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This work presents two methods that facilitate a 3D reconstruction of microscopic blood vessels
in the volume slightly larger than 1 mm3. The source of the data are histological serial sections,
i.e., microscopic images of probes, stained with immunohistochemistry. Odd and even sections have
different stainings in our primary data set. Thus, firstly, an approach to register an alternately-stained
series is presented. With image filtering and a feature-detection-based registration we obtain a
registered stack of 148 serial sections. The series has missing sections, locally damaged sections,
artifacts from acquisition. All these hinder correct connectivity of blood vessels. With our second
approach we interpolate the missing information while maintaining the connectivity. We achieve this
with deformations based on dense optical flow. The presented methodology is applicable to further
histological series. A combination of both approaches allows us to reconstruct more than 76 % larger
volumes. An important detail was the composition mode of images. Summarizing, we use methods
from image processing and computer vision to create large-scale 3D models from immunostained
histological serial sections.

I. INTRODUCTION

Histological serial sections are the method of choice for
obtaining insights from human tissues at microscopic lev-
els. Despite the availability of further imaging techniques,
ranging from micro-CT to two-photon microscopy, there
is de-facto no choice when working with human specimens.
Micro-CT lacks on resolution and does not allow for label-
ing of specific cells. Nano-CT has too small working area.
Virtually all recently developed imaging methods focus
on model organisms. In them, artificial enhancements
are possible, including fluorescent proteins, artificially-
transparent tissues (incl. “clarity”), and further modifica-
tions that facilitate novel imaging methods. Those cannot
be thought of with humans; the specimens need to be
processed as they are. Immunohistology introduced a
much more precise staining. With immunohistology, spe-
cific molecules can be visualized by “connecting” them to
the antibodies that in their turn make the color pigment
solution precipitate where the sought-for molecules were
in the first place. Those molecules are not necessarily
unique, but in most cases, morphological differences be-
tween different cell types exhibiting the same molecule is
large enough for a proper diagnosis. For an introduction
to histology, consult, e.g., ref. [58].

A single histological section, even with immunostain-
ing, does not suffice for a proper understanding. The
sections are very thin (typically about 7 µm in standard
sections, starting from 1 µm in semi-thin sections), but
cover a larger area (about 1 cm2). This yields a de-facto
two-dimensional representation of the tissue. In longer-
spawning entities, such as blood vessels or nerves, very
little insight can be derived from a single section. Fortu-
nately, a series of histological sections, the so-called serial
sections, can be sectioned, stained, and processed.

The best way of facilitating better understanding from
serial sections is to perform a full-fledged 3D reconstruc-

tion [66]. The path to it is, however, long and problematic.
A proper registration of the serial sections needs to be
established [68]. The sections can vary in thickness and
hence in intensity. They need to be normalized [53]. In
further processing, a correct separation of colors in the
staining [78], faithful selection of the shape, correct mesh
construction [69] and mesh processing should follow. The
presentation of the final reconstruction to the experts is
also an issue. The interaction of the experts with the
model, the so-called visual analytics, is the actual way of
finding insights and producing results. We developed a
virtual realty application for this sake [66, 99, 101].

This paper, however, focuses on the cases when not ev-
erything works well in the required biomedical processing
and the above 3D reconstruction pipeline. The reasons
vary greatly, but in many cases the result is the same:
A section or a part thereof is not available for the 3D
reconstruction.

Previously, the only definite way of coping with such
problems was to truncate the series. While this is the
most pure and not disputable approach, the amount of
data to be discarded is quite extreme. In the series we
mostly focus on this paper, 150 sections were produced,
first and last were controls and were not indented for the
3D reconstruction. Due to problems during biological
processing, 25 sections in the beginning of the series
could not be fully used. Two sections were outright lost.
Acquisition of such a large data set is a tedious and error-
prone process. Because of some focusing problems, not all
section images were usable. When the series was truncated
to mitigate all above problems, only 83 to 91 sections were
usable in varying regions. This constitutes up to 44.67 %
of lost sections. (Fig. 1 presents a truncated and a healed
mesh.) With the methods presented here, we were able to
salvage the damaged regions and to bridge over the lost
sections, reconstructing all 148 immunostained sections.
We operate on a region of interest (ROI) of 2k × 2k pixels,
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(a) Cropped volume (b) Healed volume

Figure 1: Motivation for this paper: healing greatly increases the amount of information available for analysis.
Here, two decimated meshes are presented, which were reconstructed at same iso-value 120 from corresponding
volumes. The meshes are rendered from the same view point. Fig. (a) shows a reconstruction from 84 sections
available in the current region without healing. In (b) the result of our healing method is presented, all 148 im-
munostained sections are used. Notice also the high degree of complexity and self-occlusion. Fig. 9 compares the
full meshes. The 𝑥 and 𝑦 sides of the reconstructions (the wider sides in (a)) span over 1 mm.

yielding a 3D reconstruction of more than 1 mm3 of human
splenic tissue at acquisition resolution of 0.5 µm/pixel.

A. Related Work

There is a lot of related work on registration, including
co-registration of different stainings (Section I A 1) and
co-registration of other modalities (Section I A 2). There
is virtually no related work on the repair of histological
sections (Section I A 3). We also present an overview
of related deep learning approaches (Section I A 4) and
mention the methods we use for evaluation in Section I A 5.

1. Registration of serial sections

Ourselin et al. [80] presented one of the first fully auto-
matic approaches for the “normal” registration of serial
sections. Pichat et al. [84] feature a recent review.

In this work we utilize our feature-based non-rigid
method [68, 106] for the actual registration of the whole
series, extending it to work with alternating staining. In
has been also previously used for a fine-grain registration.
For a pairwise deformation of neighboring sections, we

also used elastix [55].
Kajihara et al. present a framework for registration of

serial sections [51]. They perform a RANSAC-based rigid
registration based on feature detection first, and then
an as-rigid-as-possible region-based registration from key-
point correspondences is used. The regions emerge from
clustering keypoints. Then, local transforms are blended
together to obtain a non-rigid transformation. (In a con-
trast, our registration method [68] uses keypoint detection
and matching; then RANSAC for the rigid phase; then
non-rigid alignment is hierarchically computed from the
neighborhood matches for the whole series of sections,
producing a global pyramid of non-rigid transformations.)
Since Kajihara et al. are concerned with larger series, a
sudden discontinuity in registration is mitigated by man-
ual selection of a reference. Our work is focused on an
automatic registration (with possible manual removal of
an offending image yielding a discontinuity) and, mostly
important, the repair of the damage caused by such a
removal or by inevitable processing and acquisition arti-
facts.

The remaining part of this section handles co-
registration, i.e., the registration of differently stained
sections. Refs. [19, 56] rely on the segmentation of „com-
mon ground" between the different stainings. Similarly
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do Wentzensen et al. [110] and Braumann et al. [18], as
Wentzensen et al. register three different stainings to each
other by the means of a segmentation. They applied some
sophisticated sampling strategies and used a fuzzy clas-
sification of the segmented stainings. We recovered our
similarity information in a pretty different manner.

With a similar goals Mueller et al. [77] focus on de-
formable registration of whole routine sections for digital
pathology, involving elastix [55] and mutual information
with additional constraints. Our work focuses on immuno-
histological stainings.

Mosaliganti et al. [76] developed a registration method
for larger stacks and were bound to introduce “a mixture
of automated and semi-automated enhancements”. Our
registration method is fully automated. User input was
only used to determine the masks during “partial image”
healing sessions.

Lippolis et al. [63] perform co-registration of biopsies or
removed organs, combining H&E, immunohistochemistry,
and a fluorescence marker. They use RANSAC-based
rigid registration, we co-register two immunohistologi-
cal stainings and perform also multiple non-rigid steps.
du Bois d’Aische et al. [31] register micro to macro images
in a complex framework. We focus on one magnification
level.

Jiang et al. [48] hierarchically co-registered H&E and
immunohistochemistry (Caspase3, KI67 and PHH3) with
image-patch-based method, involving FFT followed by
kernel density estimation. They obtained the ground
truth for the evaluation from manual registration. We
used a fully different method stack for the registration,
our evaluation is based on similarity metrics and 3D re-
construction; however our images feature a different grade
of similarity.

Song et al. [96] use unsupervised classification for a
co-registration of differently-stained serial sections. We
pursue a fully different approach as our alternating se-
ries have some “common ground”. Ref. [105] develops a
tool for a more comfortable diagnosis with co-registered
differently-stained sections. They use chamfer matching
for the registration. This work focuses on alternating
series and repair of missing sections. Our series is co-
registered to form a common volume, our evaluation [100]
focuses on the analysis of the 3D models in virtual real-
ity. Section IV 1 a discusses the methodological difference
between the related work and our method.

2. Co-registration in other modalities

Ashburner and Friston [6] co-register neuroimages us-
ing affine transformation and clustering on segmented
images. Another early attempt was performed by Ander-
sson et al. [5].

Bardinet et al. [12] have co-registered some serial sec-
tions and MRI of human brain. The utilized sections
were, however, visually quite similar to MRI cross-sections
(and additionally processed to increase the similarity). A

registration of serial sections to the block face images
(photographs of the probe before this particular section
was made) has been used [82, 92] as a proxy for the reg-
istration with coarser, but inherently 3D data, such as
MRI.

Michálek et al. [74] co-registered matrix-assisted laser
desorption/ionization mass spectrometry and confocal
fluorescence microscopic images. Such images have dras-
tically different resolutions. Lorenzen et al. [70] co-
registered different MR modalities (i.e., data from in-
herently 3D acquisitions) of the same brain. Ourselin
et al. [81] parallelized the co-registration of MRI and CT
data with the goal of a clinical use.

Lee et al. [59] are concerned with learning a similarity
measure from aligned 3D images and then apply it to a
rigid multimodal registration. Tang et al. [102] have a
similar idea, but perform a deformable registration on
MRI and CT. Heinrich et al. [42] derive a modality-
independent descriptor and use it in multimodal MRI and
CT registration.

Wachinger and Navab [107] derive a similarly looking
representation from various modalities of 3D images and
use it for registration. Haber and Modersitzki [41] intro-
duce a different image similarity metric for multimodal
registration of inherently 3D medical images. Gehrung
et al. [36] co-register optoacoustic tomography data with
MRI. Becker et al. [13] co-register micro-CT with histolog-
ical sections with chamfer matching. Such co-registrations
have clinical impact, e.g., [8, 60, 90]. A separate topic is
a groupwise image registration, typically performed on
MRI data, [11, 14, 15, 44, 45, 86, 111].

The actual idea of a co-registration is much broader, it
has been used, e.g., in synthetic aperture radars [61] or
mass spectrometry [83].

3. Repair of damaged series

The quite wide-spread problem of damaged sections
is not often mentioned in the literature, as it is widely
regarded to be a technical issue.

Song et al. [97] are aware of the missing sections prob-
lem, no repair is performed, but attempts to recover the
missing information in order to maintain the registra-
tion; naturally, their method loses precision in such cases.
Burton et al. [21] mention the missing sections problem;
missing data is approximated by averaging nearest neigh-
bor sections. In this work we perform a more elaborate
repair, involving optical flow and a meaningful blending.

In case of a missing section, Saleem and Logothetis [91]
sketch drawings from previously obtained MRI. In a
contrast, we derive information from neighboring sections.

Alic et al. [2] are aware of possibly damaged sections,
but do not elaborate. They co-register MR and histologi-
cal images with larger (60 µm) distance between sections,
using a manual and derived-from-manual segmentations.
Their registration of serial sections uses mutual informa-
tion. We use automatic key-point-based matching.
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Generation of intermediate sections for 3D reconstruc-
tion from microscopic data has been suggested before
[22, 67], however the method presented here differs in
goal, details of blending, and in using registration prior
to the computation of optical flow. A comparison with
existing methods is in Section IV 1 b.

4. Deep learning

Lai [57], Litjens et al. [64, 65], Zhou et al. [116], Ker et al.
[52] and Altaf et al. [4] provide an overview of modern
machine learning techniques in application to medical
imaging. Garcia-Garcia et al. [35] provide a review of
machine learning techniques w.r.t. general segmentation.

Further papers [23, 30, 34, 71, 75, 87, 104, 108, 112, 113]
highlight specific applications of machine learning to med-
ical segmentation or further (medical) image processing.
Ref. [24] is a current result in semantic segmentation.
Quite a few [25, 72, 73, 94] have utilized deep learning to
perform a multimodal registration. Deep learning is also
used for the separation of staining colors [3, 3, 20, 39, 93]
or for registration [10, 27, 28].

We do not use any neural networks in this work, but
utilize conservative image processing and computer vision
repertoire.

5. Evaluation

We use dense optical flow [32] (see [9] for a review),
Jaccard measure [46], and SSIM [109] to visually quantify
the quality of our healing (Section III 1). The actual
assessment can only happen through the evaluation of the
quality of resulting 3D reconstructions (Section III 3). We
use geodesic distance computations on the mesh [26, 29]
for such an evaluation. (A recent development in this
area is, e.g., ref. [79].)

B. Contributions

Firstly, we present a method to “lift” a registration
method to alternating stainings of histological serial sec-
tions, in case there is a common ground between stainings.
Secondly, we introduce a novel method to repair damaged
or missing sections in the series. Our method is able to
maintain the microvessel connectivity. Thus, the size of
section series available for a 3D reconstruction is largely
enhanced. In our running example, the amount of sections
increased from 84 to 148, i.e., an increase of more than
76 %. With the presented method we were able to recon-
struct the vasculature in slightly over 1 mm3 of tissue at
a microscopic resolution.

II. METHODS

A. Data

1. Data origin and description of the data set

We were primarily working with 148 serial sections
from the spleen of a 22-year-old male, acquired in 2000.
The ethics of work with human materials fulfilled local
regulations of the Philipps-University Marburg at the
time of acquisition. The goal of the study was to in-
vestigate the capillary sheaths and the distribution of
B-lymphocytes. The sections were alternatively stained
for CD34 (cells in the walls of blood vessels, blue), SMA
(some supporting structures and environments of arte-
rioles, larger blood vessels, brown), and either CD271
(capillary sheaths and weakly some cells in the follicles,
red) or CD20 (B-lymphocytes, red). Fig. 2 provides an
overview.

The sections were processed for the transmitted light
microscopy. This decision was made because of the estab-
lished staining procedures and because the transmitted
light stainings are permanent and can be stored and re-
examined over decades.

The sections were digitized using Leica SCN 400
scanning microscope with a 20× lens. The final res-
olution was 0.5 µm/ pixel, full sections spanning ap-
prox. 8 mm × 11 mm were captured. A single section
was 7 µm thick, hence the thickness of a full series of
148 immunostained sections covers the distance of more
than 1 mm.

2. Classification of damaged sections

Before we can continue with the description of the regis-
tration and of the repair measures, we need to distinguish
between different kinds of damage in the digitized serial
sections. Fig. 3a shows a non-damaged section, stained
for CD34, SMA, CD271. Possible damage includes:

1. A physically missing section. The section in total
was lost during biological processing.

2. Damaged part of a section. Some region in the
section sustained damage, that is visible in the image
regardless the acquisition kind, see Fig. 3b.

3. A larger part of a section or whole section is not in
focus. Short of repeated acquisition, nothing can
be done for this section, see Fig. 3c.

4. Some region of a section is not in focus or damaged
in a different manner; however, parts of a section
are in focus and can be successfully used for the
section-wide registration, compare Figs. 3d, 3e.

Boiled down to a ROI the above classification leads to
two cases.

• An image in the series is irrecoverably lost and needs
to be replaced.
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(a) Full ROI (b) CD34 (c) Converted (b) (d) SMA (e) CD20

(f) Middle from (a) (g) Middle from (b) (h) Middle from (c) (i) Middle from (d) (j) Middle from (e)

(k) Full ROI (l) CD34 (m) Converted (l) (n) CD271 (o) Middle from
blurred (b)

(p) Middle from (k) (q) Middle from (l) (r) Middle from (m) (s) Middle from (n) (t) Middle from blurred (l)

Figure 2: Overview of our main data set. The first and the third row show a 2.5k × 2.5k pixels ROI, the second and
fourths row zoom in at the center to show details. Subfigures (a)–(j), (o) show registered section no. 10 (even, with
red for B-lymphocytes), subfigures (k)–(n), (p)–(t) show registered section no. 11 (odd, with red for capillary sheaths).
In all cases, blue pigment is present in CD34-positive cells, brown in SMA-positive.
Subfigures (o), (t) show zoomed blurred CD34 channel processed in the same way, the registration input is. Subfig-
ures (c), (h), (m), (r) show the input channel for further processing.
Scale bars for full images (first row and (k)–(n)) are 200 µm, scale bars for center crops (second, fourth rows and (o))
are 50 µm.
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• A part of an image in the series is lost, but other
parts are usable.

B. Processing

1. Registration of alternating series

The methods for the registration of different stainings
are based on either human input or on some degree of sim-
ilarity between the different modalities. Machine learning
from the annotations of identical or similar objects in
varying stainings is able to identify “common” labels that
are, in their turn, registered to each other. In our case, we
were not able to afford the luxury of manual labeling. A
mutual information or an extended machine learning ap-
proach on the “extracted” CD34 channels appears viable,
but we chose a different approach.

The biological experiment was designed to have some
common stainings between two subseries, the CD34 and
SMA channels. A known method to separate the different
colors in a histological staining is color deconvolution [78].
We aimed to apply our previously developed registration
method [68] to alternating series. This method is based
on feature detection, matching, and non-rigid deforma-
tions. The latter were computed with a Krylov subspace
optimization method [33]. For the actual deformations,
B-splines were used. We decoupled the “detection” im-
ages (the images the registration works on) from the
“transformation” images (the images the established trans-
formations are applied to). We found it crucial to denoise
the feature detection inputs using Gaussian blur with
𝜎 = 6 (see also Figs. 2o, 2t). Without blurring, we found
it impossible to register the series. We speculate that the
noise visible in Figs. 2g, 2q produced a lot of small, very
similar features. These confused the non-rigid registra-
tion.

We obtained a registration of a full series in its original
resolution (thousands of pixels per side). For it, we used a
blur-based denoising; the registration was applied to the
full sections (mitigating local problems); instead of the
missing sections and of some damaged sections duplicates
of their neighbors were used as a placeholder. The latter
issue necessitates further processing.

A rigid phase and 4 levels on non-rigid deformations,
were established on the blurred images and subsequently
applied to the actual full series of complete sections. In
our experiments we used the CD34 (blue) channel for the
registration, as this channel contains continuous structures
(blood vessels). Acquisition artifacts in the series also
influenced the registration. We stress that above section
replacements can be tolerated as an intermediate step only,
as a missing section unequivocally means interruptions of
the capillaries.

At this stage, a region of interest can be selected. In a
typical 3D reconstruction pipeline we select ROIs of size

2.5k × 2.5k pixels for the final output of 2k × 2k pixels
after the final interpolation step.

2. Healing of separate channels

We used standard method by Reinhard et al. [89] as
implemented by Khan et al. [53]. for the normalization
of the ROIs.

The healing is commenced on normalized channel-
separated images. First, a color deconvolution [78] is
performed on the final registered images. We obtain
four channels: CD34, SMA, CD271, and CD20. Color
space conversion is performed from color-paletted 8-bit
images (originating from color deconvolution) to intensity-
based single-channel 8-bit images. To give an example, in
Fig. 2 we converted the output of color deconvolution for
CD34 (b), (l) to a negated green RGB channel (c), (m).

a. Healing in general We routinely use our optical-
flow-based interpolation [67] to reduce the anisotropy
of the data in our reconstructions [99, 101]. Having
initially acquired the data with spatial resolution of
0.5 µm/voxel × 0.5 µm/voxel × 7 µm/voxel, we produce
volumes with 0.5 µm/voxel × 0.5 µm/voxel × 1 µm/voxel
for the actual 3D reconstruction. We heavily modify
this interpolation mechanism for the healing of missing
sections.

Due to the nature of CD20 labeling (B-cells), we do not
need to perform a “connecting” interpolation on it. SMA
is rather used as a guide to distinguish larger arterioles
from smaller capillaries; it can sustain some damage or
replicated sections. CD271 appears only in every other
section, so interpolation is needed here. We also apply
the below method to CD271, but it is not as crucial
there as it is for CD34. Repeated sections or missing
image parts produce interruptions in blood vessels that
are reconstructed from CD34 labeling. Such interruptions
change the topology and connectivity of the blood vessel
network. Hence, CD34 channel has to be healed.

b. Healing a completely missing image There is no
“extra” information to come by, when an image is com-
pletely missing. Let us denote the image sequence in
question with 𝐴–𝑋–𝐵. Image 𝑋 is missing; images 𝐴
and 𝐵 are its neighbors. In some cases, to reduce the
movement in the next step, we pairwise register 𝐴 to 𝐵
(yielding 𝐴′) and 𝐵 to 𝐴 (yielding 𝐵′) with elastix [55].
Notice that elastix is applied to already registered series.
In other cases the movement can be bridged with optical
flow, hence there we just set 𝐴′ := 𝐴 and 𝐵′ := 𝐵.

Next, we create an optical-flow-based intermediate im-
ages from 𝐴′ to 𝐵′, resulting in the end with an image we
call here 𝑋 ′. This way we aim to approximate the moving
from 𝐴 to 𝑋 and from 𝑋 to 𝐵 in the whole series. The
“movement” (originating from the registration and from
the optical flow intermediates) is also of benefit for the
3D reconstruction, as it alleviates the artifacts from just
mechanical replication of 𝐴 + 𝐵 as purported 𝑋 (cf. Ta-
ble I and Fig. 8e). With it, some capillary connections
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(a) A region from an intact
section

(b) Masked damage in a
region

(c) Region not in focus (d) A heavily damaged
region

(e) A damaged, but recov-
erable region

Figure 3: Examples for different kinds of damage in serial sections. All scale bars are 200 µm.

are maintained that would be broken otherwise (see also
Fig. 9). Section II B 2 d details on optical flow and inter-
mediates. The nature of the composition operator + is a
separate issue, see Section II B 2 e.

c. Healing missing parts of an image For the missing
parts on an image the procedure is similar. Consider the
same images 𝐴, 𝑋, 𝐵 as above. However, as we now have
a mask 𝑀 on the damaged parts of the image 𝑋, instead
of trying to “imagine” the whole contents of 𝑋, we need
to do so only where 𝑀 is not zero. The remaining, “valid”
parts of 𝑋 are mixed into the image 𝑋 ′. Also here the
composition operator is important.

In the case of an out-of-focus image which is still
marginally usable, the mask 𝑀 is zero everywhere. The
offending image is fittingly registered, because other re-
gions outside of ROI are still in focus. In this case, adding
it to the “imagined” image 𝑋 ′ enhances the result, as
Fig. 4 shows.

d. Optical flow and distortion Dense optical flow by
Farnebäck [32] models signals 𝑓1 and 𝑓2 as quadrics, e.g.,
𝑓1(𝑥) = 𝑥𝑇 𝐴1𝑥 + 𝑏1𝑥 + 𝑐1, where 𝐴1 is a symmetric
matrix, 𝑏1 is a vector, and 𝑐1 is a scalar. The signal 𝑓2
has a similar representation, it is displaced by 𝑑. Local
polynomial approximations are used below. We simplify
the notation by writing 𝐴 for a local approximation 𝐴(𝑥).

Let 𝐴 := (𝐴1 +𝐴2)/2 and Δ𝑏 := −(𝑏2 − 𝑏1)/2. The dis-
tance between 𝑓1 and 𝑓2 can be viewed as a displacement
field 𝑑, depending on 𝑥, with 𝐴𝑑 = 𝑏. Let

𝑑(𝑥) =
∑︀

𝐼 𝑤𝐴𝑇 Δ𝑏∑︀
𝐼 𝑤𝐴𝑇 𝐴

with sums running over all 𝑥 in a region 𝐼 and 𝑤(𝑥) a
weight for handling edges. In practice, the values 𝐴𝑇 𝐴,
𝐴𝑇 Δ𝑏, Δ𝑏𝑇 Δ𝑏 (for confidence) are computed point-wise.
We use a multi-scale implementation from OpenCV [17,
50].

Let 𝒟(𝐴, 𝐵) be the dense optical flow between ma-
trices 𝐴 and 𝐵. The flow is a vector field of local ap-
proximations 𝑑(𝑥). We denote by ℱ𝑠

𝐴,𝐵(𝑋) an operation
than computes the flow 𝒟(𝐴, 𝐵) and then distorts 𝑋 by
𝑠 ·𝒟(𝐴, 𝐵) for a scale factor 𝑠 ≥ 0. For example, ℱ1/2

𝐴,𝐵(𝐴)
distorts 𝐴 halfway to appear similar to 𝐵. We utilize

OpenCV to apply the distortion.
e. Combining the flows for healing In both above

cases of healing we compute the optical flow 𝒟(𝐴′, 𝐵′)
between 𝐴′ and 𝐵′ and also 𝒟(𝐵′, 𝐴′). Then 𝒟(𝐴′, 𝐵′)
is used to distort 𝐴′ at the magnitude 𝑠, with 0 ≤ 𝑠 ≤ 1,
i.e., we compute ℱ𝑠

𝐴′,𝐵′(𝐴′). Similarly, we obtain the
other direction ℱ1−𝑠

𝐵′,𝐴′(𝐵′). As we aim for a “middle
ground”, we would combine ℱ𝑠

𝐴′,𝐵′(𝐴′) and ℱ1−𝑠
𝐵′,𝐴′(𝐵′)

at 𝑠 = 1/2. It is possible to use alpha-blending for the
composition [67], but it is less useful here as Section III 3
reports. With alpha-blending, an intermediate is

1
2ℱ

1
2

𝐴,𝐵(𝐴) + 1
2ℱ

1
2

𝐵,𝐴(𝐵).

Crucial for the good results is the proper composition
mode. Here we primarily use “lighten”, i.e.,

𝑌 = ℱ
1
2

𝐴,𝐵(𝐴) ⊕ ℱ
1
2

𝐵,𝐴(𝐵),

where ⊕ is the pixel-wise intensity maximum.
Finally, recall the presence of an image mask for healing

only missing parts of an image. In this case, the non-
masked parts of 𝑋 are combined with the image 𝑌 with
⊕, resulting in the final result 𝑋 ′.

C. Further processing and visualization

After the healing, we interpolated the CD34, SMA,
and CD271 volumes with our optical-flow-based method.
The interpolated volumes were further processed in
3D Slicer [54, 85]—a bit differently for each channel. In
case of CD34 (blood vessels), the volume processing con-
sists of the morphological closing filter and Gaussian blur-
ring. In some cases, e.g., for CD271, we also dilated the
volumes. Then we generated the meshes [1, 7, 69] and
processed them further [26, 49]. Section III 3 details on
the mesh processing for this paper.

In practice, the final meshes were visualized in our
virtual-reality-based application [66]. With the ability
to place annotations and perform mesh painting, our
software is used by the domain experts for knowledge
discovery [99–101].
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(a) Image 𝐴 (b) Image 𝐵 (c) The offending unsharp
image 𝑋

(d) The “imagined” inter-
mediate 𝑋′

(e) The final result

(f) Middle from (a) (g) Middle from (b) (h) Middle from (c) (i) Middle from (d) (j) Middle from (e)

Figure 4: Healing an out-of-focus image. Still present information is reused. Scale bars in the top row are 200 µm,
scale bars in the bottom row are 50 µm.

Table I: Numerical measures for the images from
Fig. 6. The final result of our method is 𝑋 ′, i.e., Fig. 6b.
The image 𝑍 is the result of our method on 𝐴 and 𝐵,
i.e., Fig. 6a. Basically, in the case of 𝑍 the registration
is omitted. The images 𝑇 and 𝑇 ′ are the result of max-
imum intensity blending applied to the inputs 𝐴 and
𝐵 and to registered inputs 𝐴′ and 𝐵′ correspondingly.
They basically omit the optical flow from our method.
The Jaccard measure was computed on images with
binary threshold 120.
Values range between 0 and 1. The higher the values
the better.

Image pair SSIM SSIM Figure Jaccard

𝐴–𝐵 0.133 5c, 5g 0.123
𝐴′–𝐵′ 0.0935 5k, 5o 0.0100
𝐴–𝐴′ 0.159 – 0.0219
𝑍–𝑋 ′ 0.143 6c, 6g 0.359
𝐴–𝑋 ′ 0.105 6i, 6m 0.238
𝑋 ′–𝐵 0.112 6j, 6n 0.251
𝑇 – 𝑋 ′ 0.118 – 0.342
𝑇 ′–𝑋 ′ 0.157 – 0.432

consecutive 0.185 – 0.285

III. RESULTS

With the presented method we were able to extend
a consecutive series of 84 undamaged sections (Fig. 1a)
to 148 sections spanning over a 1 mm in the direction of
𝑧 axis (Fig. 1b). This means an grave 76.2 % increase in

number of available images. Section III 3 details on how
the both above images were reconstructed.

In general, medical experts rated our healed meshes
higher than the alternatives and similar in quality to the
truncated meshes. The rating was based on experts’ per-
ception of vasculature connectivity in ours reconstructions,
which were inspected and quality controlled w.r.t. origi-
nal registered sections in virtual reality. (Fig. 9 mimics
such an analysis with geodesic distances.) Healing does
not change intact images in the serial section stack. To
quantify the difference between different methods, we use
image- and mesh-based approaches below.

First, we evaluate our method with deformed and non-
deformed input images, as well as compare the results
of interpolation to the both neighbors in Section III 1.
Sections III 2 a and III 2 b compare our healing method to
ground truth on spleen and lung data sets. Section III 3
evaluates the 3D reconstructions from various healing
strategies. The goal of this work was to restore broken
connectivity in 3D reconstructions, hence it needs to be
evaluated on those. All spleen images were normalized [89]
to a common ground before processing.

1. Image-based evaluation of healing in production

Fig. 5 quantifies the elastix-based transformations of
the input images. We compare original inputs 𝐴 (a), (e)
and 𝐵 (b), (f) with 𝐴′ (𝐴 registered to 𝐵) (i), (m) and
𝐵′ (𝐵 registered to 𝐴) (j), (n) using SSIM (c), (g), (k),
(o) and optical flow (d), (h), (l), (p).
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(a) Image 𝐴 (b) Image 𝐵 (c) SSIM be-
tween 𝐴 and 𝐵

(d) Optical
flow between 𝐴
and 𝐵

(e) Middle
from (a)

(f) Middle
from (b)

(g) Middle
from (c)

(h) Middle
from (d)

(i) Image 𝐴′ (j) Image 𝐵′ (k) SSIM be-
tween 𝐴′

and 𝐵′

(l) Optical flow
between 𝐴′

and 𝐵′

(m) Middle
from (i)

(n) Middle
from (j)

(o) Middle
from (k)

(p) Middle
from (l)

Figure 5: Normal and elastix-preregistered input for
healing. Fig. 6 shows results. Table I presents SSIM
and Jaccard values. Scale bars in the first and third
rows are 200 µm, scale bars in the second and forth rows
are 50 µm.

Fig. 6 showcases the results and quality measures of
our method applied to the original inputs and to elastix-
preregistered inputs. We see that SSIM is lower in 𝐴′–𝑋 ′

(i), (m) and 𝑋 ′–𝐵′ (j), (n) pairs than in 𝑍–𝑋 ′ pair (c),
(g), where 𝑍 is the result of our method without prior
registration (a). Jaccard measure (Table I) supports this
statement and optical flow visualization shows some local
movement in Fig. 6 (d), (h), (k), (l), (o), (p). Optical flow
visualizations appear similar between 𝐴–𝐵, and 𝐴–𝑋 ′,
𝑋 ′–𝐵 (Fig. 5, (l), (p), Fig. 6 (d), (h), (k), (l), (o), (p)),
but consecutive sections yield less movement in optical
flow (not shown). We argue that the local movement,
shown to us by optical flow (k), (l), (o), (p), matches the
desired outcome as we distort both images 𝐴 and 𝐵 to
obtain a better intermediate.

In Table I the differences in SSIM and Jaccard measure

Table II: Evaluating our method with ground truth
on a spleen data set (Fig. 7). Image 𝐴 precedes the
actual interpolated image, image 𝑋 is the ground truth,
image 𝑋 ′ is the interpolated image.
Values range between 0 and 1. The higher the values
the better.

Image pair SSIM Jaccard

𝐴–𝑋 0.151 0.289
𝐴–𝑋 ′ 0.182 0.354
𝑋–𝑋 ′ 0.125 0.346

are similar between 𝐴–𝑋 ′, 𝑋 ′–𝐵 and two consecutive
sections. Surprisingly, both SSIM and Jaccard measure
are very low for 𝐴′–𝐵′ pair (Fig. 5k), i.e., for repeatedly
registered input. A possible explanation is that 𝐴′ is
distorted to fit 𝐵, but 𝐵′ is distorted to fit 𝐴. It is rather
a way to distort both images towards an unavailable
common ground 𝑋 than a proper registration of 𝐴 to 𝐵.

The highest Jaccard value results from an image pair
𝑇 ′–𝑋 ′. Images 𝑇 and 𝑇 ′ apply the blending method
of our choice ⊕ to original (basically, 𝑇 = 𝐴 ⊕ 𝐵) and
registered images (𝑇 ′ = 𝐴′ ⊕ 𝐵′). Still, there is a substan-
tial difference between 𝑇 ′ and 𝑋 ′. Similarly, there is a
difference between 𝑋 ′ and 𝑍 (our method applied to 𝐴
and 𝐵), resulting from repeated registration. Notice that
our optical-flow-based interpolation also introduces local
distortions.

2. Evaluation of healing on known images

a. Spleen We took three undamaged consecutive
sections from our main data set, cropped them to
2.3k × 2.3k pixels for more clarity, and pretended that
the middle section needs to be healed. Full image was
to be healed. We then subsequently computed the image
measures similar to the previous section. No additional
registration of images 𝐴 and 𝐵 was used. Fig. 7 and
Table II report on our findings. The pair 𝐴–𝑋 is consec-
utive. SSIM between 𝑋 and 𝑋 ′ (j), (n) appears lower
(i.e., worse) than between 𝐴 and 𝑋 ′ (i), (m). Optical flow
visualizations are inconclusive in (l), (p) vs. (k), (o), but
all those visualizations have some bright spots. Jaccard
measure is slightly lower for 𝑋–𝑋 ′. Summarizing, SSIM
is higher at 𝐴–𝑋 ′ pair, as 𝑋 ′ partially consists of 𝐴. In
a contrast, Jaccard measure is similar between 𝐴–𝑋 ′ and
𝑋–𝑋 ′, the relatively high latter value allows us to rate
the healing result as a success. Still, we evaluate also the
models with different healing methods in Section III 3.

b. Lung To demonstrate that our method works also
on very different sections, we took a subseries of a rat
lung serial sections [37, 38, 98]. Specifically, 2604 semi-
thin sections with thickness of 1 µm of a pathological
lung from a 12 week old Fischer F344 male rat were
produced. The sections were stained with toluidine blue.
A short resampled subseries with 800 × 800 pixels was
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(a) Result of healing on 𝐴 and 𝐵 (b) Result of healing on 𝐴′

and 𝐵′, the final result
(c) SSIM between (a) and (b) (d) Optical flow between (a)

and (b)

(e) Middle from (a) (f) Middle from (b) (g) Middle from (c) (h) Middle from (d)

(i) SSIM between 5, (a) and (b) (j) SSIM between 5, (b) and (b) (k) Optical flow between 5, (a)
and (b)

(l) Optical flow between 5, (b)
and (b)

(m) Middle from (i) (n) Middle from (j) (o) Middle from (k) (p) Middle from (l)

Figure 6: Healing in a case with elastix-preregistered input. Quantification of input images is in Fig. 5. See Table I
for SSIM and Jaccard values. In SSIM, the brighter are the images, the better. In optical flow, the darker the
images are, the better. Scale bars in the first and third rows are 200 µm, scale bars in the second and forth rows are
50 µm.
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(a) Image 𝐴 (b) Image 𝑋 (c) Image 𝐵 (d) Interpolated image 𝑋′

(e) Middle from (a) (f) Middle from (b) (g) Middle from (c) (h) Middle from (d)

(i) SSIM between 𝐴 and 𝑋′ (j) SSIM between 𝑋 and 𝑋′ (k) Optical flow between 𝐴 and 𝑋(l) Optical flow between 𝑋 and 𝑋′

(m) Middle from (i) (n) Middle from (j) (o) Middle from (k) (p) Middle from (l)

Figure 7: Evaluating our method with ground truth on a spleen data set. Image (b) is the ground truth, image (d)
is the result of our method. In SSIM, the brighter are the images, the better. In optical flow, the darker the images
are, the better. Scale bars in the first and third rows are 200 µm, scale bars in the second and forth rows are 50 µm.
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selected for testing. It was rigidly pre-registered using our
usual registration [68]. Images 𝐴 and 𝐵 were non-rigidly
registered towards each other with elastix [55], resulting
in 𝐴′ (a) and 𝐵′ (c). The images presented here were
cropped after processing to 500 × 500 pixels to omit edge
effects from registration. We did not apply normalization.

Fig. 8 shows the evaluation of our method on lung data
with ground truth. SSIM and optical flow were computed
on the full images, optical flow signaled larger changes at
image edges. We show 500 × 500 center crops from those
quality measures in Figs. (g), (h). SSIM between the
ground truth 𝑋 (b) and interpolated image 𝑋 ′ (d) on the
full images, including the non-matching edges, is 0.846,
SSIM between same cropped images is 0.935. We interpret
this very high SSIM value as a success. Low values of the
optical flow in Fig. 8h support this interpretation.

3. Evaluation of final 3D models

To evaluate different approaches, we use nearest neigh-
bor interpolation (a straightforward approach), truncate
series to contain only “good” sections, utilize an optical-
flow-based interpolation with alpha-blending (our method
with blending per [67]), and use the method presented here,
optical-flow-based interpolation with intensity-maximum-
blending. All these methods are applied to the same
spleen image series.

In all cases, the full 3D reconstruction pipeline is uti-
lized. We start with a registered data set [68], apply nor-
malization [89], color deconvolution [78], and above heal-
ing methods. After healing, inter-slice interpolation [67]
is applied, followed by volume filtering. We apply 3D
grayscale closing filter with radius 7 and a Gaussian blur
with 𝜎 = 1. Then, the mesh is constructed with iso-
value 120. We apply mesh repair [49] (octree depth 9),
Taubin smoothing [103], and small component removal
(at 2 % of the main diagonal). Figure 1 visually com-
pares the cropped and healed meshes. We then compute
geodesic distances from the same starting point and over
the distance of 100 % of the main diagonal.

Figure 9 compares the features of the three complete
meshes. The data sets are very dense and self-occluding.
The difference between the methods is visible in the
amount of connections in the blood vessels. In other
words, where more interruptions are (due to missing or
non-present repair), there more unconnected components
ensue. Such components are colored in dark red.

If we zoom in (Figs. 9d–9l), we see some not-connected
blood vessels in dark red in nearest neighbors and in
alpha-blended meshes. Those blood vessels are connected
with our method. To be more specific, some blood vessels
were not connected with nearest neighbors (d), (g), or
with optical-flow-based healing with alpha blending (k).
Those blood vessels were connected when using optical-
flow-based healing with maximum blending (f), (l). Sup-
plementary video shows the mesh from (c) in motion.

We additionally evaluated all the vertices in those four

meshes by their connectivity with above geodesic distance
computation. Fig. 10 considers a) number of vertices
having the geodesic distance of zero (i.e., not connected to
the starting point) compared to the number of connected
vertices; b) the violin plot [43] of geodesic distances for all
vertices in each of the meshes. It appears hard to describe
the differences between the reconstructions statistically.

IV. DISCUSSION AND FUTURE WORK

1. Existing methods

a. Registration Registration methods typically as-
sume a certain degree of similarity in the representation
between the to-be-registered images. Focusing on registra-
tion of serial sections, in most cases the staining the same
throughout the series (“unimodal” registration). In a
classical multimodal registration the subject is the same,
but the representations (i.e., the stainings) are differ-
ent. A “common ground” needs either to be established
with a segmentation, or similarities are established with
a machine learning method. Basically, an intermediate
representation, similar for all modalities is established.
The registration operates on this intermediate, the ac-
tual transformations are then transferred to the original
images.

In our case, the registration of an alternating series
is a typical research task. Our stainings are established
to answer a research question. This is a very different
setting from establishing a multimodal registration for
routine clinical stainings. Clinical stainings will be created
in larger amounts for years after the establishing the
registration. Hence, a machine learning approach makes
economically sense, even with some additional manual
labeling to bootstrap the learning. In our case, there are
too many sections to be labeled by hand and too few to
establish a proper machine learning method. Per design
of the biological study, we have, however, a “common
ground” in form of SMA and CD34 stainings in our data.

We previously used CD34 to establish a registration
of uniformly stained serial sections. In the case of the
registration of alternating series, the pure CD34 channel
extraction by the means of color deconvolution did not
work, but a denoised CD34 channel performed well.

Thus, we present here not an unconditional multimodal
registration method that can operate on sections with
no common ground via some similarity measure, but a
fully automatic method to lift a registration method from
uniform stainings to alternating stainings with a common
ground.

Our contribution is thus different from all known to us
related work on “unimodal” and multimodal registration.
It is a very technical, but decisive and new contribution
that allows for all the further processing in the 3D recon-
struction pipeline. Our experience might be useful for
others when designing a study with more channels than
chromogens usable at once. We basically show the way
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(a) Image 𝐴 (b) Image 𝑋 (c) Image 𝐵 (d) Interpolated image 𝑋′

(e) Image 𝑇 ′ = 𝐴′ + 𝐵′ (f) Difference between 𝑋 and 𝑋′ (g) SSIM between 𝑋 and 𝑋′ (h) Optical flow between 𝑋
and 𝑋′

Figure 8: Evaluating our method with ground truth on a lung data set. Images 𝐴 (a) and 𝐵 (c) are used as an
input. Image 𝑋 (b) is the ground truth, image 𝑋 ′ (d) is the result of our method. Image 𝑇 ′ (e) is a direct combina-
tion of 𝐴′ and 𝐵′ using maximum composition. Fig. (f) shows more than 1 % difference between 𝑋 and 𝑋 ′ in red.
In SSIM (g), the brighter are the images, the better. In optical flow (h), the darker the images are, the better. All
scale bars are 200 µm.

for a conventional, “unimodal” registration (in our case:
a fully automatic feature-based method) to “survive” an
alternating stainings. The prerequisite is that some ubiq-
uitous structures are present in both stainings, labeled in
the same manner. Nerves or blood vessels are examples
of such structures.

b. “Healing” In the biomedical community a dam-
aged histological section is often perceived as an inevitable
artifact of lab work. Such artifacts are seldom reported
in publications; basically a further, better section is to be
produced to make the result publishable. This behavior is,
however, not quite productive in 3D reconstructions from
serial sections. A series needs to be consecutive for a 3D
reconstruction. Should a section in the middle of a series
be missing, only truncating a series or repair approaches
are viable. A typical approach of others is to “repeat”
the nearest neighbor section. Fig. 9 (d), (g) shows the
drawbacks of this approach in form of broken connectivity
in dark red.

All prior repair methods known to us cannot deal with
damaged sections without loosing the connectivity of mi-
crovessels. Our method is able to maintain such a con-
nectivity, which is novel.

In ref. [97] missing sections are reported to degrade the
quality of registration. Our registration is able to bridge
a missing section by repeating a neighbor. However, we
had to introduce the presented method to maintain blood
vessel connectivity. Burton et al. [21] have averaged near-
est neighbor sections. We show that our method is more
precise than the nearest neighbor repetition or even than
the “healing” with alpha-blending (Fig. 9). Our method
involves further non-linear distortions stemming from ad-
ditional registration beforehand and from transformations
induced by optical flow. Such non-linearity contrasts
our approach with averaging. Our method is also more
reproducible than sketching the missing sections from
low-resolution unstained overview [91].

It appears to be viable to “heal” a missing section
with existing mechanisms for the interpolation between
sections [22, 67]. Indeed, we also used optical flow for
such interpolations. However, we found that a correct
blending method is crucial for the success of section repair,
as Fig. 9k shows.

Summarizing, our method is more sophisticated and
more precise in maintaining connectivity than other ap-
proaches. Our method is also more reproducible than the
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(a) Overview, nearest neighbor (b) Overview, healing and alpha-blending (c) Overview, healing and maximum intensity

(d) Zoom, nearest neighbor (e) Zoom, healing and alpha-blending (f) Zoom, healing and maximum intensity

(g) Zoom, nearest neighbor (h) Zoom, healing and alpha-blending (i) Zoom, healing and maximum intensity

(j) Zoom, nearest neighbor (k) Zoom, healing and alpha-blending (l) Zoom, healing and maximum intensity

Figure 9: Geodesic distances from same origin for different kinds of healing applied to the same data set. Notice
unconnected parts of blood vessels in dark red in other healing methods, marked with black arrows. Figs. (a)–(c)
provide an overview, (d)–(l) show detailed views. The widths of the complete reconstructions (a)–(c) are 1 mm
each.

suggestions from the literature.

2. Evaluation criteria

It appears hard to us to precisely and practically eval-
uate the connectivity of the data in a very large, highly
self-occluding data set. Using synthetic data can be an op-
tion, but real data sets are much more complex and might
leave some cases unhandled in mock data. Image-based
metrics (Tables I, II) show rather the correspondence of

two images, whereas a good healing “imagines” a middle
ground between two images. We found empirically that
distorting the two neighbor images and then combining
them to an intermediate produces better results, but this
approach naturally slightly decreases the similarity be-
tween the intermediate and original neighbor images. It
also appears that the repeated registration to 𝐴′ and 𝐵′

decreases the similarity between both distorted images as
well. This is not bad as such, as long as the optical flow has
enough common ground to perform well. Statistic evalua-
tions (Fig. 10) of whole meshes are quite subdued: some
broken-off parts might be a very minor issue statistically,
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Figure 10: Statistical evaluation of reconstructed
meshes. In (a), the dark bars show the number of con-
nected vertices (the higher, the better), the light bars
show the number of unconnected vertices (the lower,
the better). The violin plots in (b) show the general
distribution of the geodesic distances on all vertices. In
both figures, “nn” stands for nearest neighbor, “alpha”
for our healing method with alpha blending, “crop” for
the truncated volume with no damaged sections, “max”
for our healing method with maximum blending.

but it would be appallingly clear during a visualization
or a visual analytics session.

For the above reasons we regard a mesh-based evalu-
ation of the repair methods crucial. In Fig. 9 we found
some branches not connected in alternative methods that
are connected in our suggested approach. A proper quality
metric is also relevant in the context of the next section.

3. Deep learning

Image-based deep learning methods for recovery of
missing image parts, e.g., ref. [115], are relevant and
can be used to extend this work. Even more inter-
esting are mesh- or voxel-based deep learning methods
[16, 40, 47, 62, 88, 95, 114] with which a similar task to
our original motivation could also be solved: interrup-
tions in a 3D scene due to missing data could be detected,
classified, and repaired. We further discuss this idea in
the next section.

However, the big questions on the reproducibility of
the results and on understanding of the actions of the
network might hinder wider adoption of a deep-learning-
based method in the area of medical imaging. Our healing
method has a nice property of being a combination well-
understood image transformations. Should a mistake in
our method be detected, the source of the problem can
be found easily.

Quality control criteria for connectivity repairs are quite
easily defined. Corner cases are: something is not con-
nected, but it should be; something is connected, but
should not be.

4. Future work

Further adjustments of the registration technique are
viable. These include experiments with further feature
detection, description, and matching algorithms. An
extension of matching to incorporate the structure of the
data set could further improve the registration. Offloading
more work to the GPU would improve execution times.

In general, registration methods for larger alternately-
stained sections would be always sought for. The reason
for this is that immunohistochemistry for transmitted
light microscopy (and also, but less so, for fluorescence)
is limited in the number of simultaneous “channels”, the
number of antibodies that can be combined in a single
staining.

Of course, we look forward to apply our healing tech-
nique to further series and organs. Optical microscopy im-
ages from serial semi-thin sections of animal lung probes
look promising; Section III 2 b showcases our first at-
tempts. A more confident investigation of human bone
marrow stainings for blood vessels and certain progenitor
cells becomes more viable. A healing technique becomes
even more crucial in the context of larger human tonsil
data sets, as this organ is often damaged during acquisi-
tion.

It still appears interesting to straightforwardly apply
deep learning to image-based healing and to compare the
result with our method. This study does not use machine
learning methods by its design, as it aims for explain-
able intermediates. Future voxel- or mesh-based healing
methods (potentially based on works mentioned above)
might be instrumental in correction of the interruptions
in biological mesh data.

V. CONCLUSIONS

The contributions of this paper are twofold. Firstly, we
found a way of registering alternating histological serial
sections using an originally non-multimodal registration
method. Secondly, we present a methodology to repair
damaged or missing sections from a histological series.

With a simple, but previously not published trick, we
registered a series of alternating serial sections, 148 images
with dozens of thousands pixels per side. Our approach is
based on color deconvolution and image filtering, followed
by an existing feature-based registration. Our method is
fully automatic. Basically, we have “lifted” a registration
method that operated on a series with same stainings to
a method operating on alternating series.

Damage happens routinely at all phases of processing
serial sections, during biological processing, during ac-
quisition, or even during digital processing—registration
errors, for example. We were able to “heal” missing data
from a series of sections. We reached our goal of recover-
ing the lost 3D connectivity in a histological series with
image-based methods. Our healing methodology promises
the availability of larger series and larger potential 3D
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reconstructions, which facilitates better understanding of
biological structures.

Specifically, applying the presented methods to a series
of 148 immunostained serial sections, we were able to
reconstruct more than 1 mm3 of a tissue at a microscopic
resolution. In the same region only 84 sections could have
been reconstructed with conventional methods.
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