. Similarly, a new status for NE species is modeled based on the current status 508 

distribution of the reference group. As a status is imputed for DD and NE species at each 509 

simulation replicate, our method incorporates the full uncertainty concerning their true status. 510 

The iucn_sim program flags and prints to the screen the names of those species that cannot 511 

be found in the IUCN taxonomy and produces a warning for the user to revise the taxonomy. 512 

If these cases cannot be fixed by the user, they will be treated as NE. This approach enables 513 

future simulations even for groups where it is difficult to match the taxonomy with that of 514 

IUCN, yet we recommend thoroughly revising the taxonomies to minimize the number of 515 

taxonomic mismatches. Never the less, species unknown to IUCN, which are modeled in this 516 

manner, are not expected to bias the overall future biodiversity predictions (under the 517 

assumption that these taxa constitute a random sample of the target species group), due to 518 

their status being repeatedly resampled based on the empirical status distribution of the 519 

reference group. While these species are not expected to affect the overall predictions for the 520 

target group, the resulting species-specific extinction rates for these taxa on the other hand 521 

may be misrepresentative. To address this issue, the user can manually change the status of 522 

NE species to a status they deem more representative for the species, by altering the status in 523 

the species_data.txt text file produced by iucn_sim. 524 
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Our iucn_sim program further allows the simulation of different future conservation 525 

scenarios, through simple q-matrix modifications. For example, one can simulate an increase 526 

of conservation efforts by providing a specific conservation factor. This factor is then applied 527 

to all transition rates in the q-matrix, leading to an improvement in conservation status for 528 

each species. Similarly, one can simulate increased threats by providing a threat factor, which 529 

is then applied to all threat-increasing transition rates in the q-matrix. These factors can also 530 

be set to 0 to simulate scenarios that do not allow for future improvements or increased 531 

threats. This flexibility of iucn_sim makes it easy to simulate and compare different future 532 

scenarios and their expected effect on biodiversity. 533 

Comparing approaches to simulate future extinctions 534 

The critE EX mode and empirical EX mode approaches that were applied in this study 535 

represent different ways of modeling the EX transition rates, which are the rates at which 536 

species transition towards extinction in our future simulations. These are not to be confused 537 

with the species-specific extinction rates, which are instead estimated from the simulated 538 

extinction times and describe the extinction risk of individual species. 539 

The critE EX mode makes use of extinction probabilities that are defined by the IUCN as one 540 

of several criteria for species assessments of threatened species. Although widely used in the 541 

scientific literature for modeling species' extinction risks (Veron et al. 2016, Davis et al. 542 

2018, Cooke et al. 2019, Oliveira et al. 2019), these probabilities are not originally intended 543 

for this purpose and per definition only apply to the subset of threatened species that was 544 

assessed under criterion E (Akçakaya et al. 2006). The simulated extinctions resulting from 545 

this approach are alarmingly high and the estimated extinction rates are in most cases more 546 

than an order of magnitude higher than those estimated with the empirical EX mode 547 

approach, even when accounting for PEX taxa in the latter approach. 548 
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The empirical EX mode, on the other hand, will likely lead to an underestimation of the true 549 

extinction rates, because it is directly dependent on the number of observed transitions from 550 

extant categories to EW or EX in the IUCN history, and these documented numbers are likely 551 

a significant underestimate (IUCN 2020). This underestimation bias is due to rather strict 552 

requirements to classify species as EW or EX. In 2020, IUCN therefore released a list of 553 

species that are possibly extinct (PEX species), but do not qualify as EX according to the 554 

IUCN guidelines. Making use of this information (which is available in iucn_sim) and 555 

modeling these taxa as extinct, usually leads to more observed status transitions towards EX 556 

within the last 20 years of IUCN history and therefore leads to higher EX transition rate 557 

estimates that are expected to better reflect the true extinction risk within the studied group. 558 

However, this approach is expected to be sensitive towards small reference groups with very 559 

few or no observed extinctions, which will lead to high uncertainties in the estimated rates. 560 

Given these significant differences in predicted future estimates between the two approaches, 561 

it is important to consider that these approaches are based on different assumptions and while 562 

both can theoretically be applied for any organism group, their utility varies depending on the 563 

group and purpose of the future simulations. 564 

If the primary aim is to conservatively model future biodiversity losses for a given group of 565 

species, and if this group can be meaningfully represented by a reference group that is a) well 566 

represented in the IUCN Red List (i.e. many assessed species), b) has a high species 567 

diversity, and c) has several recorded extinctions throughout the last 20 years, then the 568 

empirical EX mode including PEX taxa may be the most suitable choice, as in this case EX 569 

transition rates can be meaningfully modeled for the specific reference group, rather than 570 

being based on general pre-defined extinction probabilities. 571 
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If, on the other hand, the primary aim is to produce species-specific extinction rates for 572 

downstream analyses, and GL data is available or can be modeled for the group of species, 573 

then the critE EX mode approach may be the more appropriate choice, as it leads to a larger 574 

variation of rate estimates. This variation is expected to reflect differences in how threatened 575 

with extinction species of the same category are, based on their differences in GL. In the 576 

empirical EX mode approach on the other hand all species belonging to a given category are 577 

modeled equally, only leading to small stochastic differences between the rates of species 578 

belonging to the same status. 579 

Choice of reference group 580 

Essential to both approaches discussed above is the choice of the reference group, because 581 

the precision and accuracy of the estimated transition rates depends on the number of species 582 

in the reference group (Fig. 3). There are two main considerations to make when choosing a 583 

reference group: 1) Is the chosen group expected to reflect the trends of status change for the 584 

target species that are being simulated? and 2) Does the reference group contain a sufficient 585 

number of species so that stochastic effects do not overrule the actual trends for that group? 586 

These two objectives can conflict, as illustrated by the example of simulating future 587 

extinctions for vultures. In that case, using all birds (class Aves) as reference group (~ 11,000 588 

species) provides a large enough group of sufficient size for accurate transition rate 589 

estimations. However, given the notable recent worsening of almost all vulture species' 590 

conservation status (e.g. Green et al. 2007), the trends observed over all birds may not be 591 

representative of this group. 592 

The species in the reference group do not necessarily have to form a monophyletic clade, 593 

although phylogenetically related taxa are likely to provide a suitable reference group if there 594 
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is any phylogenetic signal in extinction risk. More importantly, a suitable reference group 595 

consists of species that are expected to share the same extinction threats as the group of target 596 

species for which to simulate future extinctions, so that representative status transition rates 597 

can be inferred. A reference group could include species that share a similar ecology and are 598 

similarly affected by habitat losses or pollution, or it could include species from the same 599 

biogeographic area as the target species if they are expected to share common threats, such as 600 

is the case for many island faunas. For these reasons, the reference group should also always 601 

contain all of the target species, although this is not an analytical requirement. 602 

Conclusions 603 

In this study, we demonstrated that modeling future changes in IUCN conservation status and 604 

incorporating generation length data has a substantial effect on future extinction predictions. 605 

In addition, we encountered significant differences in extinction rate predictions when 606 

comparing different approaches of modeling extinction risks. This shows that the results of 607 

future projections are strongly dependent on the selected method and the selected reference 608 

group. 609 

The aim of this study was to make the simulation of future extinctions under different 610 

approaches accessible for future projects. Further, this study can provide a starting point for 611 

researchers to decide which approach to choose for their specific target group and research 612 

objective. 613 

Our software iucn_sim is designed for ease of use and contains many options for adjusting 614 

the simulation approach for different types of projects. The source code on GitHub is open 615 

for contributions and feedback from users, which hopefully will lead to the incorporation of 616 

further improvements for predicting future extinctions. Future additions to the program could 617 
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for example include more specific future modeling of species based on similarities in 618 

biological traits, geographic location, or niche space. 619 

Data availability statement 620 

All source code, input files used in this study, and the output produced by iucn_sim are 621 

available on the project's GitHub repository at 622 

https://github.com/tobiashofmann88/iucn_extinction_simulator. The estimated extinction 623 

rates for all bird species, a Supplementary Code Sample describing the iucn_sim workflow, 624 

and Appendix 1, can be directly downloaded from the Supplementary Material 625 

accompanying this study.  626 
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Tables 693 

Table 1: Status transitions counted in the IUCN history of birds (class Aves) between 2011-694 

2020. For example, the empirical count of transitions from status LC to NT is 182, while the 695 

count of transitions from NT to LC is 112. The count for transitions from CR to EX changes 696 

from 6 to 20 when modeling species that are possibly extinct according to IUCN (PEX) as 697 

EX. 698 

 699 

  700 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2019.12.16.878249doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878249
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
33 

Table 2: Status transitions rates estimated for birds (class Aves) that were used for future 701 

simulations. The q-matrix below shows the mean of the transition rate estimates across the q-702 

matrix replicates for all bird species, scaled in transitions per species-year (T/SY). The 703 

transition rates between all extant statuses were estimated from the counted transitions in the 704 

IUCN history of birds (Table 1), taking into account the total cumulative time across all bird 705 

species spent in each category. The EX transition rates are shown for both approaches, the 706 

critE EX mode and the empirical EX mode (including PEX taxa), respectively. 707 

 708 

  709 
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Figures 710 

 711 

Figure 1: Workflow of iucn_sim to simulate future extinctions and estimate extinction rates. 712 

The only required input by the user is a) the list of target species whose future extinctions are 713 

supposed to be simulated and b) the name of a reference group, which will be used to 714 

estimate status transition rates based on the recorded IUCN history of this group. Optionally 715 

the user can provide generation length (GL) estimates for each target species, which will be 716 

considered when calculating the extinction risks associated with the statuses EN and CR, 717 

according to IUCN criterion E (critE EX mode). Alternatively, the user can choose the 718 

empirical EX mode, in which case extinction risks will be estimated from the empirically 719 

observed extinctions in the IUCN history of the reference group. The modeled extinction 720 

risks and the status transition rates will be stored in a q-matrix, which is used to simulate 721 

future status changes and extinctions for all target species. Finally, the program estimates 722 

species-specific extinction rates from the simulated extinction times (typically from multiple 723 

simulation replicates) and produces various summary statistics and plots as output, including 724 

the simulated future status distribution of the target group, the future diversity trajectory, and 725 

the histograms of simulated extinction times and extinction rate estimates for each species.   726 
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 727 

Figure 2: Future diversity trajectory and IUCN status distribution for birds. We simulated 728 

future extinctions with three different approaches of modeling extinction risks: the critE EX 729 

mode, the empirical EX mode, and the empirical EX mode including the modeling of PEX 730 

species as extinct. Panel a) shows the current IUCN threat status distribution of all bird 731 

species. Panel b) shows the future diversity trajectory over the next 100 years, based on 732 

future extinctions simulated with iucn_sim under the 3 different extinction risk scenarios. 733 

Panel (c) shows the future IUCN status distribution in 100 years simulated with iucn_sim. 734 

Note that the y-axis in the diversity through time plots only displays a selected diversity 735 

range starting at 10,000 (displayed range does not cover the value 0). All panels represent 736 

graphic output options available in iucn_sim.  737 
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 738 

Figure 3: Accuracy of rate estimations improves with higher sample sizes. The scatter-plots 739 

show the status transition rates (a) and the extinction rates (b), estimated from synthetic data 740 

that was simulated in this study under known rates. We plotted the mean values (blue dots) 741 

and the 95% credible interval (grey vertical lines) of the rates sampled by MCMC (y-axis) 742 

against the true rates (x-axis) to evaluate the accuracy under different sample sizes (see plot 743 

titles). The sample size in case of the status transition rates (a) constitutes the number of 744 

species in the reference group, while sample size for extinction rates represents the number of 745 

future simulations for each species. Rate estimates close to the diagonal red line show high 746 

accuracy, while small error bars show high precision. Status transition rates estimated for 747 

reference groups of only 100 species show very low accuracy and therefore it is 748 

recommended to choose reference groups of at least 1,000 or more species. The dotted 749 

horizontal line in the extinction rate plots (b) shows the minimum empirical extinction rate 750 

estimate for the bird data (~1 × 10−5). Extinction rates far below this line are therefore 751 

unlikely to occur in empirical data sets. Running at least 10,000 simulation replicates ensures 752 

accurate and precise extinction rate estimates.  753 

a) N=100 N=1,000 N=10,000

b)
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 754 

Figure 4: Species-specific extinction rates for the two iucn_sim approaches of modeling EX 755 

transition rates. The x-axis shows the estimated rates for the critE EX mode approach (all 756 

rates scaled in extinctions per species-years - ESY). The y-axis shows the estimated rates for 757 

the empirical EX mode approach including PEX taxa modeling. The rates estimated from the 758 

empirical EX mode approach are consistently lower than those from the critE EX mode 759 

approach. Species with the same IUCN status at present end up with similar rate estimates, 760 

forming visible clusters in the plot. However, there is some observed variation in the 761 

estimates between species of the same status, which is present in the estimates of both 762 

approaches (x and y-axis). This variation is partly caused by the stochasticity in our 763 

simulation approach. But particularly for the more threatened categories EN and CR we find 764 

additional variation among the critE EX mode rate estimates that is not present on the y-axis, 765 

causing the elongated shapes of these clusters as opposed to the round shapes of the less 766 

threatened status clusters. This is caused by differences in the GL values of individual 767 

species, leading to smaller extinction rate estimates for species with long generation times, as 768 

highlighted exemplarily for the CR Kakapo (Strigops habroptila), with one of the longest 769 

generation lengths in our dataset (25.8 years), which places on the very low rate end of the 770 

CR extinction rate cluster. In our approach DD species (black dots) are being modeled based 771 

on the observed DD transition rates in the IUCN history of the reference group, which in the 772 

case of birds results in extinction rate estimates similar to those of VU species. The 773 

illustration was provided by the Handbook of the birds of the world alive (Collar, N. et al. 774 

2020).  775 
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 776 

Figure 5: The effect of generation length (GL) and status-change (SC) on estimated 777 

extinction rates. The plots show histograms of the posterior density of extinction rates 778 

estimated with iucn_sim for two different species: the Turkey Vulture (Cathartes aura, GL = 779 

9.9 years, LC), panels a) and c); and the Red-headed Vulture (Sarcogyps calvus, GL = 15 780 

years, CR), panels b) and d). Upper panels show that the extinction rate estimates slightly 781 

decrease when including GL data into the simulations (purple) compared to ignoring GL data 782 

(red) for both LC and CR species. Bottom panels show that accounting for future changes of 783 

IUCN statuses slightly increases the extinction rate of LC species, but leads to a decrease for 784 

CR species (d). Note that the effect of future status changes on extinction rates depends on 785 

the estimated status transition rates and is therefore expected to change depending on the 786 

chosen reference group.   787 
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 788 

Figure 6: Number of predicted extinctions for birds in the next 100 years under different 789 

simulation scenarios across 100 simulation replicates. The blue boxes show the lower to 790 

upper quartile values of the predicted extinctions, with an orange line at the median. The 791 

whiskers show the full range of the predictions. Including generation length (GL) and 792 

conservation status changes (SC) into future simulations, leads to a significant increase in the 793 

number of predicted extinctions, compared to ignoring this information (compare first and 794 

fourth box plot column). The individual effect of adding GL information to the simulations is 795 

a decrease of the predicted extinctions (third box-plot column), while only modeling SC leads 796 

to very high numbers of predicted extinctions (second box-plot column). The last two 797 

columns show the range of predicted extinctions for the empirical EX mode approach, with 798 

(column 5) and without PEX taxa (column 6). The estimates for both empirical EX mode 799 

approaches are significantly lower than those for any of the variations of the critE EX mode 800 

approach (columns 1-4). 801 
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