# 1 Article

# Contrast-Enhanced, Molecular Imaging of Vascular Inflammation in the Mouse Model by Simultaneous PET/MRI

# 5 Siyi Du<sup>1</sup>; Thomas S.C. Ng<sup>2</sup>, MD, PhD; Adrian House<sup>3</sup>; Tang Tang<sup>1++</sup>, PhD; Lin Zheng<sup>4</sup>, PhD;

6 Chuqiao Tu<sup>3</sup>, PhD; Janice Peake<sup>5</sup>, Imelda E. Espiritu<sup>5</sup>, Kwan-Liu Ma<sup>4</sup>, PhD; Kent Pinkerton<sup>5</sup>,

7 PhD; Russell E. Jacobs<sup>2#</sup>, PhD; Angelique Y. Louie<sup>1,3\*</sup>, PhD

8 <sup>1</sup>Chemistry Graduate Group, University of California, Davis, United States of America

9 <sup>2</sup>Division of Biology & Biological Engineering, California Institute of Technology, United States of America

10 <sup>3</sup>Department of Biomedical Engineering, University of California, Davis, United States of America

11 <sup>4</sup>Department of Computer Science, University of California, Davis, United States of America

12 <sup>5</sup>Department of Anatomy, Physiology and Cell Biology School of Veterinary Medicine, University of

13 California, Davis, United States of America

14 <sup>+</sup> current address: School of Medicine, Boston University, United States of America

<sup>15</sup> current address: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School,
 <sup>16</sup> United States of America

- 17 <sup>++</sup> Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, United States of America
- 18 # current address: Keck School of Medicine, USC, United States of America
- 19 \*Corresponding author E-mail: aylouie@ucdavis.edu; Tel 530-752-7134
- 20 <sup>§</sup>both authors contributed equally to this work
- 21 Received: April 2016 date; Accepted: date; Published: date

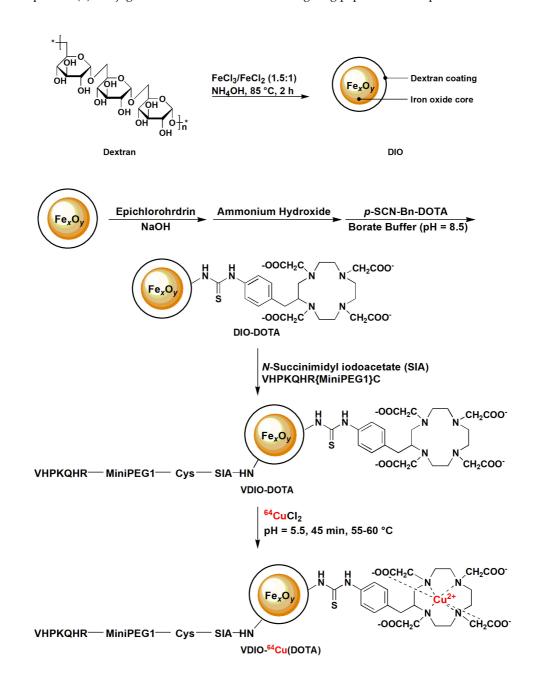
22 Abstract: Despite advances in diagnosis and management, cardiovascular diseases (CVDs) remain 23 the leading cause of death in the US. Atherosclerosis is the most common form of CVD and the 24 vulnerability of atherosclerotic plaques to rupture is a primary determinant for risk of catastrophic 25 ischemic events. Current imaging of atherosclerotic disease focuses on assessing plaque size and 26 the degree of luminal stenosis, which are not good predictors of plaque stability. Functional 27 methods to identify biomarkers of inflammation in plaques could facilitate assessment of plaque 28 instability to allow early intervention. In this study, we validate the use of a purpose-built, 29 magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) insert for 30 multimodal, molecular imaging of vulnerable plaques in mice. We illustrate the application of PET 31 to screen for inflamed regions to guide the application of MRI. Molecular MRI visualizes regions 32 of vascular inflammation and is coupled with anatomical MRI to generate detailed maps of the 33 inflammatory marker within the context of an individual vessel. As a testbed for this imaging 34 methodology, we developed a multimodal, iron oxide nanoparticle (NP) targeting vascular cell 35 adhesion molecule-1 (VCAM-1) for simultaneous PET/MRI of vascular inflammation performed 36 on a mouse carotid ligation model. In vitro cell studies confirmed that the NPs are not cytotoxic to 37 liver cells. In vivo simultaneous PET/MRI imaging identified regions of inflammation. 38 Three-dimensional rendering of the MRI data facilitated high-resolution visualization of patterns 39 of inflammation along the injured vessel. Histology validated the co-localization of the NPs with 40 VCAM-1 expression at sites of induced inflammation. The results of this work validate the utility 41 of the simultaneous PET/MR insert as a research tool for small animals and lays groundwork to 42 further advance the potential clinical utility of integrated imaging systems.

43 Keywords: Multimodality imaging; MRI/PET; dual-mode imaging; nanoparticle; atherosclerosis;
 44 vulnerable plaque; cardiovascular imaging; vessel wall; VCAM.

45

47 Cardiovascular disease is the leading cause of death for both males and females in the United 48 States.[1] In particular, atherosclerosis is responsible for catastrophic manifestations of heart disease 49 such as myocardial infarction and stroke.[2] Recent understanding of the pathophysiology of 50 plaque formation has identified chronic inflammation as a hallmark of plaque development; 51 localized inflammatory response can lead to the development of "vulnerable" plaques that are 52 prone to rupture and cause downstream vascular occlusion.[3] Imaging can play a role in 53 identifying patients with vascular lesions susceptible to acute cardiovascular events, who may be 54 amenable to treatment with anti-inflammatories or interventional procedures. Recent literature has 55 shown that plaque lesion composition, particularly the presence of inflammatory markers and 56 immune cells, as opposed to the degree of vessel stenosis, is a better predictor of patient mortality 57 and morbidity; and assessment of plaque inflammation is an excellent target for noninvasive 58 imaging.[4] However, current clinical imaging techniques seldom provide specific information 59 about inflammation.

60 Current clinical imaging techniques such as coronary angiography, vascular ultrasound and 61 computed tomography focus on identifying stenotic disease and can miss vulnerable plaques that 62 do not cause significant structural stenosis.[5] Anatomical features identified by coronary computed 63 tomography (CT) and magnetic resonance imaging (MRI) that could be used to classify plaques, 64 have not been fully validated for prediction of vulnerability.[6] Targeted molecular imaging has 65 potential for greater predictive value. For example, imaging of plaque inflammation has been 66 actively pursued using <sup>18</sup>F-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) 67 and has shown promise for identifying inflammation, generally in large vessels such as the carotid 68 and aorta.[7-10] However, it is challenging to accurately assess inflammatory burden in small 69 vessels with the limited resolution of PET.[11] Moreover, FDG is a non-specific marker of 70 inflammation that measures only glucose uptake, which presents challenges for coronary artery 71 imaging against the high metabolic background of the myocardium.[12] Enthusiasm for the clinical 72 use of <sup>18</sup>FDG to identify plaques has diminished over recent years with new tracers such as <sup>18</sup>NaF 73 receiving greater attention; but specific imaging of plaque inflammation is still not available.[13] 74 New, targeted imaging strategies that can identify inflamed plaques in smaller vessels, such as the 75 coronary arteries, with higher specificity are needed.


76 We have previously shown that multimodal agents combining positron emission tomography 77 (PET) and magnetic resonance imaging (MRI) can detect macrophage density in plaques, using the 78 quantitative ability of PET for high sensitivity mapping of the cells, and MRI for high spatial 79 resolution molecular imaging and soft tissue mapping.[14] Our previous work utilized separate 80 scanners to visualize the synergistic PET and MRI information. This required laborious spatial 81 co-registration (prone to misalignment since they are acquired sequentially), more involved 82 handling of subjects with longer sedation, and time delay due to the need for transport between 83 PET and MR scanners. The latter factor also prevents temporal co-registration of the PET and MRI 84 signals. Not only does this hinder throughput of preclinical research pursuits, but also may limit 85 the translatability of such agents to the clinic. The use of hybrid modality instruments for 86 simultaneous signal acquisition is, thus, of increasing interest in the imaging field and clinical 87 hybrid instruments are now available; but the ideal cardiovascular applications for these hybrid 88 systems are still under investigation.[15]

89 In this proof of concept study, we demonstrate the utility of simultaneous PET and MRI to 90 facilitate PET-guided MRI mapping of localized inflammation in small vessels using an integrated 91 small animal simultaneous PET/MRI imaging system developed at UC Davis and a dual-mode 92 contrast agent targeted to Vascular Cell Adhesion Molecule 1 (VCAM-1).[16, 17] Vascular Cell 93 Adhesion Molecule VCAM -1 has received attention for imaging of atherosclerotic plaques due to 94 its overexpression in the pathogenesis of vulnerable plaques. It has been studied for single modality 95 imaging by MRI[18], SPECT[19, 20], and ultrasound[21]. Each of these modalities holds inherent 96 limitations for targeted vascular imaging. MRI and ultrasound can provide excellent local, spatial 97 information at the lesion site, but are ill-suited to whole-body screening. PET is superior for 98 screening, but lacks the spatial resolution to identify individual vessels. While computed tomography (CT), can provide structural information, but does not provide physiological information at the lesion site. MRI/PET has the potential to overcome these difficulties by combining the screening power of PET with the resolution power of MRI, enabling concurrent assessment of cardiovascular structural and physiological abnormalities.[22] We evaluated the ability of the integrated PET/MRI instrument to visualize sites of localized inflammation induced by carotid injury in a mouse model; the mouse carotid is of similar size to human coronary arteries.

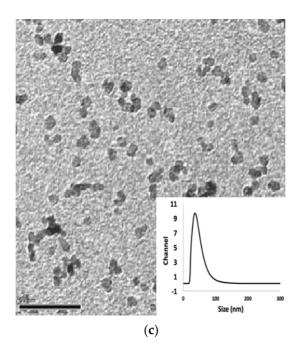
- 105 PET provided an overview of inflamed regions, which was used to focus MRI interrogation and
- 106 obtain higher resolution, 3-dimensional details of VCAM-1 expression in single vessels.

## 107 2. Results and Discussion

- 108 Nanoparticles (NP) were successfully synthesized (outlined in Figure 1 and described in 109 Methods).
- 110Figure 1. Synthesis of VDIO-DOTA nanoparticles. (a) Synthesis of dextran coated iron oxide111nanoparticle (b) Conjugation of DOTA and VCAM-1 targeting peptides to nanoparticles.



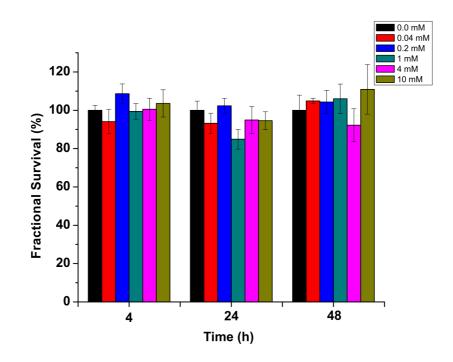
## 113 2.1 Characterization of VDIO-DOTA and DIO (control)


114 DIO (dextran-coated iron oxide) was synthesized as a matched control to the prepared 115 VDIO-DOTA 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic VDIO= (DOTA= acid; 116 VCAM-conjugated DIO;). The physical properties of VDIO-DOTA and its precursor DIO are 117 summarized in Figure 2a. Following the syntheses described, the DIO and VDIO-DOTA iron oxide 118 core sizes were measured to be  $7.3 \pm 2.9$  nm by averaging 500 particle measurements from TEM 119 images as shown in representative images in Figure 2b and 2c. Inset plots show that the 120 hydrodynamic diameters of DIO and VDIO-DOTA were found to be  $39.7 \pm 15.0$  nm and  $48.1 \pm 100$ 121 19.5nm, respectively, using dynamic light scattering (DLS). The increased hydrodynamic diameter 122 could be explained by the addition of peptide polymers on the VDIO surface holding the dextran 123 polymers apart via steric hindrance. However, the core sizes remained the same.

124Figure 2. (a) Summary of nanoparticle properties. TEM images of (b) DIO (core size: 7.30 ± 2.92nm)125(C) VDIO-DOTA (core size: 7.30 ± 2.92nm). Scale bars = 50 nm, insets are DLS data.

| Nanoparticles | Core size (nm)  | Average<br>hydrodynamic | Relaxivity (mM <sup>-1</sup> s <sup>-1</sup> )<br>(1.4 T, 37°C) |                       | %<br>Iron |
|---------------|-----------------|-------------------------|-----------------------------------------------------------------|-----------------------|-----------|
|               |                 | - diameter (nm)         | r <sub>1</sub>                                                  | <b>r</b> <sub>2</sub> |           |
| VDIO          | $7.30 \pm 2.92$ | 48.10                   | 7.38                                                            | 67.85                 | 21        |
| DIO           | $7.30 \pm 2.92$ | 39.7                    | 10.05                                                           | 68.83                 | 16        |




(a)

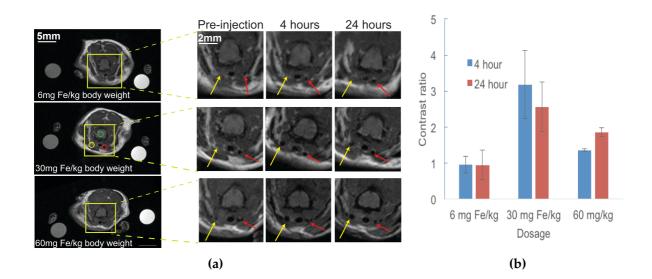


126 The iron concentration (mg per unit mass) in DIO and VDIO-DOTA was measured by atomic 127 absorption (AA) to be 0.161 and 0.037 mg Fe/mg of nanoparticles, respectively. The longitudinal (r<sub>1</sub>) 128 relaxivity of VDIO-DOTA at 60 MHz (1.4 T, 37 °C, pH = 7) was 7.4 mM<sup>-1</sup>s<sup>-1</sup> and transverse relaxivity 129 (r<sub>2</sub>) was measured as 67.9 mM<sup>-1</sup>s<sup>-1</sup>. DIO had r<sub>1</sub> and r<sub>2</sub> values of 10.1 mM<sup>-1</sup>s<sup>-1</sup> and 68.8 mM<sup>-1</sup>s<sup>-1</sup>, 130 respectively. The r<sub>2</sub> to r<sub>1</sub> ratio for both reflects their suitability as T<sub>2</sub>-weighted MRI contrast 131 agents.[17] VDIO-DOTA relaxivity and size remained stable after 1 year of dry storage at room 132 temperature.

## 133 2.2 Contrast Agent is Not Cytotoxic to Liver Cells in vitro

134 Given that NPs are expected to clear through the liver, liver cells may be exposed to the 135 highest off-target concentration of injected contrast agent. Thus, C12 – Resazurin viability assays 136 were performed on HepG2 liver cells to evaluate any toxicity exhibited by VDIO-DOTA.[23] In this 137 assay resazurin is reduced to resorufin in proliferating cells.[23] Cell survival was evaluated after 138 incubation for 4, 24, and 48 hours with different concentrations of VDIO-DOTA, ranging from 0.04 139 mM iron (red), 0.2 mM iron (blue), 1 mM iron (teal), 4 mM iron (pink) to 10 mM iron (khaki). With 140 90% confidence interval by t-test there were no differences between the untreated control (0.0 mM 141 iron, black) and cells treated at all concentrations of VDIO-DOTA tested from 0.04 mM iron up to 10 142 mM iron. These results support that the nanoparticles are nontoxic to liver cells at relatively high 143 concentrations.

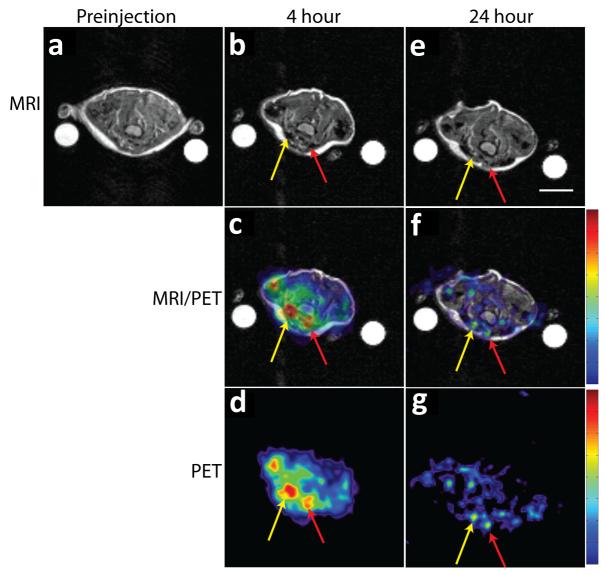



144

145Figure 3. The fractional survival of HepG2 after 4, 24 and 48 hours of incubation with VDIO146solutions of varying concentrations. At each time point, fluorescent intensities reflecting survival147fractions (y axis) were normalized against the signal from the untreated control group (black bar at148each time point).

149 2.3 VDIO-DOTA can to detect inflamed vessels in vivo

150 MRI only studies were performed to determine appropriate dosing prior to PET/MRI studies. 151 Representative MRI scans showing VDIO-DOTA uptake at the three injection concentrations are 152 shown in Figure 4a (n = 4 mice per concentration). The leftmost column shows cross sections 153 through the entire animal for, from top to bottom 6mg/ml, 30mg/ml and 60 mg/ml injection of 154 nanoparticles. These are labeled with colored circles to indicate the injured vessel (yellow circle), 155 uninjured contralateral vessel (red circle) and spinal cord (green circle). The co-registration 156 standards are also visible to left and right of the animal. The regions outlined by the yellow boxes 157 are presented in zoomed views on the matrix of images on the right, which show, from left to right, 158 images from this region taken pre-injection, and images 4 and 24 hours after injection of contrast. 159 For all concentrations, the inflamed vessel (yellow arrows) showed expected increased dephasing 160 (seen as signal dropout) as the concentration of VDIO-DOTA injected is increased resulting in 161 greater accumulation at the ligated site compared to the nonligated contralateral vessel (red 162 arrows). This darkening in the inflamed arteries persists through the 24h timepoint for all 163 concentrations, showing sustained retention of the particles at the site of inflammation. Robust 164 signal for 6ml/ml suggested that even lower injection concentrations could be employed. The CR 165 was calculated as a function of time after injection and dosage and shown in the accompanying 166 graph in Figure 4b. Although the 60 mg Fe/kg dose showed the greatest signal decrease on the 167 images, maximal CR was achieved with the 30 mg Fe/kg dosage at both 4h and 24h after injection of 168 contrast. This highlights the need to achieve a balance between local accumulation of the NP, 169 retention over time, and its systemic circulation for optimal visualization of the region of interest. 170 Using these results as a guide, 30mg Fe/kg was used for the remainder of the studies.


bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878652; this version posted December 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



171 Figure 4.(a) MRI-only study showing VDIO-DOTA uptake at different injection concentrations over 172 24 hours. The yellow arrows point to the inflamed vessel, while the red arrows indicate the 173 non-inflamed control vessel. There was signal decrease at the site of injury at all dosages; but the 174 decrease was most prominent at the 30 and 60 mg Fe/kg. The regions of interest for Contrast Ratio 175 (CR) calculation are shown by the circles. (Scale bar = 5 mm). (b) Contrast ratio as function of time 176 and dose for MRI-only studies. Compared to baseline, the 6 mg Fe/kg dose level did not 177 demonstrate significant local accumulation of NP at the site of inflammation. Both the 30 mg Fe/kg 178 and 60 mg Fe/kg showed increased accumulation of NP at the site of inflammation; the 30 mg Fe/kg 179 dose demonstrated the highest CR, likely due to the reduction of signal differentiation between the 180 localized accumulation and systemic distribution of NP at the 60 mg Fe/kg dosage. Thus the 30 mg 181 Fe/kg dose was used for subsequent studies. (Error bars denote the SEM).

182 Following these MRI only studies, we evaluated VDIO-64Cu-DOTA nanoparticle accumulation 183 in vivo by hybrid PET/MRI. Figure 5 shows image slices by MRI (top row), by PET (middle row) and 184 the overlay (bottom row) from the same cross section in a representative mouse (n = 4 mice total). 185 Prior to injection of VDIO-64Cu-DOTA, no MR or PET signal beyond background levels was seen 186 within the animal. At 4 h post injection, both carotids demonstrated PET signal, which was higher 187 in the injured vessel, suggestive of radiolabeled NP accumulation at the site of injury along with 188 continued systemic circulation of unbound NP. Another focus of PET uptake within the field of 189 view appear to correspond with a vein, supporting that systemic circulation of the NP remains at 190 this time point, but which could represent another site of inflammation in the animal. In the slice 191 shown, at 4 h there is a signal increase in the ligated vessel (yellow arrow) at a ratio of 1.19 192 compared to the uninjured contralateral vessel; at the 24 h time point the ratio of the ligated site 193 compared to the contralateral artery was 1.07; partial volume effects limits the accuracy of these 194 measurement. We also calculated the MRI contrast ratio (CR; see equation in methods 4.6.3) from 195 the concurrent MRI dataset. Note that CR also is a comparison against the contralateral control, 196 thus taking into account contributions from signal in the blood. For this particular animal, the MRI 197 CR was 1.41 at the 4 h time point and 0.62 by 24 h, indicating elevated NP accumulation at the 198 ligated site at the 4 h timepoint with decreased MRI signal by 24 h, commensurate with the PET 199 results. This slice was selected to illustrate the point that these trends are for this slice, in this 200 particular animal and based on this slice only one may conclude there was no inflammation in this 201 vessel. For a more accurate view of inflammation the entire affected volume should be considered, 202 as well as the full set of experimental subjects. As shown later, mapping inflammation throughout 203 the vessel provides a clearer picture of inflammatory burden. The MRI CRs for the entire PET/MRI 204 cohort were  $1.65 \pm 0.26$  at 4 h and  $1.66 \pm 0.39$  at 24 hours respectively. In general, this is in agreement 205 with the data for the MRI only cohort, which also demonstrated an increased MRI CR over the 24 h 206 period (Figure 5b). Note that these results support that ligation does not prevent contrast agent

207 access to the injured carotid—if this had been the case there would be less signal drop out due to 208 reduced perfusion to the region.



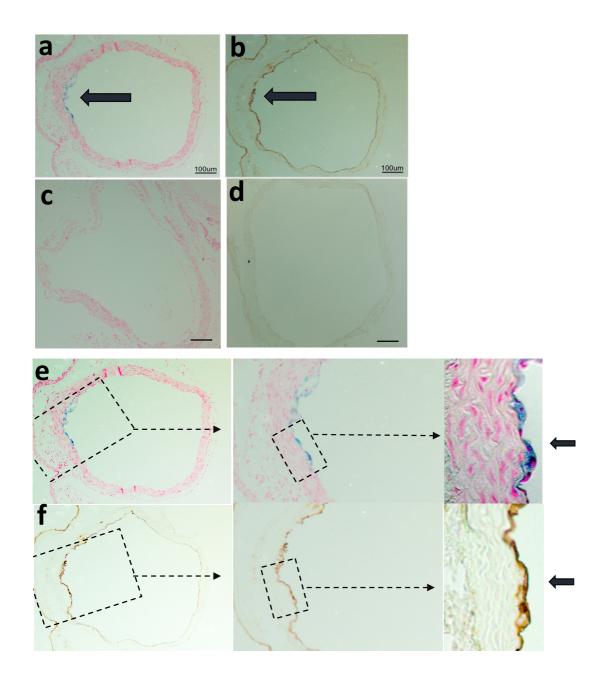
209

210 Figure 5. PET/MR imaging of dual-mode VDIO-DOTA accumulation in carotid artery of ApoE-/-211 mouse with vascular inflammation (atherosclerotic plaques) induced by ligation. MRI-only images 212 preinjection (a), after 4h(b) and 24h(e) injection, PET/MRI co-registered images after 4h(c) and 24h(f) 213 injection and PET-only images after 4h(d) and 24h(g) injection are shown. The image slices were 214 from the same cross section of the mouse and showed spinal cord (grey oval area in the middle), left 215 carotid (after ligation) artery (denoted by yellow arrow) and right carotid artery (denoted by red 216 arrow). The color maps for the PET images were set such that the highest values (as indicated by 217 red) reflected the highest signal within the animal image volume for the particular time point. The 218 white circles are markers for MRI intensity standards. (Scale bar = 5 mm).

219 The lower resolution of PET provides decreased accuracy in determining inflamed regions due 220 to partial volume effects, and subtle inflammatory lesions may be missed. This is suggested by the 221 fact that although analysis of the MRI data suggested there was accumulation of the NP at the 222 ligated site, this was not reflected by the simultaneously acquired PET data. The ratios of the PET 223 signal at the ligated artery compared to the control artery were  $1.05 \pm 0.04$  at 4 hours and  $0.82 \pm 0.33$ 224 at 24 hours. This highlights the need for high-resolution 3D renderings of the affected volume to 225 better identify regions of high inflammatory activity and assess degree of instability. For improved 226 volume visualization, we performed three-dimensional rendering of the MRI data as shown in 227 Figure 6. MRI rendering is able to define regional accumulations and concentration differences for 228 VDIO-DOTA in the vessel wall, allowing us to better localize VCAM-1 expression to specific 229 regions in the inflamed vessel. Figure 6a and b show rendering of the MRI only data from the 30 mg 230 Fe/kg dose injection for a representative animal, with a slice from the anatomical MRI included for 231 anatomical context; this is the same animal and slice view used for the cross section image shown in 232 Figure 4. The color map (transfer function) for the image was set to define three major color zones 233 representing low (red), medium (blue), and high (pink) NP uptake. Greater susceptibility from 234 T<sub>2</sub>-weighting indicates regions of greater particle accumulation (more red). The volume renderings 235 suggest that VCAM-1 expression, which is targeted by the NPS and indicative of activated 236 endothelial cells and inflammation, is diffuse along the vasculature and that expression patterns 237 vary across the vessel. In this particular animal there is a greater accumulation of contrast agent on 238 one side of the vessel as seen in the 4 h still images in panel a. At 24h (panel b) the trend persists 239 and one can observe accumulation on one side that is consistent with the 4-hour data.

240 Figure 6. Three-dimensional rendering of MRI data (a – b). Medium dose study, MRI data (from 241 Figure 3). (a) Still frames from video depicting a rotating view of the inflamed vessel 4 h after 242 injection of contrast agent. (b) Similar data for the vessel at 24 h. A similar trend for higher 243 accumulation of contrast agent on one side of the vessel is preserved at both time points. (c - d)244 PET/MRI study, MRI data (From Figure 4). (c) Still frames from video depicting a rotating view of 245 the inflamed vessel 4 h after injection of contrast agent. (d) Similar data for the vessel at 24 h. A 246 trend for a "hot spot" (red) accumulation of contrast agent at the same location is seen at both time 247 points. Transfer functions used for color assignments are displayed as color bars shown between 248 the 4 and 24h data sets.




249

250 Figures 6c and d display rendering of the MRI data for the animal shown in the PET/MRI 251 images of Figure 5. Inflammation is even more heterogeneous in this animal and NP accumulates in 252 patches throughout the vessel. A local "hot spot", appears in the 4 h data (panel c) and persists but 253 is decreased through the 24 h time point (panel d) commensurate with the PET and MRI CR results. 254 At 24 h most of the hot spot lies below the plane of interrogation that was show in the slice in 255 Figure 4; this may explain the lack of PET observed in the slice shown and also underscores the 256 value of evaluating 3D data sets as volume renderings. The rendering provides insight into the 257 heterogeneity of the NP accumulation, which is not readily apparent from slice by slice 258 visualization of the MRI image set. This data correlates with the histological data, described in the 259 next section, which showed inhomogeneous regional accumulations of the nanoparticles that 260 overlap with regions showing high VCAM-1 expression. The morphology of the local plaque load 261 can have prognostic implications.[24] Thus, this additional information from the high resolution 262 MRI may provide vital information for clinical management.

The addition of a 3D visualization is very useful for interpreting these types of data sets where the disease is diffuse and lesions can span across multiple slices. One of the challenges for 3D rendering is the ability to create images and videos without the need for extensive manual segmentation, i.e. user delineation of pathology. The renderings shown here were created using software created at UC Davis that performs intensity-based segmentation by applying a user-defined color map to all voxels in the data set. This removes some degree of subjectivity from the assignment of pathological features.

# 270 2.4 Iron co-localizes with VCAM-1 expression

271 Mice were sacrificed after in vivo MRI only or PET/MRI study and organs of interest were 272 collected for further analysis. For the MRI only studies, the tissues from mouse carotids were 273 embedded into paraffin sections for histological study to examine iron accumulation (Figures 7a, c, 274 e) and VCAM-1 expression (Figures 7 b, d, f) in the tissues. Prussian Blue staining was used to 275 detect ferric ion (Fe<sup>3+</sup>) in the tissue. As shown in Figure 7a blue staining demonstrated that iron 276 could be found in the infiamed carotid artery (arrow). Anti-VCAM-1 antibody 277 staining was performed on an adjacent section (Figure 7b), which confirms the presence of VCAM-1 278 in the same region, as indicated by dark brown stain of the intima on the left side of the vessel 279 lumen (arrow). The dark blue iron staining co-localized in the regions of darkest brown VCAM-1 280 staining, supporting that the nanoparticles were co-localized with VCAM-1 expression. There 281 appears to be a thin layer of VCAM-1 staining on the rest of the lumen that does correlate with 282 some iron staining. The faint brown stain over the entire intima represents nonspecific staining that 283 is also found in the control vessel. Non-inflamed contralateral vessel showed no iron (Figure 7c) or 284 dark brown VCAM staining (Figure 7d).



285

286 Figure 7. Iron colocalizes with VCAM-1 expression. (a). Prussian Blue staining hows iron on tissue 287 cross section from inflamed mouse carotid artery. (b). Immunohistochemical staining shows 288 VCAM-1 (brown) on a tissue slice adjacent to that shown in A. (c). Prussian Blue staining showed no 289 iron in tissue cross section from normal mouse carotid artery and (d) no VCAM-1 staining on 290 neighboring tissue slice. (e) Higher magnification view of Prussian Blue staining in panel a at 10X, 291 20X and 40X. (f) Higher magnification views of VCAM-1 staining in panel b. Dashed boxes indicate 292 the area of interest with increasing magnification, moving left to right. Staining appears localized to 293 the monolayer of endothelial cells lining the vessel.

VCAM-1, triggered by inflammatory cytokines such as TNF- $\alpha$ , is expressed by endothelial cells as a prelude to the recruitment of macrophages into plaques. In our previous work to label macrophages in the injury model, animals were placed on fat diet for 2 weeks after ligation; the current studies were performed 8 days after ligation. At this earlier time point, plaque size and macrophage involvement are minimal as can be seen in the higher magnification histological images. Figure 7e shows iron staining at increasing magnifications from left to right and iron staining localized to cells of the intima, which is still generally a monolayer of endothelial cells.
Figure 7f shows VCAM-1 staining at increasing magnifications from left to right, which shows
VCAM-1 localized to the same monolayer. There was no intimal thickening, or obvious
macrophage accumulation observed in the histological slices. The iron stain also appeared confined
to a monolayer of "cobblestone-like" endothelial cells and there was no evidence of macrophages,
which display surface ruffles and blebs. These results support that the NPs were binding to
VCAM-1 expressed on endothelial cells.

## 307 4. Conclusions

308 In this study, we evaluated the use of a simultaneous hybrid PET/MRI system and multimodal 309 nanoparticle contrast agent to visualize distribution of an early marker of inflammation. We found 310 robust spatial-temporal co-localization of the PET and MRI signal, and identified regions of 311 inflammation, which were confirmed by histological staining. PET, limited by its lower spatial 312 resolution, could not specifically map inflammation in the vessels. PET also missed elevated 313 contrast that was detected by MRI, likely due to signal averaging effects of diffuse inflammation in 314 the tissues. But the sensitivity of PET allowed detection of inflammation in a larger volume map 315 and served to guide MR imaging. Careful analysis of the MRI data, aided by 3D volume rendering, 316 demonstrated a heterogeneous pattern of VCAM-1 expression extending beyond the site of vessel 317 injury. The morphology of the local inflammation patterns can have prognostic implications.[24] 318 This high-resolution mapping of early stage inflammation would not have been possible with MRI 319 alone as lesions are difficult to detect in small vessels against anatomical background. Whole body 320 MRI screening in humans would be even more challenging. Thus, the combination of PET and MRI 321 provided complementary functions in this imaging application.

322 Simultaneous PET/MRI imaging of the multimodal NP afforded a number of advantages over 323 serial imaging including: 1) avoiding movement of the subject between scanner-, which allowed for 324 facile spatial co-registration to do the lack of soft tissue movement experienced with scanning with 325 separate instruments; 2) eliminating time delay between PET and MRI scans, which avoided 326 complications with subject transport under anesthesia; 3) reduced exposure to personnel associated 327 with handling and transporting the subject between instruments in different facilities. Given that 328 many high-resolution MRI techniques are often time consuming and have a limited field of view, 329 the availability of hybrid instrumentation can allow us to localize the ROI using PET without loss of 330 spatial fidelity that would come with moving the subject to a separate scanner. This would be 331 especially important in the clinical scenario whereby the site of injury may not be known a priori.

332 The approach of using hybrid PET/MRI instrumentation along with multimodal imaging 333 probes provides a powerful platform for both research and clinical pursuits. From a research 334 perspective, hybrid imaging can provide direct information about the efficacy and distribution of 335 multimodal molecular imaging agents, providing vital information to refine and improve the signal 336 characteristics of these agents. From a clinical perspective, PET/MRI hybrid instruments are 337 available now in a limited number of locations and their optimal applications are under 338 investigation. Oncological applications have been some of the earliest imaging studies to 339 demonstrate beneficial results from hybrid PET/MRI.[39, 40] For example, a study of PET/MRI for 340 clinical prostate cancer imaging found that PET/MRI may demonstrate improved sensitivity to 341 metastatic lesions compared to PET/CT.[41] Hope for improved diagnoses through hybrid PET/MRI 342 is high for neurological applications, where the temporal alignment of hybrid instruments could be 343 an advantage for examining brain processes in real-time.[16]

Cardiovascular applications that could benefit from PET/MRI are still under investigation [22, 42]; however, the simultaneous acquisition capability could offer advantages for imaging fast moving hearts and arteries. Most reports with PET/MRI have focused primarily on unimodal contrast agents such as <sup>18</sup>FDG using MRI as an anatomic reference.[15, 43, 44] We demonstrate that PET-guided MRI using multimodal agents can facilitate high-resolution visualization of molecular targets, and establish utility for mapping a marker associated with inflammation. This can serve as a powerful research tool for drug validation by allowing monitoring of biomarker targets. Early 351 diagnosis and patient stratification by PET/MRI could provide clinical benefit as drugs to 352 ameliorate plaque vulnerability come available.

353 In summary, we have demonstrated an approach to identify early inflammatory changes in 354 vessel injury using a targeted multimodal probe coupled with hybrid PET/MRI imaging in vivo. 355 Such approaches may be able to provide important insights into the pathophysiology and clinical 356 management of vulnerable plaques. Furthermore, simultaneous PET/MRI allowed direct 357 comparison of the PET and MRI signal, providing insights into the signal derived from the 358 multimodal agent that can guide continued development of the instrument as well as the imaging 359 agent.

360

#### 361 5. Materials and Methods

#### 362 5.1 Materials

363 Materials were obtained from commercial suppliers and used directly, unless otherwise noted. 364 Dextran (from leuconostoc, average mol. wt. 9,000-11,000) and ferric chloride hexahydrate 365 (FeCl<sub>3</sub>·6H<sub>2</sub>O, Fw 270.29 g/mol) were purchased from Sigma-Aldrich. Ferrous chloride tetrahydrate 366 (FeCl2·4H2O, Fw 198.81 g/mol) was from Fluka. Ammonium hydroxide (28-30%), sodium 367 bicarbonate, and sodium hydroxide were from Fisher Scientific. p-SCN-Bn-DOTA was from 368 Macrocyclics, Inc (Dallas, TX). N-succinimidyliodoacetate (SIA), purchased from Pierce (Rockford, 369 IL). Spectra/por® dialysis membrane (mol. wt. cut-off 50,000) was acquired from Spectrum 370 Laboratories, Inc. The VHPKQHR(MiniPEG1)C peptide was from Genscript (≥ 95% purity). Water 371

was purified using a Millipore Milli-Q Synthesis purifier (18.0 M $\Omega$  cm, Barnstead).

372 5.2 Nanoparticle synthesis and characterization

373 5.2.1 Synthesis of dextran coated iron oxide (DIO) nanoparticles

374 Dextran was reduced by published methods as summarized here and outlined in Figure 1.[25] 375 Nanopure water (18.0 M $\Omega$  cm, Barnstead) was degassed with argon and used throughout the 376 synthesis process. A mixture of dextran (molecular weight 10,000) and sodium borohydride (26 377 equivalents) was stirred at room temperature for 12 hours. The solution was adjusted to pH=7, 378 dialyzed against degassed nanopure water and lyophilized to form reduced dextran as a white 379 solid. A mixture of reduced dextran and FeCl<sub>3</sub>·6H<sub>2</sub>O in a molar ratio of 1:27 (total polysaccharide: 380 FeCl<sub>3</sub>·6H<sub>2</sub>O) was dissolved in deionized nanopure water. The solution was bubbled with argon and 381 cooled to 4 °C in an ice-water bath. Fe<sup>2+</sup> solution was freshly prepared by dissolving FeCl<sub>2</sub>·4H<sub>2</sub>O in 382 degassed water (with a  $Fe^{3+}Fe^{2+}$  ratio in a range from 1.47 to 1.5) and stored on ice. The  $Fe^{2+}$  solution 383 was added to Fe3+ mixture using a syringe followed by adding chilled (4 °C) NH4OH (NH4OH: Fe3+ = 384 16:1) dropwise with vigorous stirring. The ice-water bath was removed and the mixture was heated 385 to 85 °C and kept at 85 ± 5 °C for 2 hours (argon flow may stop 2–3 min after the temperature 386 reaches 85 °C). After cooling to room temperature, the solution was dialyzed against deionized 387 water in a dialysis bag with a molecular weight cut-off of 50,000 Da for 72 hours with 8-10 changes 388 of water to remove reactants. The resulting product, DIO, was lyophilized and stored at 4 °C.[26]

#### 389 5.2.2 Cross-linking and amination of the DIO nanoparticles

390 The DIO nanoparticles were cross-linked and aminated for the attachment of two ligands: 391 DOTA (chelator of radioactive <sup>64</sup>Cu) and the VCAM-1 targeting peptide (Figure 1). The 392 cross-linking and amination were performed as previously reported with slight modifications.[27] 393 DIO (2.0g), NaOH (4.02g) pellets and deionized water (40mL) were added to a 100mL 394 round-bottomed flask and stirred for 30 min. Then epichlorohydrin was added to the mixture and 395 the solution was stirred for 24h. The solution was dialyzed against deionized water with 8-10 396 changes of deionized water and lyophilized to yield brown solid. The solid (2.0 g), together with 397 ammonium hydroxide (250mL), was then transferred to a 500mL round-bottomed flask and stirred for 36h. Excess ammonium hydroxide was removed by dialyzing the solution against deionizedwater for 72h with 8-10 changes of deionized water.

400 5.2.3 Conjugation of DOTA and VCAM-1 targeting peptide to the nanoparticle surface

401 DOTA was conjugated to the aminated DIO surface based on a literature method. Briefly, 402 p-SCN-Bn-DOTA (6.71mg), aminated nanoparticle (135mg) and 0.1 M sodium borate buffer 403 solution (2mL) were added to a 10 ml round-bottomed flask (Figure 1b)[28]. Approximately five 404 drops of sodium hydroxide aqueous solution (1N) was used to bring the solution pH to 8.5. The pH 405 of the mixture was monitored during the reaction. The mixture was stirred for 24h, then dialyzed 406 against deionized water for 72h with 8-10 changes of water in a dialysis bag with a molecular 407 weight cut-off of 50,000 Da and then lyophilized to give a brown solid of DOTA conjugated 408 aminated DIO (DIO-DOTA). The conjugation of DOTA to the aminated DIO was confirmed by 409 Fourier Transform Infrared (IR) Spectroscopy. DIO-DOTA was then used for anti-VCAM-1 peptide 410 attachment based on previous report[29], described here briefly.

411 DIO-DOTA (22mg Fe in 1.5mL DMSO) was added to 0.5mL of 0.1M Na<sub>2</sub>HPO<sub>4</sub> in water and 412 0.5mL of 15mM SIA in DMSO in a 10mL round-bottomed flask. The mixture was stirred for 1h at 413 temperature followed by another addition of 0.5mL of 15mM SIA room 414 (N-succinimidyliodoacetate) in DMSO. Iodoacetyl-DIO was separated from iodoacetic acid using a 415 Sephadex G-25 column equilibrated with 0.025M citrate buffer pH 6.5 at 4 °C. Then 6-7 mg of 416 polymer-modified peptide (VHPKQHR(MiniPEG1)C) in 0.6mL of citrate buffer was added to 5mL 417 of iodoacetyl-DIO solution and the mixture was incubated overnight at room temperature. The 418 purchased peptide, C49H84N18O14S1, had a molecular weight of 1181.37 Da and an isoelectric point of 419 pH 9.84. MiniPEG1 (8-amino-3,6-dioxaoctanoic acid) spacer was inserted to distance the peptide 420 from the surface of the nanoparticle to allow for proper tertiary folded structure and allow better 421 VCAM binding. Unreacted peptide was removed by using a Sephadex G-25 column equilibrated 422 with 0.025M citrate buffer pH 6.5 at 4°C. The purified solution was lyophilized to give the final 423 product that is the DIO nanoparticle with two ligands (DOTA and VCAM-1 targeting peptide) on 424 the surface (VDIO-DOTA).

# 425 5.2.4 Copper-64 labeled VDIO-DOTA

426 Copper-64 was employed due to its relatively long half-life (12.7 h)[30] and comparatively 427 stable coordination with multidentate macrocyclic compounds such as DOTA (log KmL = 22.3).[31] 428 VDIO-DOTA (25 mg) was dissolved in 150 µL of 0.2 M pH 5.5 sodium acetate-acetic acid buffer. 429 Copper-64 (~ 2.5 mCi) was added to the vial and the mixture was vortexed for 5 seconds to obtain a 430 uniform solution. The solution was incubated at 55-60 °C for 45 minutes. EDTA aqueous solution 431 (16 µL, 100 mM) was added to the vial and vortexed for 5 seconds to get the solution uniform; then 432 solution was incubated at 55-60 °C for 15 minutes. The crude product was purified by centrifuge 433 filtration with 10K Da nanosep filtration tube (Millipore Inc., Billerica, MA, 30 min @14,000 rpm) 434 and washed 3 times with pH 5.5 sodium acetate-acetic acid buffer. Each time the washing was 435 removed by centrifuge filtration with a 10-kDa Nanosep filtration tube (10 min at 14,000 rpm). After 436 three washings the filtration tube was turned over and inserted into a new vial, and the 437 nanoparticles, VDIO-64Cu-DOTA, were collected by centrifuge (2 min @ 1,000 rpm). The radioactive 438 nanoparticles were diluted to 650  $\mu$ L with saline (0.9%) and radioactivity of the solution was 439 measured with a Fluke Biomedical Dose calibrator (34- 162 CAL/RAD MARK IV, Cleveland, OH). 440 The radiolabeling yield (%) for the NP, percent incorporation of radioisotope, was determined by 441 dividing the radioactivity of the collected NP by the total activity applied to the column and 442 multiplying by 100. For injection to animals VDIO-64Cu-DOTA (~ 15 µL) was passed through a 443 sterile 0.22-micron filter before use.

444 5.2.5 Characterization of VDIO-DOTA nanoparticles

445 The iron concentration (mg) per unit mass of nanoparticles in DIO or VDIO-DOTA was 446 measured with a Varian AA 220FS atomic absorption (AA) spectrophotometer using an 447 air/acetylene flame. The iron-oxide core size of the VDIO-DOTA was measured by Transmission 448 Electron Microscopy (TEM) on a Philips CM-12, operating at 80 kV and equipped with a 449 GatanMegascan 795 digital camera. The core size was found by averaging the measurements of 500 450 particles after drying a dilute drop of VDIO-DOTA particles over a lamp on a copper grid. The 451 average hydrodynamic particle size (mean volume diameter) and distribution was measured using 452 Dynamic Light Scattering (DLS) with a Nanotrac 150 particle size analyzer (Microtrac, Inc., 453 Montgomeryville, PA) and geometric eight-root regression, with no residuals, was used to fit the 454 data. The nano-range option was selected and a scan time of 90 seconds was used.

455 Transverse relaxation times  $(T_2)$  of the VDIO-DOTA particles were measured at 60 MHz (1.4 T) 456 and 37 °C on a BrukerMinispec mq60. The relaxivity was given as the slope of the straight line 457 plotted as the function of  $1/T_2$  vs iron concentration. DIO and VDIO-DOTA were diluted in pH 7.0 458 deionized water to give five aqueous solutions (300 µL each): 10.5, 5.25, 2.625, 1.313, and 0.656 mg 459 Fe/L, respectively. Iron concentrations in each dilution were determined using Atomic Absorption 460 Spectroscopy. T<sub>2</sub> values were measured using a Carr-Purcell-Meiboom-Gill (CPMG) sequence with 461  $\tau = 1$  ms, and 200 data points. Each solution was incubated at 37°C for 5 minutes before 462 measurement.

## 463 5.3 Cytotoxicity

464 Cytotoxicity of VDIO-DOTA was evaluated on HepG2 liver cells using C12 - Resazurin 465 viability assays. HepG2 liver cells were cultured and maintained in Minimum Essential Medium 466 containing 10% FBS, 200 U/mL penicillin, 200 µg/mL streptomycin, 1 mM sodium pyruvate, and 1 467 mM nonessential amino acids at 37°C in a humidified 5% CO<sub>2</sub> atmosphere. Cells were plated in 468 96-well dishes at a concentration of  $1 \times 10^4$  cells per well and incubated overnight (5% CO<sub>2</sub>, 37°C). 469 After overnight incubation, media was replaced with fresh media containing VDIO-DOTA 470 nanoparticles of varying concentration (0, 0.04, 0.2, 1, 4 and 10mM iron). Each concentration was 471 performed in triplicate for statistical relevance. Cells were also treated with DIO nanoparticles 472 under the same conditions as control. Cells were plated in three 96-well plates for measurements at 473 time points of 4h, 24h and 48h. At each time point, nanoparticle solutions were removed and cells 474 were washed with 1X PBS for three times. Then fresh media containing  $C_{12}$  – Resazurin (5µM) was 475 added to each well of cells. After 15min of incubation, fluorescence was measured using a Safire 476 monochromator microplate reader (Tecan Austria G.M.B.H., Austria) with excitation of 563nm and 477 emission of 587nm.

## 478 5.4 Iron staining

479 Slides from the inflamed carotid were stained to evaluated for iron within the plaques using 480 Prussian Blue Solution[32], a 1:1 mixture of 3% hydrochloride acid solution and 3% potassium 481 ferrocyanide solution, to detect ferric ion (Fe<sup>3+</sup>) in the tissue. Any ferric ion present in the tissue 482 reacted with the ferrocyanide and results in the formation of the bright blue pigment, Prussian blue, 483 or ferric ferrocyanide. First, slides were deparaffinized by toluene and rehydrated through changes 484 of ethanol with decreasing concentrations (100%, 95% and 75%). After rinsing, slides were placed in 485 Prussian blue solution for 30 min followed by a rinsing step to remove excess staining. Then 486 Nuclear Fast Red Staining was used to counterstain other tissue (pink) for 10 min. After 487 dehydration with alcohol and clearing with toluene, tissue sections were placed under coverslips on 488 slides with mounting media.

## 489 5.5 Immunohistochemistry (IHC)

The tissue sections were stained for inflammatory marker VCAM-1. The deparaffinization and dehydration process were the same as that of iron staining. Antigen retrieval was performed to unmask binding sites of the primary antibodies. Heat Induced Epitope Retrieval (HIER) was 493 performed using a Decloaking Chamber. 500 ml of deionized water was added into the chamber. A 494 plastic staining jar with tissue slides immersed in Antigen Retrieval Solution (Sigma 10X Tris-HCl 495 buffer, pH10, product #T6455) was placed in the Decloaker chamber. The Decloaker was programed 496 for 30 seconds at 125 °C followed by 10 seconds at 85 °C at 22.5 psi. After the heating process was 497 done, the staining jar was removed from the Decloaker and cooled for 15 minutes followed by TBST 498 rinse (Fisher 20X Tris buffered saline with Tween-20 used as 1X diluted solution). Then endogenous 499 peroxidase block was performed by using 3% H<sub>2</sub>O<sub>2</sub> in water to cancel the interference of peroxidase 500 in the final step.[33] Protein block buffer (Dako Protein Block) was used to treat the tissue slides to 501 mask the non-specific binding sites. Samples were labeled using an indirect method. Anti-VCAM-1 502 antibody (Rabbit monoclonal [EPR5047] to VCAM-1, Abcam Inc., MA) was used as primary 503 antibody to detect the VCAM-1 expression. Ready-to-use polymers carrying horseradish peroxidase 504 (Dako North America, Inc., Carpinteria, CA) were then used as the secondary antibody. In the final 505 staining step, peroxidase on the polymers reacted with hydrogen peroxide to reduce the DAB 506 (3,3'-Diaminobenzidine) substrate and generate a brown product in regions of VCAM-1 expression. 507 Slides were examined under microscope.

- 508 5.6 Animal Studies
- 509 5.6.1 Animal model

510 All animal studies were performed under protocols approved by the Animal Care and Use 511 Committee of the University of California, Davis and the California Institute of Technology. Female 512 C57BL/6 ApoE-/- (10 weeks old, Jax West Laboratories, West Sacramento, CA) mice were used for 513 the experiments as described in previous studies.[14] Eight days prior to imaging, the left carotid 514 artery of each mouse was ligated. Eight days was chosen because prior studies showed that 515 VCAM-1 expression peaks between 7 and 10 days post-ligation in ApoE-/- mice.[34] At this stage 516 pronounced plaques have not yet formed, but inflammation is evident. To perform the ligation a 517 medial incision was made between the mandible and clavicle, exposing the glands and vessels of 518 the neck. The carotid artery was singled out from the surrounding tissue, while protecting and 519 excluding the parallel-running vagus nerve. A 6/0 silk suture was threaded under the dorsal side of 520 the carotid artery and was tied off to cause injury to the site. The procedure was concluded with 521 five to six interrupted 4/0 Ethicon (Ethicon Inc) suture to re-approximate the skin of the original 522 ventral incision. The mice were monitored twice a day for approximately four days to check for 523 irritation and to administer analgesics when appropriate. Subsequent to ligation, mice were placed 524 on a high fat diet for seven days. (TD 88137, Harlan Laboratories Inc, Madison, WI).

525 5.6.2 In vivo MRI-only studies

526 MRI experiments were performed to determine the optimal injection dosages for the NPs prior 527 to radiolabeling. Prior to NP injection, a pre-scan was taken as baseline. Then VDIO at dosages of 6 528 mg Fe/kg body mass, 30 mg Fe/kg and 60 mg Fe/kg, were injected intravenously via the tail vein 529 catheter (N = 4 per concentration). Images were acquired at 4 and 24 hours post-injection.

530 All images were acquired on a 7T (Bruker Biospec) small animal scanner using a home built 531 quadrature RF volume coil (Cleveland, OH). For all time points, the animal was anesthetized with a 532 1.5% isoflurane: air mixture and kept at 35–37 °C with warm air flowing through the bore while the 533 respiration was monitored (MP150, Biopac, Goleta, CA). After localizing the region of interest (ROI) 534 around the neck using a RARE spin echo sequence (TR/TE = 4000/22 ms, matrix size =  $128 \times 128$ , 535  $FOV = 35.35 \times 35.35 \text{ mm}^2$ , slice thickness = 0.754 mm), the common carotid arteries were located 536 with a time-of-flight angiography sequence with venous saturation (FL2D\_ANGIO method, 537 Paravision 4.0: TR/TE = 13.7/3.5 ms, matrix size =  $150 \times 100$ ; zero-filled to  $256 \times 100$ , FOV =  $30 \times 20$ 538 mm<sup>2</sup>, slice thickness = 0.754 mm). A T<sub>2</sub><sup>\*</sup> weighted multiple-gradient echo sequence was then utilized 539 to visualize the uptake of nanoparticles (TR/TE = 718/3, 7, 11, 15, 19, 23 ms, F.A. = 25°, matrix size = 540  $175 \times 100$ ; zero-filled to  $234 \times 133$ , FOV =  $35 \times 20$  mm<sup>2</sup>, slice thickness = 0.754 mm) at the region of

541 the common carotid arteries.

542 5.6.3 In vivo PET/MRI imaging

543 Studies were performed using an integrated small animal PET/MRI system, consisting of a 544 first-generation MR-compatible PET insert (constructed by Simon Cherry et. al at UC Davis) that is 545 fitted within a 7T small animal MRI scanner. [16, 17] This enabled simultaneous PET/MRI images to 546 be acquired.

547 Mice (N = 4) were surgically prepared as described above. Pre-scans were obtained with MRI 548 as baseline. Next, mice were injected intravenously via the tail vein with 30 mg Fe/kg 549 VDIO-64Cu-DOTA (~700uCi per mouse, 92% radiation yield) followed by a 150  $\mu$ L of saline flush. 550 The activity of the injected dose was confirmed by measuring the difference in radioactivity 551 contained in the syringe before and after injection on a dose calibrator. Imaging was subsequently 552 performed at 4 and 24 hours post-injection. MRI images were acquired identically to the MRI-only 553 studies. PET images were acquired with scan duration of 600 seconds at the 4 hour time point and 554 300 seconds at the 24 hour time point. Images were reconstructed and co-registered to the MRI 555 dataset as previously described.[17, 35]

556 To compare the focal NP uptake between time points, dosage and subjects, we calculated a 557 contrast ratio (CR) metric as previously described.[36] This normalizes particle uptake at the 558 ligation site between subjects and factors out the signal contribution due to blood borne particles by 559 comparison with the contralateral control.

560 Briefly, CR is defined as:

561

$$CR = \begin{bmatrix} \frac{\left[I_{ligated}\right] - \left[I_{background}\right]}{\left[I_{control}\right] - \left[I_{background}\right]\right]_{i}}\\ \frac{\left[I_{ligated}\right] - \left[I_{background}\right]}{\left[I_{control}\right] - \left[I_{background}\right]}_{prescan} \end{bmatrix}$$

562 Where *I*<sub>ligated</sub> is the mean intensity of the ROI drawn around the ligated carotid artery, *I*<sub>control</sub> is the 563 mean intensity of the ROI drawn around the contra-lateral carotid. Ibackground is the mean intensity of 564 the ROI drawn in the spinal cord at the same image slice as the other ROIs and *i* is either 4 or 24 565 hours post-injection time points. ROIs were drawn manually at slice levels approximately located at 566 the common carotid arteries. These were matched between time points. Angiography images were 567 used to guide ROI delineation around the carotid arteries. Because previous reports noted that the 568 carotid vessels along with the wall are ~1 mm in diameter,[36] all arterial ROIs had diameters of 1.5 569 mm.

570 Representative region of interests used for CR calculation are indicated in Figure 3. Values 571 greater than 1 indicate localization at the ligation site. The  $T_{2^*}$  weighted image sets at TE = 11 ms 572 were used. All images were analyzed using ImageJ.

573 5.6.4 Visualization of image volumes

574 We developed a hardware accelerated volume rendering system with enhanced rendering 575 quality to provide better visualization of the PET and MRI signal at the site of the inflamed arteries. 576 To provide anatomical context, we superimpose a cross section of the data. Illustrative 577 rendering[37] is applied to this cross section for relative spatial position of the target vessel. The 578 vessel ROIs were manually segmented from the MRI images to identify the vessel walls. A 579 pre-integrated transfer function[38] was used to visualize the thin layer of vessel wall as a smooth 580 and continuous surface. To highlight the NP uptake on the surface of the arteries, we used a color 581 map to sort the surface MR signal ranging from red (low MR signal), through blue (medium) to 582 light pink (high MR).

# 583 5.7 Histology

584 After the *in vivo* animal study, organs known to be involved in disease or clearance, i.e. hearts, 585 carotid arteries, kidneys, spleens and livers, were collected and used for histology. The tissue was fixed in 4% formaldehyde, and then dehydrated by passing tissue through increasing concentrations of ethanol (75%, 95% and 100%). Then the tissue was placed in warm paraffin wax, and the melted wax filled the spaces that used to contain water. After cooling, the tissue hardened into a paraffin block from which 5-micron tissue slices were sectioned and mounted on glass slides.

590 The tissue sections were stained for iron and VCAM-1 as detailed in Supplemental Information.

## 591 Supplementary Materials: N/A

592 Acknowledgments: The authors wish to thank F. Hayes and P. Kysar for their help with TEM and P. Hrvatin 593 for help with AA spectroscopy. We thank Andre Jefferson and Haick Issian of the Caltech Radiation Safety 594 office for help with the radiation studies and Naomi Santa-Maria for technical assistance in imaging. We 595 thank Simon Cherry and his group for technical assistance with the hybrid imaging insert. The authors wish to 596 acknowledge the National Institutes of Health (EB008576-01 and EB000993), the Center for Molecular and 597 Genomic Imaging at the University of California, Davis (U24 CA 110804), and the NMR award of the 598 University of California, Davis for support of this work.

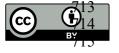
599 Author Contributions: AYL conceived and designed experiments; SD, TN, AH, TT, CT contributed to 600 experiment design, performed experiments and contributed to data analysis; LZ prepared computer programs 601 to render the imaging data; JP, IE performed and provided training for histology; REJ, KP contributed to 602 experimental design and data analysis.

603 **Conflicts of Interest:** The authors declare no conflict of interest.

## 604 References

- Fuster V, Lois F, Franco M. Early identification of atherosclerotic disease by noninvasive imaging. Nature
   Reviews Cardiology. 2010;7(6):327-33.
- 607 2. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque.
  608 Arteriosclerosis, thrombosis, and vascular biology. 2010;30(7):1282-92.
- 609 3. Kolodgie FD, Burke AP, Skorija KS, Ladich E, Kutys R, Makuria AT, et al. Lipoprotein-associated
  610 phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis.
  611 Arteriosclerosis, thrombosis, and vascular biology. 2006;26(11):2523-9.
- 612 4. Braganza D, Bennett M. New insights into atherosclerotic plaque rupture. Postgraduate medical journal.
  613 2001;77(904):94-8.
- 614 5. DeMarco JK, Huston III J. Imaging of high-risk carotid artery plaques: current status and future
   615 directions. Neurosurgical focus. 2014;36(1):E1.
- 616 6. Cai J-M, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid
  617 atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation.
  618 2002;106(11):1368-73.
- 619 7. Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk
  620 plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke
  621 classified as cryptogenic using combined F-18-FDG PET/MR imaging. European Journal of Nuclear
  622 Medicine and Molecular Imaging. 2016 Feb;43(2):270-9.
- 8. Moon SH, Cho YS, Noh TS, Choi JY, Kim BT, Lee KH. Carotid FDG Uptake Improves Prediction of
  Future Cardiovascular Events in Asymptomatic Individuals. Jacc-Cardiovascular Imaging. 2015
  Aug;8(8):949-56.
- van der Valk FM, Verweij SL, Zwinderman KAH, Strang AC, Kaiser Y, Marquering HA, et al. Thresholds
  for Arterial Wall Inflammation Quantified by F-18-FDG PET Imaging. Jacc-Cardiovascular Imaging. 2016
  Oct;9(10):1198-207.
- for the second second
- Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and Uncertainty of F-18-FDG PET Imaging
  Protocols for Assessing Inflammation in Atherosclerosis: Suggestions for Improvement. Journal of
  Nuclear Medicine. 2015 Apr;56(4):552-9.

- kan der Valk FM, Verweij SL, Zwinderman KA, Strang AC, Kaiser Y, Marquering HA, et al. Thresholds
  for Arterial Wall Inflammation Quantified by 18F-FDG PET Imaging: Implications for Vascular
  Interventional Studies. JACC Cardiovasc Imaging. 2016 Oct;9(10):1198-207.
- 638 13. Brammen L, Steiner S, Berent R, Sinzinger H. Molecular imaging of atherosclerotic lesions by positron
  639 emission tomography can it meet the expectations? Vasa-European Journal of Vascular Medicine.
  640 2016;45(2):125-32.


641 14. Jarrett BR, Correa C, Ma KL, Louie AY. In vivo mapping of vascular inflammation using multimodal
642 imaging. PloS one. 2010;5(10):e13254.

- 643 15. Schindler TH. Cardiovascular PET/MR imaging: Quo Vadis? J Nucl Cardiol. 2016 Sep 22.
- 644 16. Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, et al. Simultaneous in vivo positron emission
  645 tomography and magnetic resonance imaging. Proceedings of the National Academy of Sciences.
  646 2008;105(10):3705-10.
- 647 17. Ng TS, Bading JR, Park R, Sohi H, Procissi D, Colcher D, et al. Quantitative, simultaneous PET/MRI for
  648 intratumoral imaging with an MRI-compatible PET scanner. Journal of Nuclear Medicine.
  649 2012;53(7):1102-9.
- 18. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504-11.

Broisat A, Toczek J, Dumas LS, Ahmadi M, Bacot S, Perret P, et al. Tc-99m-cAbVCAM1-5 Imaging Is a
Sensitive and Reproducible Tool for the Detection of Inflamed Atherosclerotic Lesions in Mice. Journal of
Nuclear Medicine. 2014 Oct;55(10):1678-84.

- 656 20. Dimastromatteo J, Broisat A, Perret P, Ahmadi M, Boturyn D, Dumy P, et al. In Vivo Molecular Imaging
  657 of Atherosclerotic Lesions in ApoE(-/-) Mice Using VCAM-1-Specific, Tc-99m-Labeled Peptidic
  658 Sequences. Journal of Nuclear Medicine. 2013 Aug;54(8):1442-9.
- Wu J, Leong-Poi H, Bin J, Yang L, Liao Y, Liu Y, et al. Efficacy of Contrast-enhanced US and Magnetic
  Microbubbles Targeted to Vascular Cell Adhesion Molecule–1 for Molecular Imaging of Atherosclerosis.
  Radiology. 2011;260(2):463-71.
- 662 22. Ripa RS, Kj, #xe6, r A. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic
  663 Resonance Imaging. BioMed Research International. 2015;2015:8.
- 664 23. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for
   665 the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry. 2000;267(17):5421-6.
- 666 24. Petersen C, Peçanha PB, Venneri L, Pasanisi E, Pratali L, Picano E. The impact of carotid plaque presence
  and morphology on mortality outcome in cardiological patients. Cardiovasc Ultrasound. 2006;4(16).
- 668 25. Wilson CM. Synthesis of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for fMRI.
- 669 26. Jarrett BR, Frendo M, Vogan J, Louie AY. Size-controlled synthesis of dextran sulfate coated iron oxide
  670 nanoparticles for magnetic resonance imaging. Nanotechnology. 2007;18(3):035603.
- 671 27. Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R. Detection of lymph node metastases
  672 by contrast-enhanced MRI in an experimental model. Magnetic resonance in medicine. 2002;47(2):292-7.
- 673 28. Tu C, Ng TS, Jacobs RE, Louie AY. Multimodality PET/MRI agents targeted to activated macrophages.
  674 JBIC Journal of Biological Inorganic Chemistry. 2014;19(2):247-58.
- 675 29. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as
  676 combined MR/optical imaging probes. Bioconjugate chemistry. 2002;13(3):554-60.
- 677 30. Gustafsson B, Youens S, Louie AY. Development of contrast agents targeted to macrophage scavenger
  678 receptors for MRI of vascular inflammation. Bioconjugate chemistry. 2006;17(2):538-47.
- Anderegg G, Arnaud-Neu F, Delgado R, Felcman J, Popov K. Critical evaluation of stability constants of
  metal complexes of complexones for biomedical and environmental applications\*(IUPAC Technical
  Report). Pure and applied chemistry. 2005;77(8):1445-95.
- 682 32. Sheehan DC, Hrapchak BB. Theory and practice of histotechnology: Mosby St. Louis; 1980.
- 683 33. Streefkerk J. Inhibition of erythrocyte pseudoperoxidase activity by treatment with hydrogen peroxide
  684 following methanol. Journal of Histochemistry & Cytochemistry. 1972;20(10):829-31.
- 685 34. Barringhaus KG, Phillips JW, Thatte JS, Sanders JM, Czarnik AC, Bennett DK, et al. α4β1 Integrin (VLA-4)
  686 Blockade Attenuates both Early and Late Leukocyte Recruitment and Neointimal Growth following
  687 Carotid Injury in Apolipoprotein E (-/-) Mice. Journal of vascular research. 2004;41(3):252-60.

- 688 35. Ng TS, Procissi D, Wu Y, Jacobs RE. A robust coregistration method for in vivo studies using a first generation simultaneous PET/MR scanner. Medical physics. 2010;37(5):1995-2003.
- 690 36. Tu C, Ng TS, Sohi HK, Palko HA, House A, Jacobs RE, et al. Receptor-targeted iron oxide nanoparticles
  691 for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011;32(29):7209-16.
- 692 37. Lum EB, Ma K-L, editors. Hardware-accelerated parallel non-photorealistic volume rendering.
   693 Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering; 2002:
   694 ACM.
- 695 38. Lum EB, Wilson B, Ma K-L, editors. High-quality lighting and efficient pre-integration for volume
  696 rendering. Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference on Visualization; 2004:
  697 Eurographics Association.
- 698 39. Bashir U, Mallia A, Stirling J, Joemon J, MacKewn J, Charles-Edwards G, et al. PET/MRI in Oncological
  699 Imaging: State of the Art. Diagnostics. 2015;5(3):333-57.
- Partovi S, Kohan A, Rubbert C, Vercher-Conejero JL, Gaeta C, Yuh R, et al. Clinical oncologic applications
  of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging. 2014;4(2):202-12.
- Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of
   PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134
   patients--a hypothesis-generating exploratory study. Radiology. 2013 Dec;269(3):857-69.
- 705 42. Nensa F, Schlosser T. Cardiovascular hybrid imaging using PET/MRI. Rofo. 2014 Dec;186(12):1094-101.
- 43. Li X, Heber D, Rausch I, Beitzke D, Mayerhoefer ME, Rasul S, et al. Quantitative assessment of
  atherosclerotic plaques on 18F-FDG PET/MRI: comparison with a PET/CT hybrid system. Eur J Nucl Med
  Mol Imaging. 2016;43:1503-12.
- 44. Masuda A, Yamaki T, Sakamoto N, Kunii H, Ito H, Nanbu T, et al. Vulnerable plaque on the common
  iliac artery detected by F-18-FDG PET/MRI. European Journal of Nuclear Medicine and Molecular
  Imaging. 2016 Apr;43(4):793-4.
- 712



© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).