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Abstract

Sequence alignment is at the heart of DNA and protein sequence anal-
ysis. For the data volumes that are nowadays produced by massively par-
allel sequencing technologies, however, pairwise and multiple alignment
methods have become too slow for many data-analysis tasks. Therefore,
fast alignment-free approaches to sequence comparison have become pop-
ular in recent years. Most of these approaches are based on word frequen-
cies, for words of a fixed length, or on word-matching statistics. Other
approaches are based on the length of maximal word matches. While
these methods are very fast, most of them are based on ad-hoc measures
of sequences similarity or dissimilarity that are often hard to interpret.
In this review article, I describe a number of alignment-free methods that
we developed in recent years. Our approaches are based on spaced word
matches (‘SpaM’), i.e. on inexact word matches, that are allowed to con-
tain mismatches at certain pre-defined positions. Unlike most previous
alignment-free approaches, our approaches are able to accurately esti-
mate phylogenetic distances between DNA or protein sequences based on
stochastic models of molecular evolution.

1 Introduction

Alignment-free sequence comparison has a long tradition in bioinformatics. The
first approaches to compare sequences without alignments were proposed in the
Nineteen-eighties by E. Blaisdell [6, 7]. The interest in alignment-free methods
increased when more and more partially or completely sequenced genomes be-
came available through novel sequencing technologies, leading to an urgent need
for faster methods of sequence comparison. Most existing alignment-free meth-
ods represent sequences as word-frequency vectors for words of a fixed length k
– so-called k-mers –, and by comparing k-mer frequencies instead of comparing
sequences position-by-position, based on alignments [75, 32, 70, 13, 79]. This
approach has been extended by taking the background word-match frequencies
into account [62, 80, 73, 1]; a review of these latter methods is given in [63].
Other approaches to alignment-free sequence comparison are based on the length
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of maximal common sub-words of the compared sequences, to define alternative
measures of sequence similarity or dissimilarity [77, 14, 45, 61, 76].

The main advantage of these word-based methods is their high speed, com-
pared to alignment-based methods. While – for most scoring schemes – finding
an optimal alignment of two sequences takes time proportional to the product of
their lengths [56, 22, 51], word-based or alignment-free methods are much more
efficient, since word-frequency vectors can be calculated in time proportional
to the length of the analyzed sequences. Similarly, the length of longest com-
mon sub-words can be efficiently found using data structures such as generalized
suffix trees or suffix arrays [25]. A review of earlier alignment-free methods is
given in [78]; more recent review papers are [27, 72, 84, 5, 40]. A first systematic
benchmark study of alignment-free methods has been published in 2019, as a
collaboration of several groups working in the field [83].

From the beginning, phylogenetic tree reconstruction has been a main ap-
plication of alignment-free sequence comparison. Choi and Kim, for example,
were able to calculate a phylogenetic tree of > 4, 000 whole-proteome sequences
[12], using the alignment-free tool FFP that has been developed by the same
group [70]. The fastest phylogeny methods are distance-based approaches: to
calculate a tree for a set of taxa, these methods use pair-wise distance values
as input. Thus, for each pair of compared taxa, their distance or dissimilarity
needs to be measured in some way. Once all pairwise distances have been cal-
culated for the input set of taxa, a matrix with these distances can be used as
input for standard distance-based methods for phylogeny reconstruction. The
most commonly used methods for distance-based phylogeny reconstruction are
Neighbor-Joining (NJ) [67] and BIONJ [24].

If DNA sequences are compared, a common way of defining the distance
between two evolutionarily related sequences is to use the (estimated) number
of substitutions per position that have occurred since the two sequences have
evolved from their last common ancestor. The simplest substitution model for
nucleic-acid sequences is the Jukes-Cantor model. Here, all nucleotide substi-
tutions are assumed to occur with the same probability per time unit. Under
this model, the number of substitutions per position can be estimated from the
number of mismatches per position in an alignment of the compared sequences,
using the well-known Jukes-Cantor formula [37]. More elaborate substitution
models are available to for DNA or protein sequences, that account for different
substitution probabilities for different pairs of nucleotide or amino-acid residues.

By contrast, most of the above mentioned alignment-free methods are not
based on probabilistic models of evolution, they rather use heuristic measures
of sequence similarity or dissimilarity. If sequences are represented by word-
frequency vectors, for example, standard distance measures on vector spaces
can be applied to these frequency vectors, in order to calculate a ‘distance’ be-
tween two compared sequences, such as the Euclidean distance or the Manhat-
tan distance. Such distances, however, are hard to interpret from a phylogenetic
point-of-view. Clearly, a pair of closely related sequences will have more words
in common – so the Euclidean distance between their word-frequency vectors
will be smaller – than is the case for a more distantly related pair of sequences.
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But distance values calculated in this way are not measures of evolutionary dis-
tances, e.g. in terms of events that happened since two sequences separated from
their last common ancestor. They only indicate if one pair of sequences shares
more or less similarity than another pair of sequences. Such heuristic distance
measures can be used for clustering, but not for more accurate phylogenetic
analyses.

Since the distance values calculated by earlier word-based alignment-free
methods have no direct phylogenetic interpretation, it would make no sense to
‘evaluate’ the accuracy of these values directly. Therefore, the developers of
these methods did not evaluate and benchmark the distance values produced
by their methods themselves. Instead, they applied clustering algorithms or
distance-based tree reconstruction methods to these distances and evaluated
the resulting trees. Again, since the computed distances between the sequences
have no direct meaning, the branch-lengths of these trees were usually ignored,
and only the resulting tree topologies were evaluated. The standard approach to
evaluate tree topologies is to compare them to trusted reference topologies using
the Robinson-Foulds metric [65]. Note that this is only a very rough and indirect
method to benchmark the performance of sequence-comparison methods.

It was only in the last ten years or so that alignment-free methods were
proposed that can estimate phylogenetic distances in the sense of an under-
lying probabilistic model of sequence evolution. The first such approach has
been published in 2009 by Haubold et al. [29]. These authors developed kr,
an alignment-free method that can accurately estimate phylogenetic distances
between DNA sequences [29] in the sense of the Jukes-Cantor model. That
is, kr estimates the number of nucleotide substitutions per sequence positions
since the compared sequences have evolved from their last common ancestor.
To this end, the program used the average length of common substrings be-
tween the compared sequences. Later, we proposed an approach to estimate
phylogenetic distances based on the length distribution of k-mismatch common
substrings [53].

In the last few years, other alignment-free methods have been proposed to
estimate phylogenetic distances in a rigorous way [82, 28, 47, 39]. Some of
these methods are based on so-called micro-alignments, short gap-free pair-
wise alignments with a simplistic structure, that can be rapidly calculated. So,
strictly spoken, these methods are not alignment-free. They are referred to as
‘alignment-free’ anyway, since they avoid the time-consuming process of calcu-
lating optimal alignments over the entire length of the input sequences. Other
approaches to estimate distances in a stochastically rigorous way are based on
the number of word matches [55]. More recently, extremely fast programs have
become popular that can accurately estimate phylogenetic distances between
DNA sequences from the number of word matches, using the so-called Jac-
ard Index [36] and min-hash algorithms [10]. A widely-used implementation of
these ideas is Mash [58]; further improvements to this approach have been pro-
posed and are implemented in the programs Skmer [68], Dashings [4] and Mash
Screen [57].
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2 Spaced Words

In 2013, we proposed to use so-called spaced words that contain wildcard char-
acters at certain positions, for alignment-free DNA and protein sequence com-
parison [8, 43, 33]. A spaced word is based on a pre-defined binary pattern P
that are called match positions (’1’) and don’t-care positions (’0’). Given such
a pattern P , we defined a spaced word w with respect to P to be a word that
has the same length as the pattern P and that has symbols for nucleotide or
amino-acid residues at the match positions of P and wildcard symbols (‘∗’) at
the don’t-care positions, see Figure 1 for an example. Spaced words – or spaced
seeds – have been previously introduced in database searching, to improve the
sensitivity of the standard seed-and-extend search strategy [49]. Efficient algo-
rithms have been proposed to optimize the underlying patterns [35], and for
spaced-seed hashing [60].

In a first study, we simply replaced word-frequency vectors by spaced-word
frequency vectors to calculate distances between DNA and protein sequences. As
in earlier word-based methods, we used the Euclidean distance or, alternatively,
the Jenson-Shannon distance of the frequency vectors to define the distance
between two DNA or protein sequences. As a result, the quality the resulting
phylogenetic trees was improved, compared to when we used contiguous words
– in particular when we used multiple binary patterns and the corresponding
spaced-word frequencies, instead of single pattern [43]. The resulting software
program is called Spaced Words, or Spaced, for short.

Our spaced-words approach was motivated by the spaced-seeds [48] that have
been introduced in database searching, to improve the sensitivity of hit-and-
extend approaches such as BLAST [2]. The main advantage of spaced word
matches – or ‘spaced seeds’ – compared to contiguous word matches is that
neighbouring spaced-word matches are statistically less dependent, so they are
distributed more evenly over the sequences. In database searching, this in-
creases the sensitivity, i.e. the probability of finding sequence similarities. For
alignment-free sequence comparison, we have shown that results obtained with
spaced words are statistically more stable than results based on contiguous
words [55].

Note that, like earlier alignment-free approaches, this first version of the
program Spaced was still based on heuristic measures of sequence similarity.
It does not estimate evolutionary distances in the sense of some probabilistic
model. Later, however, we introduced a new distance measure in Spaced based
on the number of spaced-word matches [55] that actually estimates phylogenetic
distances between DNA sequences in the sense of the Jukes-Cantor model [37].
This is now the the default distance measure used in the program Spaced. To
find good patterns – or sets of patterns in the multiple-pattern approach –, we
developed a program called rasbhari [26].
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w : C T * * A * C

S : T G A C T T G A C C A C T

P: 1 1 0 0 1 0 1

Figure 1: Spaced word w with respect to a pattern P = 1100101 of length
` = 7. w consists of nucleotide symbols at the match positions (’1’) of P and of
wildcard symbols, represented as ′∗′ at the don’t-care positions (’0’). w occurs
at position 4 in the DNA sequence S.

P : 1 1 0 0 1 0 1

S1 : T G C T T G A C C A C T C

S2 : A C G C T C G A T C G A

P : 1 1 0 0 1 0 1

Figure 2: Spaced-word match (SpaM) between two DNA sequences S1 and S2

with respect to a binary pattern P = 1100101 of length ` = 7, representing
match positions (‘1’) and don’t-care positions (‘0’). The two segments have
matching nucleotides at all match positions of P but may mismatch at the
don’t-care positions.

3 Filtered Spaced-Word Matches and Prot-SpaM

In a subsequent project, we introduced a different approach to use spaced words
for alignment-free sequence comparison. Instead of comparing spaced-word
frequencies, we used spaced-word matches (SpaM) as a special type of micro-
alignments. For a binary pattern P as above, a SpaM between two sequences is
simply the occurrence of the same spaced word in both sequences with respect
to P , see Fig. 2 for an example. In other words, a SpaM is a local, gap-free
alignment that has the same length as the pattern P and that has matching
nucleotides or amino acids at the match positions and possible mismatches at
the don’t-care positions of P . The idea is to consider a large number of SpaMs,
and to estimate phylogenetic distances between two sequences by looking at
the residues that are aligned to each other at the don’t-care positions of these
SpaMs. Obviously, this is only possible if the considered SpaMs represent true
homologies, so we have to filter out spurious background SpaMs. To do so,
our program first considers all possible SpaMs between two input sequences and
calculate a score for each SpaM based on the aligned residues at the don’t-care
positions. The program then discards all SpaMs with scores below some thresh-
old. We could show that, that with this sort of SpaM filter, one can reliably
separate true homologies (’signal’) from random SpaM (’noise’).

An implementation of this approach for DNA sequences is called Filtered
Spaced Word Matches (FSWM), To estimate distances between DNA sequences,
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FSWM calculates the proportion of mismatches at the don’t-care positions of the
selected SpaMs, as an estimate of the proportion of mismatches in the (unknown)
full alignment of the two sequences. It then applies the usual Jukes-Cantor cor-
rection, to calculate the estimated number of substitutions per position since
the two sequences have evolved from their last common ancestor. By default,
the program uses a pattern P of length ` = 112 with 12 match positions and
100 don’t-care positions, but the user can adjust these parameters. The length
of the pattern P seems to be certain limitation, as it means that, by default,
the program is restricted to using gap-free homologies of length ≥ ` = 112. A
sufficient number of don’t-care positions is necessary, though, to reliably distin-
guish SpaMs representing true homologies from random background SpaMs. To
speed-up the program, it can be run with multiple threads; by default 10 threads
are used.

An implementation of the same algorithm for protein sequences is called
Prot-SpaM [46]. Here, we are using by default a pattern with 6 match positions
and 40 don’t-care positions, i.e. with a length of ` = 46. For protein sequences,
we are using the BLOSUM 64 substitution matrix [30] to score SpaMs in order to
filter out low-scoring random SpaMs. Again, the user can modify these param-
eters. To estimate the evolutionary distance between two protein sequences,
we consider the pairs of amino acids aligned to each other at the don’t-care
positions of the selected spaced-word matches, and we are using the Kimura
model [38] that approximates the PAM distance [17] between sequences based
on the number of mismatches per position.

4 Read-SpaM: estimating phylogenetic distances
based on unassembled sequencing reads

Several authors have pointed out that alignment-free approaches can be applied,
in principle, not only to full genome sequences, but also to unassembled reads.
Some approaches have been particularly designed for this purpose [82, 68]. The
ability to estimate phylogenetic distances based on unassembled reads is not only
useful in phylogeny studies, but also in biodiversity research [68] or in clinical
studies [20, 9]. Here, species or strains of bacteria can often be identified by
genome skimming, i.e. by low-coverage sequencing [81, 21, 64, 19, 50, 68].

We adapted our FSWM approach to estimate phylogenetic distances between
different taxa using unassembled reads; we called this approach Read-SpaM [42].
This software can estimate distances between an assembled genomes from one
taxon and a set of unassembled reads from another taxon, or sets of unassem-
bled reads from two different taxa. Using simulated sequence data, we could
show that Read-SpaM can accurately estimate distances between genomes up to
0.8 substitutions per position, for sequence coverage as low as 2−9X, if an as-
sembled genome is compared to unassembled reads. If unassembled reads from
two different taxa are compared, distances estimates by Read-SpaM are still ac-
curately for up to 0.7 substitutions per position, for a sequencing coverage down
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S1 : C C C A A G G A C
S2 : A A C T A C G T A C C T
S3 : A A C T A C G T A C C
S4 : C C A C G T C C G C G
S5 : A G A C T C C C A A G G A
S6 : T C C C A T G G A C C
S7 : A A C T A C G T A C C A

1 2 3 4 5 6 7 8 9 10 11 12 13

S1 : C C A A G
S4 : C C A C G
S5 : C C A A G
S6 : C C A T G

Figure 3: P -block for a pattern P = 11001: the spaced word W = CC ∗ ∗G
occurs at [S1, 2], [S4, 1], [S5, 7] and [S6, 3] (top). A P -block defines a gap-free
local four-way alignment (bottom).

to 2−4X.

5 The most recent approaches: Multi-SpaM and
Slope-SpaM

For nucleic-acid sequences, we extended our Filtered-Spaced Words Matches ap-
proach from pairwise to multiple sequence comparison [18]. Our software Multi-
SpaM is based on spaced-word matches between four sequences each. Such a
multiple spaced word match is, thus, a local gap-free four-way alignment with
columns of identical nucleotides at the match positions of the underlying binary
pattern P , while mismatches are, again, allowed at the don’t-care positions of P .
An example is given in Fig. 3, such local four-way alignments are also called
P -blocks.

Multi-SpaM samples P -blocks from the set of input sequences; by default
up to 106 P -blocks are sampled. To ensure that these P -blocks represent true
homologies, only those P -blocks are considered that have a score above a certain
threshold. For each of the sampled P -blocks, the program then uses RAxML [74]
to calculate an optimal unrooted quartet tree topology. Finally, the program
Quartet MaxCut [71] is used to calculate a super tree topology from these quartet
topologies.

As another approach to alignment-free phylogeny reconstruction, we devel-
oped a program called Slope-SpaM [66]. This program considers the number
Nk of k-mer matches or spaced-word matches for patterns P with k match posi-
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tions, respectively, between nucleic-acid sequences. It calculates Nk for different
values of k and estimates the Jukes-Cantor distances between sequences – i.e.
the average number of substitutions per sequence position since the sequences
diverged from their most recent common ancestor – from the decay of Nk when
k increases. This way, evolutionary distances can be calculated accurately for
up to around 0.5 substitutions per sequence position.

6 Back to Multiple Sequence Alignment

There is not strict separation between sequence alignment and word-based,
alignment-free methods. As mentioned above, a whole class of so-called ‘align-
ment-free’ methods are based on ‘micro-alignments’, local pairwise alignments of
a simple structure, that can be rapidly calculated. In Multi-SpaM, we extended
this approach to local multiple alignments.

Ironically, one of the first major applications of fast alignment-free meth-
ods was multiple sequence alignment (MSA). The programs MUSCLE [23] or
Clustal Omega [69], for example, are using word-frequency vectors to rapidly
calculate guide trees for the ‘progressive’ approach to MSA [23]. Similarly, fast
alignment-free methods are used to find anchor points [54, 34] to make align-
ments of large genomic sequences possible [31, 52, 41, 15, 16, 3, 59]. In a recent
study [44], we used our program FSWM to generate anchor points for multi-
ple genome alignment. We could show that, if distantly related genomes are
compared, spaced-word matches are more sensitive and lead to better output
alignments than anchor points that are based on exact word matches.

Software Availability

We made Filtered Spaced Word Matches (FSWM) available through a web in-
terface at Göttingen Bioinformatics Compute Server (GOBICS) at

http://fswm.gobics.de/

see Figure 4. There are certain limitations at this web server for the size of
the input data: (a) the upper limit for the total size of the input sequences is
512 mb, (b) the number of input sequences must be between 2 and 100, and
(c) the minimum length of each input sequence is 1000 bp. At our web server,
the underlying pattern P has by default 12 match positions and 100 don’t care
positions. The number of match positions can be adapted by the user. To
calculate a score for each spaced-word match, a nucleotide substitution matrix
published by Chiaromonte et al. [11] is used. By default, the cut-off value to
distinguish ‘homologous’ from background spaced-word matches is set to 0. This
value, too, can be adjusted by the user.

In addition, the above described software tools FSWM, Prot-SpaM, Multi-
SpaM, Read-SpaM and Slope-SpaM are freely available as source code through
github or through our home page, details are given in Table 1.
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Figure 4: Homepage of Filtered Spaced Word Matches (FSWM) at Göttinen
Bioinformatics Compute Server (GOBICS)
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Table 1: Our software is available as open source code from the following URLs:

Spaced Words [55] http://spaced.gobics.de/

FSWM [47] http://fswm.gobics.de/

Prot-SpaM [46] https://github.com/jschellh/ProtSpaM

Multi-SpaM [18] https://github.com/tdencker/multi-SpaM

Read-SpaM [42] https://github.com/burkhard-morgenstern/Read-SpaM

Slope-SpaM [66] https://github.com/burkhard-morgenstern/Slope-SpaM
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[26] Lars Hahn, Chris-André Leimeister, Rachid Ounit, Stefano Lonardi, and
Burkhard Morgenstern. rasbhari: optimizing spaced seeds for database
searching, read mapping and alignment-free sequence comparison. PLOS
Computational Biology, 12(10):e1005107, 2016.

[27] Bernhard Haubold. Alignment-free phylogenetics and population genetics.
Briefings in Bioinformatics, 15:407–418, 2014.
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