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Abstract

Hypothesis 4 presented &tccompanyindgPaper 2 states that the lever of a myosin Il head in working
stroke (WS) moves in a fixed plane, the orientation of the lever being defined by the angle 6. From this
conjecture can be deduced the hypothesis 5 developed in accompanying Paper 3: the distribution of
is identical and uniform in each half-sarcomere (hs) of a muscle fiber stimulated under isometric
conditions. We propose a sixth hypothesis that establishes a linear relationship betweangiee

and the motor momentM) exerted on the lever. These three hypotheses lead to calculations of the
tension during isometric tetanus plateau (T0) and the tension applied at the end of phase 1 of a length
step when the only internal actions are the forces of elastic origin produced by the myosin heads in
WS (T1lga9. However, thel 1g55 values are higher than those observed experimentally. The model
introduces the presence of viscosity as the seventh hypothesis. The internal actions resulting from the
coupling of the elasticity of the WS heads and the viscosity make it possible to explain all the
observed phenomena that contribute to the phase 1 of a length step. An adequate adjustment between
the theoretical tension from the model (T1) and the tension representative of the end of phase 1
exposed in examples from the physiological literature is proven (r2 > 98%). Other parameters such as
stiffness (e), compliance (C) and strain (Y) are deduced; their investigation enables the construction of
an analytical "nanoscope" by means of which the uniform densfyisoéxplored. The equations for

TO, T1, e, C and Y explain and predict the influence of factors such as the duration of phase 1, the
initial length of the sarcomere, the concentration of calcium, the presence of an inhibitor, the tension
rise to the isometric tetanus plateau, relaxation after tetanization or shortening at constant speed. The
results obtained during a slack-test are indicated by the model, the slack of the fiber being interpreted

as an event of purely viscous origin.
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INTRODUCTION

Perturbation by a length step
After being isometrically tetanized, the stimulated fiber is shortened or elongated rapidly by a length
step QL). Then the temporal evolution of the tension is observed. Four phases are distinguished,

numbered from 1 to 4; see Table 1 indbd Table 4 in [2].

Phase 1 of a length stepM_<0)

The first transitional period of the length step called as "phase 1" is the shortening over a time lapse
(To0), generally less than 0.2 ms [2.3], where the tension drops suddenly and linearly from TO to T1,
the minimum value of the tension reached at the end of phase 1 (Figs 1la and 1b). An index k is
assigned to each length steplL) to which the minimum tension at the end of phase 1L)(T1
corresponds; see Fig 1b with 3 examples of length steps with index, k, (k+1) and (k+2), respectively.
The index 0 corresponds to the case of the isometric tetanus plateal.ywithatd T3=TO.

For each step k, the shortenid_() is carried out during,; with a constant shortening velocity VvV

but variable from one step to another (Fig 1a) since:

Vg =— (1a)

where ¥, is the duration of the phase 1 identical for all length steps.

AL is trivially the sum of the shortenings of all half-sarcomeres (hs) of the myofibril as:

Nhs
ZAX h.k

vy =l (1b)
T
whereAXy  is the shortening of hs n° h following the length step with index,kisNhe number of hs

per myofibril.
In the rest of the paper, the k index of the length step will no longer be mentioned.

The average hs shorteningX ) corresponding to the shortening Af the fiber is:

&:AL

)

Nhs

Our objective is to calculate tensions TO and T1.
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Fig 1. Phase 1 of a length step

(a) Length differenceL) for a muscle fiber as a function of time (t), the stimulated fiber being

shortened at constant speed durnipgaccording to three negative

length stefls,, ALy and ALy,

with index, k, (k+1), ( k+2), respectively. (b) Instantaneous tension (T) exerted at the fiber extremity
during the three length steps; at the start of phase 1 corresponding to the end time of the isometric
tetanus plateau, the tension drops abruptly and linearly daginfom TO to each of the three

minimum values TJ T, and Tl.o.
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Methods

Hypothesis 6: Linearity between the motor-moment and the angular position of the lever

A myosin Il head is traditionally modelled by 3 material segments articulated between them: the motor
domain (Sla), the lever (S1b) and the rod (S2). The mechanical condition of a WS head is
characterized by 4 conditions: 1/ the rigidity of S1a, S1b and S2; 2/ the strong bond between Sla and
the actin molecule; 3/ a motor-momem)(exerted on S1b, a moment which induces a traction of the
myosin filament via S2 and consequently the shortening of the hs; 4/ the displacement of the lever S1b
in a fixed plane, the orientation of S1b in this plane being defined with the tabglended by the 2

limits 6., andBg,wn corresponding to the classiagh and down positions. The first 3 conditions were

set in 1993 by I. Rayment [4]. Condition 4 is also suggested in the same article, but hypothesis 4
introduced in accompanying Paper 2 specifies its geometry. We formulate hypothesis 6 which states
that the motor-moment is an affine function of 6 (Fig 2; red line):

6-96
(8) = 91y D(&M A(04n :6,51(8) (3
Max

wherea,, is the maximum moment corresponding to the afigi&0vax is the angular range between
0up andbgown two angles whose values are calculated, respectively, in (12a) and (12b) in Fljger 2;
the symbol characterizing the indicator function defined in (A2b) in Supplement S1.A of Paper 1.

Several researchers [5,6,7,8,9] have previously enunciated this conjecture without formalizing it.

The motor-moment%) derives from a potential elastic energy stored inftsheet element of the

motor domain of the myosin head Il; see paragraph C.3 of Supplement S2.C of Paper 2.

Isometric tetanus plateau and calculation of TO

An isolated muscle fiber at rest is stimulated to a fixed length by pulses until fused tetanus. The
measured tension increases and then reaches a quasi-constant maximum value (T0) which
characterizes a stationary equilibrium (Fig 1b) called as "isometric tetanus plateau”. The plateau
duration can be longer than the second [10]. During the tetanus plateau, the spatial dénisity of
observed over an angular rangé-§ between 40° and 50°, postulated as uniform by various authors
[11,12,13,14,15], result found after geometric modelling of a hs in Paper 3 and theorized with
hypothesis 5. The maximum variation®{30ua.,) between the two limit8,, and6g.w, relating to the

two positionsup anddown is equal to 70°. The rand@r is framed by the two anglés and 6.

During the isometric tetanus plateau, there is an inted9gl 6f about 20° betwedh and6y,., Where

no head is found in WS state (Fig 2). This absence is explained by the slow detachment of the myosin
heads in the rang®e during the tension rise to the tetanus plateau; see accompanying Paper 1 for

further details.
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Mg

Fig 2. Affine relationship between the motor-momenty and the 0 angle of lever S1bin a

half-sarcomere on the right.

Linearity is represented by a red line. The green trapezoidal area whose base is th&dextent
characterizes the domain where the orientafiiaf the A, levers belonging to thA, WS heads is
distributed uniformly betweef; and6,,. The rectangular triangle based on &g range is empty
because all WS heads with a lever orientation betwgghand6; have come off during the rise to
tetanus plateau.


https://doi.org/10.1101/2019.12.16.878843

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878843; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The angle pis defining as located at the middle of §Fig 2):

Bup - 07
8o =—">— @)

For example, in support of the data of the Table 1 in Paper 3, the vahieanafo, are -21° (+21°)
and +3.5° (-3.5°) in a hs on the right (left), respectively.

With hypothesis 5 of uniform density 6f between6r and®6,, and by introducing equality (4) in
equation (3), we obtain the average momeny) @enerated by all the motor-moments present during

an isometric tetanus plateau (Fig 2):

6,-6
atq=(oo)= 1, 29 S0on | ©)
Max
The study in Fig 2 provides:
00
(eo_edown) :(69Max _TTJ (6)
And equality (5) is rewritten with (6):
301
Mo =My Pl-——0 7
0 uptﬁ ZmeMaxJ ( )

The average moment, depends on 3 parameterg;, is the maximum motor momerdf; is the
range of the uniform law of the random variaBleassociated with the angbeduring the isometric

tetanus plateadfya.y is the maximum variation of 6 during the WS.

TO is calculated in (118) in Supplement S4.1. With (6), TO is equal to:

TO:[—N”‘U\OWOJ (8)
L s BBws

where N, is the number of myofibrils of the fibefy, is the number of identical and constant WS
myosin heads per hs during the tetanus plateau in isometric conditigyis; the length of the lever;
Sws IS a characteristic parameter of the myosin head defined in equations (13) and (14) of Paper 2

whose value is near 0.95.

Linear relationship betweenAX and A6
In the linear domain defined by the termindlg, and 64oun the relationship between the hs

displacement4X) and the lever rotatiomp) is established in (19) in Paper 2 and duplicated below:
DX = (L gp Rys 06) g, - 8,1 (©) %)

where Rys is another characteristic parameter of the WS myosin heggl;isRdetermined with

equalities (13) and (14) in Paper 2 and its value is eq&lsto
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From (9) are deduced the equivalence relationships between angular and linear ranges developed in
Supplement S4.1; the equations (122), (123), (124) and (127) are reproduced below:

X T:(X up—X T) =L SID[RWS [691‘ (10a)

X g =(X1 = Xgown) = L spRwsB6g (10b)

X Max =(X up =X down) = (6)( T+OX E): L sp[Rws [08max (10c)
1 1

= (10d)
Kool (o002
2

where X, Xaown X1, Xe are the abscissa corresponding to the angle®98u.n, 0+, O (see Fig I11).

Characterization of T1gas with internal actions calculated in the absence of viscosity
We consider the hs shortenings inferior in modulu®<aiy. In this case, the linear intervabXyay;0]

is separated into 2 zones (Fig 3) defined in paragraph 1.6 of Supplement S4.1:
Zone 1 =[-6X,1;0[
Zone 2 E[ '6XMax ; '6X21[

wheredX,; is ranged betweedXe and (2[Xg); dXg anddXuax are two linear ranges specified in (10b)
and (10c).

When the internal actions are only the linking forces and moments, equations (I52a) and (153a) of sub-
paragraph 1.5.4 of Supplement S4.I provide the relative tensiong{pTéxerted at the fiber

extremities at the end of phase 1; pJls calculated in Zones 1 and 2 according to:
pT:IEIas = [1_ FiEIas] [(1+ Xz [AX)+ F)Elas[)(zz [(6)( Max t AX) (11)

where X is the same shortening of all hs in the fiber; with (23,i&equal to:

— _ AL

AX =AX = (12)
N hs
wherePg;sis a weight as a function oA equal to 0 or 1, such that :
Petas = T-ox,,, i-ox ;[ (8X) (13)
where ¥ and %, are two slopes of elastic origin equal to:
Xa = (143)
& oX Max _6XT/2
(-x 20X 4)
= AAa"nAd) 14b
Xz22 Xy — X 1 (14b)
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With this modeling, the fiber behaves like a linear-elastic or Hookean spring with stiffaessy,»
depending on the zone whetX is located. The relationship (11) is represented in Fig 3A by two

straight line segments coloured in dark and light green in Zones 1 and 2, respectively.

If the tensions measured in reality are compared with the theoteritical values determined with equation
(11), the experimental tensions are generally much lower. An example is provided in Fig J9 of
paragraph J. 9 of Supplement S4.J where all the points reproduced are from Fig 19 in [2]. The dark
blue experimental dots associated wi}i=0.2 ms are displayed well below the two light green
segments representative of glddetermined with (11).

The linking actions related to WS heads are derived from an elastic potential energy. By definition,
these actions depend only on the distance covered and not on the time taken to cover it. In the same
figure J9, the light green dots associated witik1l ms are located above the dark blue dots and are
close to the two light green segments representative @gf,pThis observation suggests the presence

of other braking forces depending on the duration of phase 1 and therefore on the velocity according to

equality (1b). Hypothesis 7 introduces viscosity as the candidate for the position.

Characterization of T1 with internal actions calculated in the presence of viscosity
All the following acronyms, equalities and equations are explained in Supplement S4.J.
A viscous parameter), common to all hs of the fiber and specific to each experiment, is introduced:

N

—n_ (15)
TOT

V =0Qhs

where@ is the proportionality coefficient in the presence of viscosity, characteristic and common to

both massive sets of a hs, the M-disk and Z-digkisNhe number of myofibrils of the fiber.

The value ok calculated experimentally at 2°C is very low, in the order Sfrir@".

0.1 and @, are two parameters constitutive of the presence of viscosity depending on whether the hs
shortening AX) is in Zone 1 or Zone 2 defining as:

_Lnx»—Lnv

16
da NNy (16a)
Lny o —Lnv
== 16b
qzz In Nhs ( )

where Ln is the symbol for the natural logarithyp; and ., are the two slopes of elastic origin

formulated in (14a) and (14b);Ns the number of hs per myofibril.

The two parametersopnd g, are linked to each other by:

_ 1 Xz2
qZZ_qﬂ+LnNhS l:l]‘n(xﬂ) (17)
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Fig 3. Evolution of pT1, the relative tension of the fiber at the end of phase 1 of a length step as a

function of the average hs shortening A_X). (A) Theoretical model: pTgys is calculated with
expressions (10) and (13) in Zone 1 (dark green segment) and Zone 2 (light green segment); pT1 is
determined using equations (20) and (21) in Zone 1 True (dark blue segment), in the Mixed Zone
(mauve parabolic arc) and in Zone 2 true (sky blue segment). (B) Application of the model to a fiber
isolated from thdibialis anterior muscle ofrana Temporaria; the red dots are from Fig 13 in [2],
reproduced in Fig J8 of Supplement S4.J.
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Relatively and respectively tgfor Zone 1 and g for Zone 2, the two coefficients,Kand K, are

assigned as:

K 5 = Npet 921/2 E:ot)'(N da/ 2) +Npe 9z (18a)

K 22 = Niet 022/2 ott{ Npd922/2 | N 02 (18b)

where coth is the symbol of the hyperbolic cotangent with coth(x§=10e/ (€*1).

A representation of K (K;,) as a function of g (q.,) is given in Fig J3 of Supplement S4.J. Parameter
K is a decreasing function of g such that:

g<23 = K>1

=23 => K=1

Four abscissa characteristic of the presence of viscosity(BBzlyax, Bz2nmin, Bz2uax) are defined

from the four variables,.§ G, K1, Kz, that is:

BZpin = _iﬁ (19a)
A
BZyax = BZnin Eh(N hsl_qﬂ/z) (19b)
Bz . = —OXMax 19¢
min
K z2
BZ2ax = BZ2min Ech(N hobz2/ 2) (19d)

where ch is the symbol of the hyperbolic cosine with ch(x)-+=e{§/2.

Three of these four abscissa are shown in Fig 3A, the calculations being made with the data displayed
in the green columof Table 1. They are used to delimit three zones, Zone 1 True, Zone 2 True and

Mixed Zone, defined in the following sub-section.

When the internal forces consist of the linking actions of elastic origin on the one hand and the forces
due to viscosity on the other hand, the relative tension (pT1) exerted at the extremities of the fiber at

the end of phase 1 is formulated according to (J48), equation reproduced below:

pTl= [1_ PEIasi—Visc] [6]- +XalK» mix)"' Peiassvise [b( b2 [ﬁ&( Max t Kz U&)J (20)

where ax is the average shortening calculated in (2);a0d K, are determined in (18a) and (18b)
and are two multiplying coefficients greater than 1 relative to the two slopes of elastic)grigimd

Az2s
PrissvisciS @ Weight as function ofX , varying between 0 and 1, such that:

DX = BZLpin 7)

PElasrvisc = 1[822min;BﬂMax[(AX)+[ By, — Bl JE'[BﬂMaX;Bﬂmin](AX (21)
ax min

In the absence of viscosity, i.e;;K K, = 1 with g,> 2.3, relationships (20) and (21) becomes (11)
and (13), respectively.

10
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Zone 1 True, Zone 2 True and Mixed Zone
The introduction of viscosity forces into the equations implies that the shortenings of the hs of a
myofibril are no longer equal; see series of inequalities in (J14). The variability of the lengths of the hs
depends on the coefficients @nd g@,. Figure J4 shows the progression of the 1000 shortenings of the
1000 hs composing a myofibril for 3 values of @r ¢.,).
Following these remarks, equation (20) presents 3 different shapes depending on whether the
shorteningax belongs to one of the following three intervals (Fig 3A):

1/ Zone 1 True (Bzly, < ax < 0): the shortenings of all hs are in Zone 1 and the relationship

between pT1 andx is a straight line segment of slopg.([K,,) traced in dark blue.

2/ Mixed Zone (Bzlax < ax < Bzl.n): the shortenings of the most distal hs have passed into Zone
2 while those of the proximal hs are still in Zone 1; the relationship between pTAxai a

convex parabolic arc traced in violet.

3/ Zone 2 True Bz2,, < &X < Bzlyay): the shortenings of all hs are in Zone 2 and the relationship

between pT1 andx is a straight line segment of slopg,[K,) traced in light blue.

The value of Bzg,, delivered in (19c) is the value for which the tension pT1 is cancelled (Figs 3A and

3B). Consecutively the tension T1 is zero or negative for shortenings belay. Bz2

Zone 1 Enlarged

The curvature of the arc of the parabola in Mixed Zone (Figs 3A and 3B; purple line) is little between
-0X,1 and Bzl.i,. The equation (20) determined for the Zone 1 True remains valid for the entire Zone
1, to which it is possible to add a zone of elongations with the interval [0;|Bz4ee paragraph J.5

of Supplement S4.J. So the tension at the end of phase 1 is formulated béKyeand [Bz.|:
T1=TOL+X 2 (K 5 (BX) Mg, ,[](6%) (22)

Zone 1 Enlarged is displayed in Fig J5a to Supplement S4.J.

Stiffness and strain

Thesstiffness (g) is the slope of the straight line for equation (22):

Thestrain () is the absolute value afx for which the tension T1 calculated in (22) is cancelled

Y, = (23b)

The following equality is noted:

11
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Instant tetanus tension (T@) and instant tension at the end of phase 1 (7)1

A fiber at rest is tetanized in isometric conditions. When rising to the isometric tetanus plat¢au (TO
the instant tension [TOi(t)] varies from O to JT@, during the rise, a series of length steps is practiced,
the instantaneous tension collected at the end of phasg(tt{J.)] for each step is calculated in Zone

1 Enlarged from the relationship (22) reformatted according to:

T4 (t+T ) = T4 (1) = TO; (1) L+ X (1) K (1) AX) (24)

where yis the instant coefficient of elastic origin stiffness evaluated from (14a):

Xi (t) = L (25)

whered Xy is the instant linear range associated with the instant angular t@ngeoer which

the orientation of the levers belonging to the WS heads is uniformly distributed at time t.

and wheré; is the instant multiplier coefficient determined according to (18a):
Ki(0) = N 0/2 ot Npd9/2 )+ N (26)

where gis the instant parameter, constitutive of the presence of viscosity in the instantaneous
experiment; gis calculated according to the equation (J57):

1 TO; (t)

27
LnN hs TOc ( )

gi(t)=0qc +

where qis the characteristic parameter of the presence of viscosity in the control experiment for

which the tension of the isometric tetanus plateau is equalto TO

Equations (24) to (27) are demonstrated in paragraph J.11 of Supplement S4.J. These equations also
apply to time-independent experimental series, such as force step series or length step series at
different intracellular concentrations of calcium, inorganic phosphate or inhibitor of cross-bridges. In

these cases, T3 referred to as "intermediate tetanus tension".

Following expressions (23a) and (23b), the instantaneous normalized stifffe€3 &md the
instantaneous strain ()Yare defined from equation (24):
e _ Xi (t) IK; (1)

TOit 28a
o K. [pTO; (t) (28a)
Yit)=— (28b)
CTOXi K (1)

where the constangs and Ky are equivalent to,yand K.

12
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In support of (28a) and (28b), the instantaneous shgpis Calculated relative tg/e; and Y;:

&) XoKg

X = K P10 O (292)
N — (29b)
AN ORAG

The stroke sizedKuay) iS a constant, so the slogedepends only on the instant linear rangpé()
according to (25). Relatively to/& and Y, with (29a) and (29b), we obtain:

- €o [-ETOi ©)
X 1i(t) =2 08X yax —K; (1) B— 30a
T,i (1) EE M ()ei(t) o Ko (30a)
X 1i(t) =2 (& yax =K (1) ¥ (1)) (30b)
With the linear relationship (9), the corresponding instant angular rééwgeié equal to :
_ €p pTO; (1)
o6 it—2 o0 aX_KitD B 3la
ri (¥ EE : V5 0 X 0K o s Rws (312
(1) = _Ki (1) O (1)
6eT,| (= 2I:EaeMax L o Ryys J (31b)

A hs of the fiber is thus interpreted as a controlled motor system that responds to a perturbation

between two particular equilibrium states:

Equilibrium 1 with pT@=0 andd6r =0 : characteristics of the rest or total relaxation where no

cross-bridge is present

Equilibrium 2 with pT@=1 and 5§ ;=36 : determining conditions of the isometric tetanus plateau

Thanks to the expressions &r; formulated in (31a) and (31b), we have an theoretical "nanoscope”
that allows to study the evolution of the uniform density ofttlamgle of the levers belonging to the

WS heads between the two equilibrium states. The adequate respéfiseasfa function of pTds

broken down into a non-stationary phase with critical regime followed by a stationary phase with
stable state representative of one of the two equilibrium states which acts as a setpoint to respect. The
response is based on 4 equations formulated from (J76) to (J79) in sub-paragraph J.10.7 of
Supplement S4.J relating to various experiments, such as the introduction of a cross-bridge inhibitor,

the tension rise to the isometric tetanus plateau, relaxation and shortening at constant velocity.
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Objective
The purpose of the paper is to compare the previous equations with the experimental points of the

T1/AX relationship presented in figures from the physiological literature.

Statistics
A linear regression is performed between the measured tension values (points recorded on the figures
of the articles listed) and the theoretical tension values calculated at the same velocity. The regression
line goes through the origin, such that:

T=pl5
where T characterizes the values of the theoretical tensions and S those of the experimental tensions; p
is the slope of the regression line equal to:

n

2.S
p=1L

>s?

i=1

The determination coefficient is defining as:

Algorithmic

The sequence of computer programs is written under Visual Basic 6.

In a first step, the relationships developed in Supplement S4.J were verified, particularly the equality
(J18) which attests to the equivalence between the two termand Q,, (Fig J2).Equality (J18) is

used to validate the calculation of the multiplying coefficientsad K, given in (18a) and (18b) as

well as the relationship between pT1 and formulated in (20).

Equations (11) to (31b) were put into algorithms to obtain the plots of the relationshig&X1T1/
AX , (&/ey)/pTQ, Yi/pTQ, 86 /pTQ and X1i/pTQ.

Adequacy between experimental points and theoretical layout
For each curve, the adjustment is made visually by the trial and error method by searching for
determination coefficient (r?) closest to 1 and allocating values to the data relating to myosin heads

that are compatible with those in the literature and with those used in the calculations of Papers 1 to 6.
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Results

An example of the T1 calculation according to the theoretical equations (20) and (21) is given in
paragraph J.6 of Supplement S4.J using the data displayed in the violet column of Table 1. The result

of the modelling is shown in Fig 3B where the red dots come from Fig 13 in [2].

Influence of the duration of phase 11;1)

A demonstration is provided in paragraph J.9 of Supplement S4.J and is illustrated in Fig J9, the points

of which are taken from Fig 19 in [2].

Influence of the intermediate tetanus tension (T;p
A complete analysis where [Ti@ determined from the length of the sarcomere ranging from 2.2 um to
3.25 um is undertaken in paragraph J.10 of Supplement S4.J; see Figs J10a and J10b whose points are

collected, respectively, from Figs 6 and 11 in [7].

The equations of the model are tested with another examples E9aluated on the basis of the

calcium concentration (pCa) in slow and fast fibers collected from human muscle.

1/ With an intracellular calcium concentration (glCequal to 4.5, length step series imposed on a
slow fiber and a fast fiber serve as control experiments. Data for this pCa level are presented in the

dark blue column of Table 1.
Slow fiber pCap=45 = pTQ=1, @=01=1.99 and k=K,;=1.34

Fast fiber pCay=45 = pTQh=1, @=0n=2.07 and k=K, =1.185

In support of equation (20), the two pEX/ plots for the two types of human fibers in control

experiments appear as a blue line on Figs 4a and 4b.
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Table 1. Reference values for parameters related to the calculation of T1 concerning some fibers

isolated from vertebrate muscles.

FromFig 13 From Fig 3Bin FromFigs9Cand9D FromFig1Cin
inFord 1977 Brunello 2009 in Linari 2004 Caremani 2008
Fig No. in 3B, 6 5 4
';i%‘;fﬁ?j’ 38, 39, J10, J14 J13 J11
Animal Rana T® Rana E®@ Man Rabbit
Muscle TAM @ TAM @ muscle Psoas
slow / fast
r 25°C 4°C 12 °C 12.4 °C
pCa 45 4.5 45 45
To 200 pst® 90 us® 110 ps? 110 ps¥
TO 245 kPa 200 kPa 66 kPa/ 109 kPa 156 kPa
LO 6 mm 5 mm 3.15 mm/ 3.51 mm 4.71 mm
Nps 5500 4800 2800/ 3225 3300
LO, 2.2 um 2.14 um 2.4 pm/ 2.45 um 2.47 pm
X Max 11.5 nm 11 nm 11 nm/11.5 nm 13 nm
OXt 8 nm 8 nm 8 nm 8.5 nm
X1 4 nm 3nm 3.5nm/ 4 nm 5nm
Bz1in -3nm -1.7 nm -2.6 nm/-3.4nm -3.4nm
Bz 1yax -4.8 nm -4.6 nm -4.2 nm/-4.4 nm -5.3 nm
Bz2in -6.8 nm -4.6 nm -6.6 nm/-8.3 nm -8.2 nm
Bz2ax -17 nm -24 nm -16 nm/-15nm -17.7 nm
Y21 0.133 nm* 0.133nm™* 0.143nm*/0.133nm* 0.113 nmt
Y22 0.062 nm* 0.067nm* 0.067nm*/0.057nm’* 0.054 nmt
Ka 1.35 2.05 1.34/1.185 1.31
K, 1.7 2.8 1.67 /1.38 1.61
(o 1.99 1.84 1.99 /2.07 2
(o 1.9 1.76 1.89 /1.97 1.91
r2 99.9% 99.8% 99.7%/ 99.8% 97.6%

) Rana Temporaria ® Rana Esculenta ® Tibialis AnteriorMuscle

@ Length step ® Sinusoidal oscillations at 4 kHz

16


https://doi.org/10.1101/2019.12.16.878843

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878843; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2/ An intermediate experiment is performed on the same fiber where the experimental conditions are
similar except for the concentration of intracellular calcium (p&ad consequently the intermediate
tension of the isometric tetanus plateau;;T€ee Figs 9A and 9B in [16]. The viscous parametgr (q
and the associated multiplicative coefficient)(lére calculated in Zone 1 Enlarged according to

equations (27) and (26), respectively, for each intermediate experiment.

Application
Slow fiber pCa;=53 = pT0,=086 = @ =197 and K=1.39
pCa; =549 = pT0,=058 = @}=1.92 and k=1.56
pCaz;=5.63 = pThL=036 = =186 and K=1.85
pCay=5.84 = pT=0.16 = =176 and K=2.63
Fast fiber pCa; =549 = pT0,=0.79 = @ =2.04 and K=1.23
pCa;=5.63 = pTBL,=058 = g.=2 and K=1.31
pCa;=5.84 = pTG=021 = =187 and K=1.79

By following the method recommended in paragraph J.6, it is possible to determine all the parameters
necessary for the construction of the pT1 curves as a functiar dbr each calcium concentration
(Figs 4a and 4b). Between the experimepil values collected in Figs 9C and 9D in [16] and the

theoretical results, there is a good fit (r2>99%) with one exception.
With the expression (27), the mere knowledge of the p&lie corresponding to the intermediate

concentration of calcium tested (pjGa sufficient to calculate the intermediate relative tension;pT1

at the end of phase 1 of a length step.
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slow fiber pT1

- 1.8

pCag = 4.50 (r>=99.7%)
pCa; = 5.30 (r*=99.5%)
pCa, = 5.49 (r*=100%)
pCasz = 5.63 (r>=99.4%)
pCa, = 5.84 (r*=94.2%)

1 T 1 1 1 L] L] AX
43 42 11 40 9 -8 3 (nm)
'stax
fast fiber pT1

- 1.8

- 1.6

- 1.4
= pCa, = 4.50 (r*=99.8%)
= pCay = 5.49 (r*=99.6%) ®
= pCa, = 5.63 (r>=99.3%)
= pCa; = 5.84 (1>=99.1%) PY

®

AX

(nm)

= sx Max L sxz1

Fig 4. Relations of the intermediate tension at the end of phase 1 of a length step (pEE a
function of the average hs shortening £x ) according to the intracellular calcium concentration

(pCa).

(a) and (b) Experiments performed on a slow and fast human fiber, respectively. All points are from
Figs 9C and 9D in [16].
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Study of the instant strain (Y;) during the tension rise to the isometric tetanus plateau
followed by isometric relaxation

An isolated fiber at rest is isometrically tetanized for 300 ms, the tetanus plateau being reached in 100
ms. After 300 ms, the stimulation is stopped and the fiber maintained under isometric conditions is
relaxed for 300 ms; see Fig 1 in [17]. The fiber is tested during the 600 ms (tetanization and
relaxation) using sinusoidal oscillations in length (2 nm per hs peak to peak) at a frequency of 4 kHz.
With the values displayed in the green column of Table 1 as reference data, the instant viscous

parameter (9is expressed as a function of the instant tetanus tensiof) getording to (27):

g =[1.84 +0.118 [Ln(pTH
The theoretical and associated instant multiplier coefficieptigiletermined with (26).

1/ Rise to the isometric tetanus plateau
The instant linear rangéX+;) is empirically modelled according to equation (J78a) presented in sub-

paragraph J. 11.7 of Supplement S4.J, i.e. after affine transformation using (9):
- 75pTO,
8X 1 = 8X1 + (83X max —6XT)E{e 5P '}[(1— 170pTO;) (33)

Equation (33) is represented by a light green line in Fig 5a. The light green points are calculated from

equation (30b) where are introduced the experimental valugscofl&cted on Fig 6B in [17].

Knowing 8X+; modelled by equation (33), the instant elastic origin slgpes(determined with (25).
The instant strain (Y is calculated from (28b) and its graphical representation appears asgadignt
line in Fig 5b. The light green dots are the reproduction of the solid circles in Fig 6B from [17]. There

is a good agreement between theoretical and experimental values.

2/ Isometric relaxation

The parameters gnd K are determined in the same way.

The instant linear rangedXr;) is modelled according to (J79), i.e. after affine transformation
according to (9):

Xt
: 1+ MPTO-04

Starting from the tetanus plateau (pF¥QL), equation (34) is a sigmoid represented by a peacock blue
line on Fig 5a, decreasing from:tb 0. Peacock blue points are calculated from equation (30b) where

the experimental values of #re introduced.

Knowing 6X+; modelled by (34), the instant slogeis evaluated with (25). The theoretical instant
strain () is calculated from (28b) and its curve appears as a peacock blue line in Fig 5b. The peacock
blue dots are the reproduction of the empty circles in Fig 6B in [17]. There is an acceptable agreement

between theoretical and experimental values.
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0Xr;
(nm)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
pTO;

4 ~
3

Y, .|

(nm)
1 rise to isometric tetanus plateau (r*=99.4%)

—@— relaxation after tetanization (r’=98.7%)
1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pTO;

Fig 5. Relations of the instantaneous linear rang®X+;) and the instantaneous theoretical strain

(Y)) as a function of the instantaneous relative tension (pT® during the rise to the tetanus
plateau and in the relaxation phase.

(a) Curves obX+j according to (33) for the rise to the isometric tetanus plateau (light green line) and
(34) for isometric relaxation (peacock blue line). The light green and peacock blue points are
calculated using (30b) with the experimental values;ofty Curves of Yfor the rise to the isometric
tetanus plateau (light green line) and for isometric relaxation (peacock blue line). The light green and
peacock blue dots are shown in Fig 6B from [17].
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Analysis of the intermediate strain (YY) during phase 4 of a series of force steps where
tension and shortening velocity are steady

During phase 4 of a force step, the fiber is tested using sinusoidal oscillations in length (2 nm per hs
peak to peak) at a frequency of 4 kHz. Such oscillations are approximated by a succession of length
steps whose duration of phase 1 is equal to 90 ps; see equality (J46) in paragraph J.5 of Supplement
S4.J. With the data presented in the purple column of Table 1, the value e¥ajuated according to

the equality (J68) explained in sub-paragraph J. 11.3 of the Supplement S4.J, that is:

qiz{(1.99+ 1 an 9q‘SJ+ L ELn(pTOi)}
L6500 20Qus) Lrb500

After computation:
g=1[1.9 + 0.116 [Ln(pTY (35)

The corresponding theoretical factdr is determined according to (26). The intermediate angular
range §6r,) is empirically modelled according to (J80), i.e. after affine transformation using (9):

X 1 -0X
OX 1,i = X Max +ﬁ%ﬁ)‘ (36)
l+e '

where Xuax=12 nm and Z+= 8 nm.

Equation (36) is a sigmoid represented by a light blue line in Fig 6a; from the tetanus plateal) (pTO

to almost total relaxation (pT€ 0), the intermediate linear rang¥X( ) increases froriXy to 6Xyax

The green points are calculated using equation (30b) where are introduced the experimental values of
Y collected on Fig 3C in [13]. KnowiritX+;, we determine in support to (25) the intermediate elastic
origin slope ;). The theoretical intermediate strain)(¥ calculated from (28b) and its curve appears

as a green line in Fig 6b. The green dots come from Fig 3C in [13]. There is a good agreement

between theoretical and experimental values.

The points in Figs 6a and 6b are numbered from the highest tension (i=0 fed pi®the lowest
tension (i=5 for pTg=0.15). On Fig 6a, the value &K s for the bicolor (green and black) point n° 5

is higher thaibXyax. The explanation of this anomaly is provided in accompanying Paper 1 where the
action of viscosity is important at high shortening velocities, i.e. superior at I#¥shnsee Fig 3 of

Paper 1. Yet the hs shortening velocity of point n°$ i&11.9 nnims® per hs as shown in Fig 3A

from [13]; the viscous forces created by continuous shortening overlap with the viscous forces

generated by oscillations with amplitude of 2 nim.psak to peak.
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Fig 6. Relations of the intermediate linear rangedX+;) and the intermediate theoretical strain

(Y;) as a function of the intermediate relative tension (pT,Q during phase 4 of force steps

(a) Curve obX+; ( light blue line) according to (36); green points are calculated using (30b) in support
of experimental values of;Y(b) Y; relation (light green line) with (28b); the green dots are recorded
in Fig 3C from [13].

22


https://doi.org/10.1101/2019.12.16.878843

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878843; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

In Fig 6b, point n° 5 has coordinates pF00.146 and ¥yes= 1.4 nm. It is checked:

Ks0sc= 4.03

K5,(osc+u5)= 1/(Y5,mes|:b(,5) = 433

where ko5 IS the multiplier coefficient induced by viscosity derived from the oscillations alone,
theoretically calculated with (26); being evaluated using (35)5 §sc+us)iS the multiplier coefficient
resulting from viscous actions caused by both oscillations and high shortening vel)cikg (4c+us)
is determined from (28b)s is the elastic origin slope evaluated according to (25) where the linear

range X s is determined with (36).

We deduce the multiplier coefficient elicited only from viscosity imposed; i d):

K
K g =——205¢0) 197

K 5psc

It is a modest figure compared t@ & the result is comparable to the value found in sub-paragraph
J.15.3 determined from the normalized stiffness. Paragraph J.15 is devoted to two other examples of

fiber subjected to a series of force steps and tested by 4 kHz oscillations.

The sigmoid of Fig 6a essentially displays a three-phase look: constancipl@< 1, increasing

linearity if 0.2< pTQ < 0.8 then again constancy if (oIQ < 0.2.

Discussion

Isometric tetanus plateau and determination of TO

Uniform density around an average angular position )

In each hs of an isometrically tetanized fiber, the afigiehich characterizes the orientation of the
lever belonging to a WS head is distributed uniformly betwsemndo,, over the rangédr equal to
about 50° (Fig 2). It is possible to interpret this uniform law as an angular dispersion etjaél/®
around the average positiéndefined in (4). For fibers isolated fraimbialis anterior muscle ofRana

Esculentaand Rana Temporaria, we find with the data from Table 1 of Paper 3:

d0r/2=24.5° and §=3.5°
These values are in accordance with those of the literature: Fig 2 in [18]; Fig 3 and Table 1 in [19] ;

Fig 2c in [20]; '‘around 20° with Fig 4A in [21]; "at least 177 in [15]; "between 20° and 25 [11];
Fig 4B in [22]; Fig 4B in [23].
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Tension stability (TO) during the isometric tetanus plateau

Hypothesis 6 theorized with equation (3) which defines the motor-moment as an affine funétion of
leads to the calculation of TO formulated in (8). Composed of 5 constants, TO is also a constant under
identical experimental conditions. Once TO is reached, the fiber is in stable equilibrium characterized
by an isometric tetanus plateau [10]. If the equilibrium is disturbed by a length step, the tension
becomes equal to TO again after a few tens of milliseconds: all hs regain the characteristic uniform
density betweefi; and6,,, because betwedhq andfg., N0 head is found in WS, this absence being
explained by the slow detachment of the myosin head®@©during the rise to the tetanus plateau

(see accompanying Paper 1).

Analogy with the Buffon needle

In the 18th century, Georges-Louis Leclerc, still called Count of Buffon, cited as a naturalist and
biologist, carried out various experiments where probability and geometry are interlocked. The most
famous of his experiments is to calculate the universal consfeah random throws of a needle on a
slatted parquet; read chapter 10 in [24]. The calculatiarre$ult from the distribution of the angle of
intersection of the needle with the groove in the parquet, angle uniformly spread over a semicircle
after a considerable number of random throws. In a comparable way because of the abundant number
of WS heads assigned to a hs of an isometrically tetanized fiber, the unifortipgtbeerd,, and &

leads to the calculation operated in equality (8) and to the constancy of TO.

Proportionality relationship between TO andAg

The equality (8) indicates that TO is proportionalNg the number of WS heads per hs during the
isometric tetanus plateau, result in accordance with observations [25,26,27,28]. This result is
corroborated by the examples shown in Figs 6a and 6b as well as those shown in Figs J10 and J11 of

Supplement S4.J.

Typology
With (8), TO is also proportional to N the number of myofibrils. Thus, isometric tension must

increase with the size of the muscle fibers and according to the typological classification of skeletal

muscle fibers. We need to check:
TO < TQja < TOp

where TQ, and TQ, are the isometric tetanus tensions of type I, lla and llb fibers, respectively.

These inequalities are confirmed by various experimental measures [29,30,31,32].
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Minimum tension at the end of phase 1 of a length step (T1)

Presence of viscosity

For many physiologists, viscosity-induced forces are present and measured for elongations and
shortenings on muscle fibers at rest, but when these same fibers are stimulated and shortened, the
influence of viscosity disappears or is considered negligible [2,8,33,34]. On the contrary, the
developments in Supplement S4.J reveal that viscosity forces contribute significantly to the drop in
tension observed at the end of phase 1 of a length step. This difference in interpretation is explained:
the hs of a muscle fiber is usually represented by a model with several elastic and viscous components
distributed between the disks M and Z constituting the hs; see the Maxwell and Voigt rheological
devices presented in Fig 35 in [2], Fig 5 in [35] or Fig 1 in [34]. The equations attached to these
schemes are based on the relative velocities between the two disks; in the context of an isolated hs, the
effects of viscosity are effectively negligible; see parametetefined in (15) whose order of
magnitude is 18 nmi*. In our model, the viscous element is represented by a spring attached to the
fixed end of the fiber (Figs J1 and J6 of Supplement S4.J), so the calculations are based on the
absolute speeds of the disks M and Z. A hs cannot be isolated from the other hs. The myofibril must be
studied in its entirety with all hs: on the one hand, the original elastic forces created by the WS heads
are modelled by springs arranged in series and, on the other hand, the actions due to viscosity are
modelled by springs arranged in parallel in a discretely progressive manner from hs to hs. From the
calculations a multiplier coefficient (K) of the elastic slopedmerges which, through equati(#0),

accords theory and observation. The values gfafd K., displayed in Table 1 for the examples

studied are between 1.3 and 2, and are decisive for the evaluation of T1.

Adequacy of the model with the experimental data

The model equations correctly follow the experimental curves of pT1 as a funciton; slee figures

in the article and supplement S4.J. The convex curvature of the slope present in the Mixed Zone (Fig
3A) is observable in many publications [1,2,5,7,33,36,37,38,39,40,41,42,43,44]. To our knowledge,
our model is the first to provide an explanation. The imputation of viscosity forces in the equations
implies that the shortenings of the hs of a myofibril are no longer equal. Shortening is increased from
the proximal hs, i.e. close to the fixed end of the fiber, to the distal hs, i.e. adjacent to the mobile end
of the fiber (Figs J1 and J4). With equations (20) and (21), the change between the two glgpeés (K

and (K;ly ;o) relating to the Zone 1 True and Zone TrueZ2, respectively, is done gradually in the Mixed
Zone where the shortenings of the distal hs are in Zone 2 while those of the proximal hs are still in
Zone 1.

Further evidence of the increasing variability of hs shortenings characterized at the end of phase 1 of a
length step is given in Fig 5 in [8] where the stiffness of the segment that is measured with proximal hs
near the transducer is greater than the stiffness of the fiber evaluated from hs located in the center of

the myofibril..
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Influence of the duration of phase 11.)

Paragraph J.7 of Supplement S4.J is devoted to the rajg @fid the model indicates that viscosity
forces decrease whap, increases (and vice versa) in accordance with observations; see Fig 4B of
[45]. The study in Fig J3 highlights the problem relating to the valug;:oéithert,; is short, i.e. less

than 0.2 ms as recommended, and viscosity forces are strongly presgnts @reater than 0.2 ms

and the role of viscosity decreases but the rapid initiation of myosin heads specific to phase 2 begins

during phase 1 and disrupts the interpretation.

Influence of the value of the intermediate or instantaneous tetanus tension (YO

Paragraph J.11 of the supplement S4.J is responsible for the theoretical developments of this topic, the
main deductions from which are summarized in the Methods section. The experimental works brought
to our attention in which T@&s modified are explained and predicted by the model. The Results section

on this theme and paragraphs J12 to J15 illustrate the robustness of the equations. Once again, the role
of viscosity is essential. We note that the decrease;imdiices that of;via the expression (27), and
increases exponential; according to equality (26). This fact explains why the presence of viscosity

is so pronounced when the fiber is at rest €10).

Analytical "Nanoscope"

From equation (24) are deduced the instant or intermediate formulations of the normalized stiffness
(e/e o) and the strain (Y as a function of pTi0 These expressions lead to the calculation of the
intermediate angular rangéd¢;) in (31a) and (31b). This results in a "nanoscope” that allows analysis
of the intermediate uniform density of tlleangle between the two equilibrium states, the total
relaxation (TG0 ; 66r;=0) and the isometric tetanus plateau,£T0; 56r;=301). The evolution of &¢;

is formulated in four wayq1) Exponential rise from O t80+ representing a variation in intracellular
concentration, the presence of a cross-bridge disruptor or inhibitor (Inset within Fig J11b); (2)
Exponential descent fromOyax to 801 characteristic of the tension rise from rest to the isometric
tetanus plateau (Figs 5a, J12a, J12b, J12c and J13a); (3) Sigmoidal descéft tm specific to

the relaxation phase following the end of the stimulation.(Fig 5a) ; (4) Sigmoidal rise frdm&dax
emblematic of phase 4 of a series of force steps leading to the F/V relationship (Fig 6a, Insets within
Figs J14a and J14b); in support of the description given in Fig 14 from [12], this sigmoidal rise
corroborates the explanation given in the Discussion section of Paper 1 to "Why the maximum step
appeared shorter for high tensions? ". This result will be confirmed again with the calculations carried
out with accompanying Paper 6.

The 4 evolutions 086r; are empirically explained with the equations given from (J76) to (J78). These
expressions, which are inspired by Pierre Francois Verhulst's logistics laws, must be able to be

demonstrated.
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Study of the slack-test as a conclusion

The significant variability in the hs shortenings observed at the end of phase 1 of a large length step
(&< -0Xmax) €xplains the slack-test results. The larger the step, the greater the velocity of shortening
and the more influential the viscosity becomes with an exponential increase in the K coefficient
associated with a decrease in the viscous parameter g (Fig J3). This particular case is illustrated in Fig
J4 for g=1.5, a case in which the differences between shortening lengths are very marked depending

on the position of the hs within the myofibril.
At the end of phase 1, i.e. t=0 according to Fig 1, the hs are divided into 3 categories.

1/ Distal hs: the shortening of these hs is greater in modulu$Xhan and all the myosin heads that
were in WS before the step are now detached while new heads are about to slowly initiate a WS (see

Paper 5); the tension applied to the edges of each hs is zero and is at the origin of the slack of the fiber.

2/ Proximal hs: as the shortening of these hs is nil or almost nil, there is no change and all the myosin
heads initially in WS remain operational at the end of phase 1; the tension at the terminals of each hs is
always equal to T/Nwhere T is the fiber tension before the step and wheres Mhe number of

myofibrils.

3/ Central hs: the shortening of these hs is either in Zone 1 or Zone 2; the tension at the endpoints of

these hs varies gradually from T{b O.

After phase 1 of &lack-test step, the fiber returns to static equilibrium with rapid disappearance of

viscosity (< 0.5 ms) and rebalancing of the length of shortenings around the averade,_x(ailue

We project a series of thought experiences.

1/The isometric tetanus plateau is reached with an average sarcomere length of 2.5 um. Then the fiber
is shortened with a constant velocity,{8) which corresponds to the maximum speed observed during
phase 4 of a force step. As an example, we choose the value presented in Fig 2 of Paper 1, that is in
modulus:

Unvax = 2 Nmms® per hs

As a first approximation, the uniform density for all hs of the fiber extends @by, with pTQ

close to zero as shown in Fig 6a.

When the isotonic ramp performed afureaches amplitude of 300 nm for an average sarcomere
length of 2.2 um, a large length step Witk = -20 nm is applied.

After the end of phase 1, the distal and central hs are rebalanced in tension and length. For proximal hs

that have not shortened, the uniform density of 6 is at t=0 identical to that before the step.i.e. 56
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In a similar way to phase 4 of a force step corresponding to a very low tension near zero, the proximal
hs shorten after the end of phase 1 to g welocity over the entire Iengt}ﬂ_xl during theTgck

duration such that:
2

(37a)

Tslack =
Max

Once the proximal hs are at the right length at timeg,& the rebalancing is completed and the fiber
tension increases from 0, meaning the end of the slack.

This process is repeated for 3 other length stepsﬂth -40 nm, -60 nm and -80 nm. The comments

are similar and the relationship (37a) remains valid for the other 3 steps.

The relationshipz},_x|/rs|ack established in (37a) is represented in Fig 7 by a red ling,fslope
passing through the origin and by the 4 red circles symbolizing the 4 length steps experienced by

thought.

2/ The experiment is repeated by choosing a lower shortening velocity,(Q. Tt the isotonic ramp.
After isometric tetanization where the average length of the sarcomeres is 2.5 um, the fiber is
shortened at a constant velocity equal to (@£UAs a first approximation, the uniform density6of

for all hs of the fiber extends over an angular rangg f8maller than ¢, according to Fig 6a.

Then once the amplitude of the isotonic ramp has reached 300 nm, a large length step of -20 nm is
applied. For proximal hs that have not shortened, the uniform denditisafnchanged and remains

equal todbr o7 Since the tension exerted at the edges of these hs is greater than that of the previous
case, the proximal hs are shortened to a speefdl gu€ater than s, over a maximum distance equal

to the stroke size of a myosin he@X.x). Then the new heads slowly initiate a WS, the distribution

of 6 in the proximal hs extends again uniformly &h.x and the shortening velocity becomeggyu

again over the remaining distanc&” - X max)-

To take into account this faster start ®.x compared to the previous case, a time detgy) (s

introduced such that:

=
Tslack = —Toz (37b)
UmMax
W|th TO.7 = oX Max [E 1 _i]
Umax Uo7

Once the proximal hs are at the correct length at timest& the rebalancing is completed and the

fiber tension increases from zero, meaning the end of the slack.
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Fig 7. Theoretical relationship between the step Iengtl6|A_X|) and the duration of the fiber
slack ('[s|ack) according to the value of the shortening velocity of the isotonic ramp preceding the

length step.
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This process is repeated for 3 other length stepsﬁth -40 nm, -60 nm or -80 nm. The comments
are similar: at the end of phase 1, the uniform density isf equal t056r0; and the proximal hs
shorten with the speed pon 6Xyax Then the shortening speed becomgs again on (A_X| - 0X Max)-

The expression (37b) remains valid with the same timeglafipr each of the other 3 steps.

The relationship relatioh& |/Ts|ackestablished in (37b) is represented in Fig 7 by a purple ling.of u
slope passing through 4 purple squares symbolizing the 4 length steps. For the same step value, the
purple square is located to the left of the red point and the time difference between each purple square

and each red point is equal 0.t

3/ The experiment is repeated by choosing a slower velocity @.3for the isotonic ramp. Since the
tension exerted at the endpoints of these hs is higher than in the previous case, the proximal hs are
shortened to a velocity {§ greater thandy over the rangéXya... Then the new heads slowly initiate

a WS and the shortening speed becomgsagain over the remaining distance to be coverﬁm-

dXwmax). TO take into account this faster start ofig, a time lag o3> 1o7) is introduced:

AX
Tslack = —To3 (37¢)
Max
W|th T 03~ oX Max EE 1 —LJ
Umax UYo3

This process is repeated for 3 other length stepsﬁth -40 nm, -60 nm or -80 nm. The comments
are similar and the expression (37c) remains valid with the same timetglefay each of the other 3

steps.

The relationshid§|/rs|ack established in (37c) is represented in Fig 7 by a blue lingyQfstope
passing through 4 blue triangles symbolizing the 4 length steps. For the same step value, the blue
triangle is located to the left of the purple square, the time difference between each blue triangle and

each red dot is equal tg

4/ The experiment is concluded by choosing a zero shortening velocity characteristic of the isometric
tetanus plateau where the tension exerted at the edges of each hs is maximyn JUSINifter the

end of phase 1, the proximal hs shorten to a spegdr@ater than 4t on dXyax then the shortening

speed becomes,y again over the remaining distancﬁll - X Max)-
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To take into account this faster startodia.y, a time delayt,> 103 is introduced:

AX‘
Tslack = ~To. (37d)
Max
. 1 1
W|th T = oX M EE _—j
Zu Max Yo

The relationshid§|/rs|ack established in (37d) is represented in Fig 7 by a green ling,p8lope
passing through 4 green diamonds symbolizing the 4 steps of length. For the same step value, the
green diamond is located to the left of the blue triangle and the time difference between each green

diamond and each red dot is equalgdo T

It so happens that this series of experiments was carried out on a frog fiber; see description associated
with Fig 3 in [46]. The relationshidnﬁ |/rs|ack that is explored for 5 isotonic ramp velocities and 4
length steps is displayed in Fig 4A from [46] and is, with the exception of a few details, the carbon
copy of Fig 4A. For information, with the values collected in Fig 4A from [46], the orders of

magnitude relative toymand ¢ are respectively 5.5 ms and 200"

K. A. P. Edman was the first to perform the slack-test experiment [47] and to indicate that the slope of

the straight line connecting the points of the relationlsh_)'p|/rs.ackwas equal to yhy.

The explanation given to the experimental results of the slack-test provides new demonstration of the

preeminent role of viscosity in rapid shortening. The same is true for fast stretching.
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