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Abstract 

Modelling behavioural deficits based on structural lesion imaging is a popular approach to 

map functions in the human brain, and efforts to translationally apply lesion-behaviour 

modelling to predict post-stroke outcomes are on the rise. The high-dimensional complexity 

of lesion data, however, evokes challenges in both lesion behaviour mapping and post stroke 

outcome prediction. This paper aims to deepen the understanding of this complexity by 

reframing it from the perspective of causal and non-causal dependencies in the data, and by 

discussing what this complexity implies for different data modelling approaches. By means of 

theoretical discussion and empirical examination, several common strategies and views are 

challenged, and future research perspectives are outlined. A main conclusion is that lesion-

behaviour inference is subject to a lesion-anatomical bias that cannot be overcome by using 

multivariate models or any other algorithm that is blind to causality behind relations in the 

data. This affects the validity of lesion behaviour mapping and might even wrongfully 

identify paradoxical effects of lesion-induced functional facilitation – but, as this paper 

argues, only to a minor degree. Thus, multivariate lesion-brain inference appears to be a 

valuable tool to deepen our understanding of the human brain, but only because it takes into 

account the functional relation between brain areas. The perspective of causality and inter-

variable dependence is further used to point out challenges in improving lesion behaviour 

models. Firstly, the dependencies in the data open up different possible strategies of data 

reduction, and considering those might improve post-stroke outcome prediction. Secondly, the 

role of non-topographical causal predictors of post stroke behaviour is discussed. The present 

article argues that, given these predictors, different strategies are required in the evaluation of 

model quality in lesion behaviour mapping and post stroke outcome prediction. 

 

Abbreviations: VLBM - voxel-based lesion behaviour mapping; MLBM - multivariate lesion 

behaviour mapping; SVM - support-vector machine 
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1 Introduction 

One of the main objectives of cognitive neuroscience is to understand the relationship 

between brain anatomy and behavioural functions. A powerful method to achieve this is to 

study the relation between focal brain damage and behavioural deficits. Not only is lesion-

behaviour mapping in cerebral stroke the oldest method in this field, it is a driving force in 

human brain mapping (Rorden & Karnath, 2004). In voxel-based lesion behaviour mapping 

(VLBM; Bates et al., 2003; Rorden, Karnath, & Bonilha, 2007), the relation between 

structural topographical lesion data and a behavioural target variable is statistically modelled 

to map functions onto the brain. Such lesion behaviour models are also clinically applicable if 

they are able to accurately predict performance when modelling chronic post-stroke outcomes 

based on acute lesion imaging. 

Lesion behaviour modelling, however, is not a trivial task. A researcher can choose 

between a plethora of univariate and multivariate algorithms. Many strategies on how to 

select or dimensionally reduce features from brain imaging exist. And last but not least, 

evaluating or interpreting lesion-behaviour models can be challenging, especially as different 

applications of lesion behaviour models have different requirements and can be influenced by 

the choice of different parameter settings. All these challenges are magnified by the fact that 

lesion data are high-dimensional and complex. Lesion imaging provides us with information 

in a large amount of imaging voxels, i.e. the smallest units of a brain image, and the 

information between these voxels is not independent. 

The present paper aims to provide the reader with a new perspective on lesion-

behaviour data and dependencies between variables in this context. With this perspective, we 

are able to re-evaluate present approaches in lesion behaviour modelling, and we can identify 

strategies to improve it. This is achieved by theoretical considerations and supported by 

empirical examples based on simulations using real lesion data. The present paper claims that 

some common methodological beliefs in the scientific field are wrong and that some 

commonly used analysis strategies are limited in their current implementation. 

 

2 General Methods and data availability 

All empirical examples in this paper are based on a publicly available dataset of 131 

normalised left hemisphere stroke lesions from the Moss Rehabilitation Research Institute at 

the University of Pennsylvania, as available in the LESYMAP software 

(https://github.com/dorianps/LESYMAP). This dataset contains binary lesion maps obtained 

from either CT or structural MRI imaging that were normalised to MNI-space (see Pustina, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.17.878355doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878355


 4 

Avants, Faseyitan, Medaglia, & Coslett, 2018 for further information). Analyses were 

performed with Matlab 2018a, SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), libSVM 3.23 

(Chang & Lin, 2011), and NiiStat (https://www.nitrc.org/projects/niistat/). Topographies were 

visualised using MRIcron (https://www.nitrc.org/projects/mricron) and MRIcroGL 

(https://www.nitrc.org/projects/mricrogl). Several empirical examples in this paper are based 

on simulated behavioural variables (for details and rationale see Mah, Husain, Rees, & 

Nachev, 2014; Pustina et al., 2018; Sperber & Karnath, 2018). Such simulations are a 

powerful tool to validate many aspects of lesion behaviour mapping methods. However, there 

is no set of perfectly realistic simulation parameters, and thus ecological validity is limited. 

All simulated data underlying shown examples, simulation scripts, lesion overlay maps, and 

statistical topographies are publicly available at 

https://data.mendeley.com/datasets/ydm2rfk9sn/2. No part of the study procedures or analyses 

was pre-registered in a time-stamped, institutional registry prior to the research being 

conducted. 

 

3   Causality and correlation in lesion-behaviour relationships 

Lesion-behaviour mapping is commonly seen as a method that – contrary to methods such as 

fMRI, EEG, or MEG – allows us to draw conclusions about causal relationships between 

behaviour and brain (Rorden & Karnath, 2004; Zavaglia et al., 2015). That means that if we 

identify brain regions that are associated with a deficit in lesion-behaviour mapping, we can 

assume that the region’s functionality is essential, or, in other words, causal for the behaviour. 

Voxel-based lesion behaviour mapping (Bates et al., 2003; Rorden et al., 2007), a mass-

univariate brain mapping method based on the framework of statistical parametric mapping 

(Friston et al., 1995), has been widely used and is the most popular method following this 

rationale of brain lesion-behaviour inference. 

After several years of flourishing success, the popularity and authority of VLBM was 

suddenly overshadowed by findings of systematic errors in the VLBM method (Mah et al., 

2014). Using simulation approaches, Mah and colleagues showed that topographical results 

were misplaced towards the centres of the major cerebral arteries. Although some 

methodological objections against the size of the bias and its operationalisation exist (Sperber 

& Karnath, 2017; Pustina et al., 2018; Sperber, Wiesen, & Karnath, 2019a), several studies 

replicated this finding (Inoue, Madhyastha, Rudrauf, Mehta, & Grabowski, 2014; Sperber & 

Karnath, 2017; Sperber et al., 2019a), suggesting that a bias of statistical topographies is 

indeed an issue inherent to the VLBM method. 
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This limitation of VLBM was attributed to its mass-univariate design, i.e. the fact that 

in VLBM each voxel is tested independently of all other voxels in the brain. This contrasts 

with actual brain anatomy in two ways: voxels in the brain are 1) lesion-anatomically 

dependent and 2) functionally dependent. Firstly, the voxel-voxel lesion status, i.e. how 

regularly voxels are damaged together in individual patients, is systematic due to lesion 

anatomy, i.e. due to stroke following the vasculature and arteries’ varying susceptibility to 

stroke. This violation of independence is thought to induce the topographical bias along the 

vasculature (Mah et al., 2014; Sperber & Karnath, 2017; Karnath, Sperber, & Rorden, 2018). 

Secondly, brain functions are not anatomically organized in single voxels, but in larger areas 

or networks. The violation of functional dependence induces the so-called partial injury 

problem (Rorden, Fridriksson, & Karnath, 2009; Sperber et al., 2019a), which leads to 

reduced statistical power when larger functional modules are often only damaged in parts. 

Accordingly, it has been shown that VLBM often fails in simulation settings where two or 

more distinct brain areas underpin a function (Mah et al., 2014; Zhang, Kimberg, Coslett, 

Schwartz, & Wang, 2014; Pustina et al., 2018) by missing some, or all, areas. 

The impact of these findings was intensified by a parallel methodological innovation – 

the establishment of multivariate lesion behaviour mapping (MLBM) methods. These 

methods allow for mapping lesion behaviour inference by using computational models that 

account for the status of all voxels at once (e.g. Mah et al., 2014; Zhang et al., 2014; Pustina 

et al., 2018). It has been postulated that MLBM, which accounts for the mutual dependence of 

voxels, is the solution to the limitations of mass-univariate VLBM, including the lesion-

anatomical dependence (Mah et al., 2014; Xu, Jha, & Nachev , 2018). Large parts of the 

lesion behaviour mapping community adapted this view and repeated the claim that MLBM 

resolves these limitations of VLBM (e.g., Adolphs, 2016; Carter et al., 2017; Toba et al., 

2017; DeMarco & Turkeltaub, 2018; Thye et al., 2018; Xu et al., 2018; Zhao et al., 2018; 

Dickens et al., 2019; Gläscher, Adolphs, & Tranel, 2019; Howard, Smith, Coslett, Buxbaum, 

& Krakauer, 2019; Valero-Cabré, Toba, Hilgetag, & Rushmore , 2019; Wong, Jax, Smith, & 

Buxbaum , 2019). However, empirical findings do not fully support this view. Indeed, it has 

been shown that MLBM is often superior to VLBM in identifying brain modules that consist 

of multiple regions or networks (Zhang et al., 2014; Pustina et al., 2018; Sperber, Wiesen, 

Goldenberg, & Karnath, 2019b). Thus, MLBM seems to resolve the partial injury problem. 

On the other hand, so far it has not been shown that the topographical bias is absent in 

MLBM. Instead, a lesion-anatomically induced bias of topographical results comparable to 

the bias in VLBM was found for an MLBM method based on support vector regression 
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(Sperber et al., 2019a). Still, it has been claimed that the main reason to use multivariate 

instead of mass-univariate methods is that MLBM accounts for lesion-anatomical dependence 

and resolves the issue of topographical bias, and therefore univariate methods must be 

replaced by multivariate methods (Nachev, 2015; Xu et al., 2018). 

To sum up, several studies claim that MLBM solves the limitations of mass-univariate 

lesion behaviour, and large parts of the field embraced this view. This position stands vis-à-

vis the empirical finding that at least one MLBM method based on support vector regression 

does not live up to this expectation (Sperber et al., 2019a). One can argue that the reason 

might be shortcomings of just this MLBM method, but not an issue of MLBM in general. 

This paper argues that the inability to account for lesion-anatomical dependence is indeed a 

shortcoming of any common multivariate approach to lesion behaviour mapping. To 

strengthen this point, it does not suffice to empirically evaluate some MLBM methods. 

Rather, it requires strong, universal theoretical arguments. These can be found by reframing 

the term ‘causality’ in lesion behaviour mapping.  

 

3.1 Rethinking lesion behaviour modelling with causal models 

Before the scientific field was aware of topographical biases in VLBM, a common view was 

that significant findings in VLBM generally indicated regions in which damage is causal for a 

deficit. The concept of causality can intuitively be illustrated with graphical causal models 

(see Pearl, Glymour, & Jewell, 2016). If two adjacent significant regions A and B were found, 

the classical VLBM perspective assumed damage to each feature to be causal for the deficit 

individually (Fig.1A). This view was challenged by the discovery of the topographical bias, 

meaning that in our example damage to region B might indeed not be causal for the deficit, 

although statistically significant voxels are found there (Fig.1B). This can be explained by 

taking into account the vasculature in our causal model (Fig.1C). If we assume that both 

regions are supplied by the same minor cerebral artery, then a stroke in this artery (or any 

major artery supplying this minor artery) will likely cause damage to both areas. The upper 

three nodes of the graph (stroke to the minor cerebral artery and damage to areas A and B) 

now constitute a fork. For such fork in graphical causal models where X is a common cause 

of variables Y and Z, variables Y and Z are likely dependent (see chapter 2.2. and SCM 2.2.6. 

in Pearl et al., 2016), or, using terminology from inferential statistics, both variables are 

associated. Thus in our example, the damage status of areas A and B will be dependent, 

which is the lesion-anatomical dependence between brain regions/voxels introduced in the 

previous section. Now, the most important point is that i) the behavioural deficit and damage 
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to area A are causally related and dependent and that ii) damage to area A and area B are 

dependent. From this it follows that iii) also damage to area B and the deficit will be 

dependent, but without a causal relation between both. The possible dependence between 

damage to area B and the deficit is a mere association. Statistical tests, however, are ignorant 

of the concept of causality. They merely identify associations and, therefore, might also 

associate region B with the behavioural deficit. This is why VLBM can suffer from a 

topographical bias. But we can even go beyond regions A and B and look at all areas in the 

brain. Many areas in the brain might share the same major or minor cerebral artery with area 

A, which can be illustrated by an oversimplified graphical causal model (Fig. 1D). Therefore, 

the damage status of many regions will be dependent on the damage status of area A, and the 

deficit will, to some degree, be associated with many or, even all, areas in the brain. This 

results in statistical parametric maps that contain more or less high non-zero values in all 

areas of the brain, even when only damage to a small circumscribed region is causal for a 

behavioural deficit. To conclude, we can reframe the term ‘causality’ in lesion-behaviour 

modelling: brain-behaviour associations are commonly found all over the brain, and only 

some of them in fact reveal a causal relation. Although disease-informed brain mapping in 

theory allows us to draw conclusions about causal brain-behaviour relations, VLBM does not 

necessarily identify the areas where damage is causal for a deficit, but first and foremost areas 

with the strongest lesion-deficit associations. These will likely correspond to a high degree to 

the regions that are actually causal, but – as we have seen in the previous section on 

limitations of VLBM – with some systematic deviations. 
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Figure 1 Graphical causal models of lesion-behaviour relationships 

Graphical causal models illustrate different views on causality in lesion-behaviour 

relationships. Nodes illustrate different variables, and arrows indicate (putative) causal 

relations between these variables. Dotted lines indicate that no causal relation between 

variables, but merely a non-causal association exists. The brain image is a statistical 

map taken from the VLBM analysis seen in Figure 3, based on a simulation with the 

pars triangularis as ground truth. To keep the illustration simple, the non-causal 

associations between damage in different areas in panel D are not shown. 

 

With this new perspective of causality in lesion behaviour relations, what do we learn about 

the (in)ability of multivariate lesion behaviour mapping to overcome the systematic deviations 

of VLBM? How can any lesion-brain inference method resolve the issues raised by lesion-

anatomical dependence between voxels? The answer is: the method needs to draw causal 

inference. If, and only if, a multivariate inference method can separate between a mere (non-

causal) association and a causal relation, it will not suffer from limitations originating from 

lesion-anatomical dependence. 

Are multivariate approaches, such as multiple regression or machine learning 

algorithms using support vector machines, support vector regression, or neural networks, able 

to draw causal inference? No, they are not. “Machine learning programs (including those with 

deep neural networks) operate almost entirely in an associational mode. They […] attempt to 

fit a function, in much the same way that a statistician tries to fit a line to a collection of 

points.” (see p.30 in Pearl & Mackenzie, 2018). The only way to draw causal inference with 

machine learning algorithms or classical inferential statistics is a randomised controlled 

experimental design, where the researcher manipulates the independent variable. This is not 

the case in lesion-behaviour data, and thus multivariate methods are not the solution to all 

limitations of VLBM. 

 

3.2 Simulation example 

If MLBM supposedly still suffers from limitations due to lesion-anatomical dependence, it 

remains an open question why MLBM using a support-vector machine (SVM) performed so 

well in the second experiment of the study by Mah et al. (2014). In this study they 

investigated a simulation based on damage to the gyrus angularis (Brodmann area 39) and 

parts of the inferior frontal gyrus (Brodmann areas 44). In this example, mirroring different 

conflicting theories about the neural correlates of spatial neglect, VLBM grossly misplaced 
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parts of the topographical results into the superior temporal gyrus. On the other hand, the 

voxels that contributed the most to the multivariate lesion-behaviour model using a linear 

SVM were situated in the actual ground truth areas. The error encountered in VLBM in the 

latter example does not resemble the above-mentioned description of the partial injury 

problem, where some areas might simply not be correctly identified by VLBM due to 

decreased statistical power. Significant voxels were found in an entirely different area, 

suggesting that a spatial lesion-anatomical bias was responsible for the incorrect results. If 

this is truly the case, then MLBM by SVM might have, in fact, overcome the issues 

originating from lesion-anatomical dependence. However, as we will see, these findings were 

only a part of the picture. 

To critically re-evaluate this previous example from the study by Mah and colleagues, 

I replicated the simulation experiment on the example lesion data of 131 left hemisphere 

stroke patients. The same parameters were chosen, i.e. the behavioural deficit was simulated 

based on damage to the ‘ground truth’ areas 39 and 44 of the Brodmann atlas in MRIcron 

(Fig. 2A). If more than 20% of voxels in either area were damaged, a patient was considered 

to suffer from a deficit with a probability of 90%. The deficit was thus a binary one and 

lesion-behaviour relations were analysed in each voxel affected in at least 5 patients using 

mass-univariate Liebermeister-tests with Bonferroni-correction at p < 0.05 as implemented in 

NiiStat. Note that the Liebermeister test is a common binomial test in VLBM, and it only 

differs from Fisher’s exact test in minor details (Rorden et al., 2007). 

The results were highly unexpected in one way: no misplacement of statistical results 

into the superior temporal gyrus was found (Fig. 2B). Most of the 8719 significant voxels 

were located in or close to Brodmann area 44; whereas, only a small number of significant 

voxels were found in or around Brodmann area 39. A typical example of the partial injury 

problem can be seen in the present simulation, with reduced statistical power to identify all 

areas in a multi-region module. Visual inspection of the topography reveals a slight shift of 

significant clusters away from the cortex towards the centre of the territorial artery. However, 

no gross misplacement of the results was found. However, investigation of the non-

thresholded Z-map (Fig. 2C) revealed that there were indeed several sub-threshold peaks in 

brain areas located between both Brodmann areas, including subcortical and temporal areas 

(Fig. 2C). Thus, although the results did not exactly replicate the findings by Mah and 

colleagues, the present results still find enlarged signal in temporal areas to some degree. The 

discrepancies between both studies likely arose from differences in sample characteristics, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.17.878355doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878355


 10

which have been shown to affect results in VLBM (Gajardo-Vidal et al., 2018; Sperber & 

Karnath, 2018). 

Let us now look at this example and how functional and lesion-anatomical dependence 

between voxels induced errors in the VLBM analysis. Firstly, both Brodmann areas are 

functionally dependent. Therefore, the partial injury problem reduces statistical power in the 

areas where we want the VLBM analysis to produce significant results. This was the case in 

Brodmann area 39 in the present example and, to some degree, also in both areas in the 

former experiment by Mah and colleagues. Note that in their online available supplementary 

3D figure it becomes apparent that a majority of significant voxels in their topography were 

still also found in, or neighbouring, the ground truth areas, and only a smaller proportion was 

misplaced into the superior temporal gyrus. Secondly, the lesion-anatomical dependence lead 

to an association of subcortical, as well as, temporal areas with the symptom. This happens in 

brain areas where damage often coincides with damage to ground truth areas. In this example, 

the association is especially high as temporal areas might often be damaged together with 

either Brodmann area 39 or 44. 

Is high-dimensional, multivariate lesion brain inference able to overcome these issues? 

To answer this question, the same data were also analysed with MLBM based on a linear 

kernel SVM, mirroring the analysis by Mah and colleagues. To do so, the SVR-LSM Toolbox 

(Zhang et al., 2014) was modified and a hyper-parameter optimisation was added. All voxels 

damaged in at least 5 patients were included as features to predict the simulated behavioural 

score. Hyper-parameter C was optimised by a 10-fold cross-validation for C ranging from 2-20 

to 220. Model fit was maximal for C = 2-16 with a cross-validation prediction accuracy of 

89.3%. Individual feature weights were then scaled to a maximum of 10 and re-mapped into 

brain space. The SVM feature-weight-map (Fig. 2D) demonstrated peak values in both 

Brodmann areas, which resembled the significant areas of the VLBM (Fig. 2B). A visual 

comparison with the full VLBM Z-map showed that peaks in the SVM feature weights more 

clearly stood out of the signal in the surrounding areas. A closer look at the lower feature 

weight range (Fig. 2E), however, revealed several aspects: i) areas with larger signal in the 

VLBM Z-map (Fig. 2C) and SVM feature weight map (Fig. 2E) appeared to be relatively 

similar, but with the VLBM Z-map having much smoother transitions between high and low 

signal areas, ii) areas with larger feature-weights appeared to be slightly shifted away from 

cortical ground truth areas towards the centre of the arterial territory in a similar manner as 

areas with larger Z-values, and iii) a few smaller clusters with larger feature-weights were 
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scattered across areas situated between both Brodmann areas, for example, in subcortical and 

temporal areas. 

In summary, visual comparison of the VLBM Z-map and the SVM feature weights-  

map indicates that, in this example, the multivariate model indeed outperforms mass-

univariate models as it provides a stronger and more clear-cut signal in the ground truth areas. 

Still, the SVM did not only utilise information in voxels that were causally linked to the 

deficit through the simulation, but also in voxels that were non-causally associated with the 

symptom in voxels neighbouring the ground truth areas, and occasionally even in areas 

further away. Doing so, the map of these voxels bore some resemblance to the VLBM map.  

Thus, it seems that multivariate inference is not hampered by functional dependence 

between areas, but still by lesion-anatomical dependence. Not affected by functional 

dependence and the partial injury problem, the SVM in the previous study by Mah and 

colleagues – contrary to VLBM – correctly found peak values in the ground truth regions. At 

the same time, the SVM likely also used information from temporal areas. The reason for this 

is that damage in these temporal areas was associated with the symptom and helpful in the 

prediction. However, due to the multivariate approach accounting for functional dependence, 

information from temporal areas was less helpful in the prediction than information from the 

ground truth areas in frontal and parietal cortex, and therefore peak voxels were found in the 

ground truth areas. 
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Figure 2 Comparison of mass-univariate and multivariate lesion-brain inference 

A) In the example lesion data set, a behavioural symptom was simulated for each 

patient based on damage to Brodmann areas 39 and 44. B) and C) Lesion behaviour 

mapping of these simulated behavioural data was first performed with a mass-

univariate VLBM by the Liebermeister test (Bonferroni correction threshold for p < 

.05 at Z = 5.22, maximum Z = 7.09). D) and E) The same data were also mapped using 

a high-dimensional approach based on a support vector machine. Feature weights were 

scaled to a maximum value of 10. Note that negative feature weights are not shown. 
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3.3. Conclusion 

High-dimensional, multivariate lesion-brain inference is a valuable innovation that allows us 

to advance our knowledge about functional brain anatomy, and it has the potential to replace 

former mass-univariate methods in parts or even entirely. Nevertheless, it is not perfect. The 

high-dimensional complexity of anatomical lesion data results in a situation where only causal 

inference can yield perfectly non-biased results, and such causal inference is not employable 

in a hypothesis-free, high-dimensional inference problem (see Pearl et al., 2016). Thus, it 

seems that we have to accept that lesion-behaviour mapping, just like any other method in 

neuroscience, is imperfect. 

A last word on post stroke outcome prediction. The lesion-anatomical bias has been 

shortly discussed in this context (Price, Hope, & Seghier, 2017), but is it indeed relevant? 

Commonly, multivariate machine learning algorithms are used in this field (e.g. Rondina, 

Filippone, Girolami, & Ward, 2016; Rondina, Park, & Ward, 2017; Hope, Leff, & Price, 

2018; Loughnan et al., in press), and, therefore, no difference is made between features that 

are causally linked to or only non-causally associated with the target variable. Both might be 

used to increase the predictive performance of these models, and if we only follow a 

pragmatic approach, this should not bother us. If we can obtain a good prediction of lung 

cancer occurrence by looking at the number of work breaks somebody takes or from knowing 

if a person carries a lighter in their pockets, this can be clinically useful, even if carrying 

household objects in your pocket is no cause for cancer. A relevant question, however, is how 

algorithms deal with redundant information (e.g. smoking and carrying a lighter), which will 

be a topic in section 5 on feature reduction. The perspective on causality and association in 

lesion-behaviour data, however, comes with one important implication for stroke outcome 

prediction: we might find useful features for prediction outside of brain areas that are causally 

linked with the behaviour. For example, primary motor deficits might be predictable from 

topographical information taken from outside the motor system. Further, the predictive value 

of individual features also depends on lesion anatomy. If typical lesion anatomy differs 

between samples – e.g. due to different inclusion criteria with regards to maximum symptom 

severity, aetiology, or lesion size – the association strength between individual features and 

the target variable might differ. Thus, model generalisability might be limited between 

different clinical samples when recruitment strategies differ. 

 

4   Inverse lesion-behaviour relations – paradoxical functional facilitation? 
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A typical consequence of cerebral damage are deficits across a wide range of cognitive, 

perceptual, and behavioural domains. A by far less common finding is the opposite effect – 

improved functions due to focal brain damage. A popular example is the ‘Sprague Effect’ in 

cats (Sprague, 1966): after unilateral lesions to all cortical visual areas, cats suffer from 

homonymous hemianopia and are unable to visually orient to stimuli in the contralateral 

hemifield. However, when the cats’ contralateral superior colliculus is also subsequently 

lesioned, a surprising restoration of orienting behaviour towards the contralateral hemifield 

can be observed. While this and most other paradoxical behavioural facilitation effects were 

described after experimental lesions in animals, some are also discussed in humans (for 

review see Kapur, 1996). For example, possibly analogous effects to the Sprague-effect may 

exist in humans (Fecteau, Pascual-Leone, & Théoret, 2006; Valero-Cabré et al., 2019), and 

enhancing facilitating effects were reported for aphasic patients in lie detection (Etcoff, 

Ekman, Magee, & Frank, 2000) and patients with frontal lobe damage in an arithmetic 

problem solving task (Reverberi, Toraldo, D’Agostini, & Skrap, 2005). 

Although these cases are rare, they display exciting findings that can expand our 

understanding of how the brain functions (Kapur, 1996). Hence, some lesion behaviour 

mapping tools investigate both positive and negative lesion-behaviour relations (e.g. SVR-

LSM toolbox by Zhang et al., 2014; LESYMAP by Pustina et al., 2018), and multivariate 

lesion behaviour mapping methods have been postulated to be of use in the investigation of 

such effects (Toba et al., 2017; Valero-Cabré et al., 2019). While this is surely the case, 

caution might be advised. If there are non-causal positive lesion-behaviour relations when 

regions are systematically damaged together, there might also be non-causal negative lesion-

behaviour relations when regions are systematically not damaged together. To illustrate 

paradoxical effects by a real-world example, imagine the entirety of all current English 

Premier League football players. In this group, training goalkeeping will be highly predictive 

of low (i.e. below average) dribbling and finishing skills, i.e. goalkeeper training will 

negatively correlate with these field players’ skills. Does this mean that goalkeeper training 

causes an impairment of these skills? No. The obvious reason is that the player role of being a 

goalkeeper/field player is highly systematic and mutually exclusive, i.e. not being a 

goalkeeper who trains goalkeepers’ skills means being a field player who trains field players’ 

skills. For this reason, a non-causal paradoxical association exists in this example. 
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4.1 Simulation example 

The emergence of non-causal negative lesion-behaviour relations in lesion-behaviour 

modelling can be investigated in a simulation setting in which we a priori decide to not 

include any causal negative relation. In the example lesion sample, a behavioural deficit was 

simulated based on the damage to the pars triangularis (as defined by the AAL atlas, Tzourio-

Mazoyer et al., 2002). Thus, the only causal lesion-behaviour relation was a positive 

association between the deficit and damage to the pars triangularis. Following a previous 

study, the deficit was simulated based on 70% true signal and 30% uniform noise (Pustina et 

al., 2018) in order to obtain realistic effect sizes. Lesion behaviour mapping was performed in 

all voxels damaged in at least 5 patients by multivariate analysis with the SVR-LSM toolbox 

(Zhang et al., 2014) using direct total lesion volume control and 1000 permutations, and by 

univariate analysis with NiiStat with, or without, control for lesion size by nuisance 

regression. 

As shown in Figure 3, all analyses unsurprisingly found the strongest lesion-behaviour 

associations in frontal regions, where lesion and behaviour were associated positively. 

Nonetheless, all analyses also found regions where behaviour was negatively associated with 

the deficit, i.e. regions in which damage was associated with less severe deficits. Negative 

associations were mainly found in parietal, parieto-occipital, and posterior temporal regions – 

regions situated far away from the inferior frontal lobe, and thus only rarely affected by stroke 

together with the pars triangularis. This negative signal even surpassed an uncorrected p < 

0.05 in all analyses. However, it did not survive a correction for multiple comparisons by 

false discovery rate correction at q = 0.05. 
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Figure 3 Positive and paradoxical negative signal in lesion-behaviour modelling 

In the example lesion data set, a behavioural symptom was simulated for each patient 

based on damage to the pars triangularis. Thus, the only causal lesion-behaviour 

relation in the data is by definition a positive one. Regardless, both multivariate and 

mass-univariate lesion behaviour mapping not only find voxels with positive lesion-

behaviour relation (red-yellow colour map), but also large areas with a considerably 

high paradoxical inverse lesion-behaviour relation (blue colour map), i.e. brain areas 

where damage is associated with a less severe symptom. Note that unthresholded maps 

are shown. Negative signal would surpass an uncorrected p-level of 0.05 in all 

analysis, however, in the present example it would not surpass a false discovery rate 

correction of q = 0.05. 
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4.2 Conclusion  

Even in cases where no causal negative lesion-behaviour associations exist, negative lesion-

behaviour associations might be present in the data. This effect and the lesion-anatomical 

biases of lesion behaviour mapping are two sides of the same coin: if damage to region A is 

causal for a deficit, an area B might also be positively associated with the deficit if regions A 

and B are often damaged together. This happens mainly in neighbouring regions along the 

vasculature towards the centres of the arterial territories (Mah et al., 2014; Sperber & Karnath, 

2017; Sperber et al., 2019a). On the other hand, if the area A and another region area C are 

systematically not damaged together (e.g. because they are situated far from each other or in 

different arterial territories) damage in area C might be negatively associated with the deficit. 

While paradoxical negative signal in the present simulation example was lower than positive 

signal, uncorrected negative signal still surpassed common significance thresholds. Therefore, 

a proper correction for multiple comparisons is definitely necessary to prevent artefacts (see 

Karnath et al., 2018 for more information on multiple comparison correction). New lesion-

deficit inference methods should be validated to only identify true (causal) negative lesion-

deficit relations, and to be resistant to false alarms given non-causal negative lesion-deficit 

associations. Also, caution is advised if the behavioural target variable is controlled for other 

variables. It has been shown that such correction – if applied inappropriately – can enhance 

paradoxical lesion-deficit artefacts even above corrected thresholds (Sperber, Nolingberg, & 

Karnath, in press). Therefore, hypothesis-free interpretation of lesion-behaviour models does 

not provide an unambiguous view on paradoxical functional facilitation. This also holds true 

for multivariate models, that can yield large numbers of paradoxical lesion effects in real 

lesion behaviour data (see e.g. Toba et al., 2017). While lesion behaviour models are, in 

principle, powerful tools to identify possible paradoxical inversed lesion-deficit relations, we 

can find non-causal negative associations, and identification of functional facilitation in stroke 

should be conducted with caution in conjunction with a strong theoretical basis. A possible 

way to provide paradoxical lesion-deficit relations with a solid theoretical groundwork is to 

generate hypotheses based on single cases that show a possible post-stroke facilitation of 

symptoms (see Valero-Cabré et al., 2019), or on group studies in the case of enhancing lesion 

effects (Etcoff et al., 2000; Reverberi et al., 2005). A post-hoc validation option is the 

combination with other neuroscientific methods, such as the use of neuro-stimulation on 

regions identified in a VLBM analysis. 
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5   Different strategies for feature reduction in structural lesion data 

In modern structural MR imaging, the brain can encompass over a million voxels. Models 

trained on voxel-wise information derived from such volumes thus can include over a million 

features. This massive number of features is a prime example for the curse of dimensionality, 

and it poses methodological challenges in any modelling process. A common procedure to 

overcome such an issue is feature reduction. Neighbouring voxels carry highly similar 

information. Therefore, information from multiple voxels could be merged into a single 

feature, and the overall number of features could be reduced. Accordingly, many studies that 

performed lesion-behaviour modelling – both for brain mapping and clinical outcome 

prediction – did so by merging voxel-wise data into region-wise data (Smith, Clithero, 

Rorden, & Karnath, 2013; Yourganov, Smith, Fridriksson, & Rorden, 2015; Zavaglia et al., 

2015; Rondina et al., 2016; Yourganov, Fridriksson, Rorden, Gleichgerrcht, & Bonilha, 2016; 

Achilles et al., 2017; Toba et al., 2017; Hillis et al., 2018; Wilmskoetter et al., 2019). This is 

especially important in modelling algorithms that can handle only a limited number of 

features due to mathematical or computational restrictions (Smith et al., 2013; Zavaglia et al., 

2015; Toba et al., 2017). Regions in these studies were defined by brain atlases which 

parcellate the brain based on, e.g., functional (Faria et al., 2012; Joliot et al., 2015; Glasser et 

al., 2016) or morphological (Tzourio-Mazoyer et al., 2002) criteria. Importantly, in order not 

to lose any data in the process of feature reduction, features have to be meaningfully merged. 

To do so in the modelling of brain imaging data, we aim to define brain areas in a way that 

minimises differences between voxels inside an area, while it maximises differences between 

voxels in different areas. In other words, a good parcellation aims to find homogeneous brain 

regions that are different from each other. If the parcellation of stroke imaging data is not 

carried out in a meaningful way, voxel-based analyses might easily outperform any region-

based analysis (see e.g. Rondina et al., 2016). 

An intuitive strategy to meaningfully merge voxels into regions is to use a brain 

parcellation based on functional data. Averaging data inside a functional module is a common 

approach when analysing functional imaging data (Poldrack, 2007), and the same can be done 

with lesion data (Pustina et al., 2018). The rationale is that damage to different parts of a 

homogeneous functional unit has equal effects on brain functionality. Damage to voxels 

inside this functional unit can thus be represented by only a single variable, such as the 

proportion of damaged voxels inside this region.  

However, besides functional parcellation, a second strategy to meaningfully parcellate 

the brain exists in lesion data modelling. At this point, the lesion-anatomical dependence 
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between brain regions comes back into play: the damage status of all brain regions is more or 

less correlated. Directly neighbouring voxels are often damaged or not damaged together. 

Therefore, the resolution of anatomical lesion data in group studies is smaller than the whole 

imaging volume, and some software tools for lesion behaviour mapping, by default, merge 

voxels that carry perfectly correlating anatomical information (Rorden et al., 2007; Pustina et 

al., 2018). One could now go even further and merge not only voxels that perfectly correlate, 

but also voxels that highly correlate. This could be done, e.g., by dimension reduction 

techniques such as principal component analysis (e.g. Moulton, Valabregue, Lehéricy, 

Samson, & Rosso, 2019; Loughnan et al., in press). The rationale for such lesion-anatomical 

dimension reduction is that we merge voxels whose relation to the behavioural variable 

cannot be further differentiated anyway, because the damage status of these voxels correlates 

too highly in a patient sample. 

There are compelling reasons for both functional and lesion-anatomical parcellation. A 

conflict might now arise when functional brain areas and typical lesion anatomy differ. In 

such case, optimising a parcellation according to one strategy might hamper the parcellation 

quality when looking through the lens of the other strategy. For example, a functional 

parcellation of two brain areas might be worthless if we apply it on imaging of a stroke patient 

sample in which all patients either have damage to both regions or to neither of both. 

 

5.1 Simple example 

To illustrate the issue, Figure 4 shows two different pairs of voxels. These voxels have been 

manually chosen to best depict how functional and lesion-anatomical parcellation can 

markedly differ. Functional similarity was defined by reference to a multi-modal atlas based 

on different task-related and resting-state functional measures as well as myelin maps and 

cortical thickness (Glasser et al., 2016), which was converted into a volumetric parcellation 

(Pustina et al., 2018). Lesion-anatomical similarity between the binary lesion status of both 

voxels in the example lesion sample was defined by Pearson’s φ coefficient, which is a 

correlation measure for two dichotomous variables. 
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Figure 4 Functional and lesion-anatomical (dis-)similarity of voxels 

Two pairs of voxels are chosen to illustrate possible conflicts between functional and 

lesion-anatomical parcellation. The yellow voxels are chosen to originate from 

different functional areas (xyz = -56,16,21 parcel index 74 (see Glasser et al., 2016 

supplementary); xyz = -44,13,15 parcel index 108 frontal opercular area 4); the 

turquois voxels to originate from the same functional area (xyz = -23, -42, 60; xyz = -

46, -19, 41; both parcel index 52). The similarity of lesion status in these voxels in the 

sample of 131 left hemisphere lesions, as given by Pearson’s φ, is diametrical to their 

functional similarity (all coordinates are in MNI-space). 

 

5.2 Conclusion 

Two different strategies are available for meaningful feature reduction of structural lesion 

data in lesion-behaviour modelling – functional and lesion-anatomical parcellation. As seen in 

the example, both strategies can lead to different solutions for voxels. Thus, simply 

maximising feature reduction by a single parcellation strategy might fail to maximise the fit of 

lesion-behaviour models. Careful fine-tuning might be required to achieve this goal, and 

sample characteristics and size can affect lesion anatomy, possibly requiring to some degree 

individualized, data-driven solutions in every new sample. Further, it will be relevant what we 

want to achieve with the models. If we aim to investigate the individual role of anatomical 

features in such models – as done in lesion-behaviour mapping – it is essential that the 

features still resemble actual anatomical entities that allow us to obtain interpretable results. 

This, however, is not required if we only aim to maximise model fit between behaviour and 

anatomical data, as in stroke outcome prediction. 

 

6  Model fit in lesion behaviour modelling and non-topographical features 

A key aspect of causal relations in lesion-behaviour modelling has been omitted in the 

previous sections: it is not lesion location alone that causes a deficit, but an interplay of lesion 
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location and many other factors that induce a deficit (for reviews see Price et al., 2017; 

Umarova, 2017). Factors such as age, neuropsychological co-morbidity, or pre-morbid 

cognitive status can affect the initial severity of a symptom, and even the more they will affect 

how well a patient can recover in the long term. Therefore, modelling of post-stroke deficits 

only based on topographical lesion information might, in many situations, be deemed to only 

achieve mediocre prediction performance. This effect is paralleled by sources of un-

controllable noise in the data, such as inter-individual anatomical differences, or noise in the 

processing of imaging data or in the assessment of the behavioural target variable (see Figure 

5 for a schematic overview). This comes with important implications depending on the 

intention behind modelling the behavioural target variable based on anatomical lesion 

information. 

 

 

Figure 5 Possibly relevant variables in lesion-behaviour modelling 

A schematic of non-topographical variables that might be of relevance in lesion 

behaviour modelling. Non-observable variables that introduce noise in lesion 

behaviour modelling, and thus generally hamper model fit, are shown in italic and 

with dashed lines. The red box shows the common variable set in lesion behaviour 

mapping, where non-topographical variables are commonly ignored. This can further 

limit model fit, even if the algorithm properly captures the variance explainable by the 

lesion topography. 

 

While the modelling procedure can principally be the same both in post-stroke 

outcome prediction and in lesion-behaviour mapping, the criteria when evaluating model 

quality are different. Model quality in post stroke outcome prediction is principally straight 

forward to evaluate – a good model needs to be generalisable with a high, clinically relevant 
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model fit to the population. This means that a model needs to provide good predictions in a 

previously unknown sample, i.e. the so-called test dataset. The criteria to access model quality 

are different in lesion-behaviour mapping, when the role of individual features is interpreted. 

Besides model fit, generalisability of feature weights respectively of topographical brain-

lesion inference is desired (Rasmussen, Hansen, Madsen, Churchill, & Strother, 2012). 

Therefore, if the same behavioural variable is mapped in two independent data samples, the 

topographical inference should highly correspond between both analyses, and, in the case of 

e.g. SVR-LSM (Zhang et al., 2014), voxel-wise parameter weights in both should correlate.  

This gives rise to different implications for post-stroke outcome prediction and lesion-

behaviour mapping. In post-stroke outcome prediction, a requirement might be to include 

some non-imaging parameters to obtain a model that can make good predictions. In lesion-

behaviour mapping, we can include such variables into statistical models, and we can identify 

variables that should or should not be controlled for by looking at the causal relations between 

variables (Sperber et al., in press). If we decide not to include such variables into the model, 

we might end up with only a low to mediocre model fit. This does not necessarily invalidate 

the method. In the end, the aim is to obtain replicable, valid lesion-deficit inference. If a 

model handles the signal and the noise such that it effectively captures the variance explained 

by topographical lesion information, this might suffice – even if there is substantial amount of 

unexplained variance remaining. To conclude, lesion-behaviour mapping analyses should not 

(only) be judged by their model fit. 

 

7 Conclusion and perspective 

By reframing ‘causality’ in lesion-deficit inference, it can be shown that the validity of lesion 

behaviour mapping is affected by lesion anatomy, and that neither univariate nor multivariate 

algorithms can fully overcome this issue. While this is definitely a methodological limitation 

to keep in mind, I believe that the significance of this issue has been overstated. Not only did 

the present simulations not fully replicate an example that probably illustrated the worst-case 

shortcomings of voxel-wise lesion behaviour mapping, several previous studies have put the 

finding of a bias induced by lesion anatomy into a more nuanced perspective (Sperber & 

Karnath, 2017; Pustina et al., 2018). A strategy to counteract such bias could be to perform 

lesion-behaviour mapping in a more hypothesis-guided way, if possible. Results in voxel-wise 

lesion behaviour mapping could be critically interpreted from the perspective of a priori 

hypotheses. In the case of a strong hypothesis, one might even deviate from the whole-brain 

voxel-wise approach and instead only investigate regions of interest. It is also important to 
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keep in mind that there is no neuroscientific gold standard method to map the human brain. 

All neuroscientific methods bear some limitations, and no single method provides us with 

perfect insights into functional brain anatomy. However, the available methods nicely 

complement each other (Rorden & Karnath, 2004). 

Another issue of mass-univariate lesion behaviour mapping is the functional 

dependence between voxels, which could bias topographical results (Rorden et al., 2009; Mah 

et al., 2014). This issue can be resolved by using multivariate algorithms (Mah et al., 2014; 

Zhang et al., 2014; Pustina et al., 2018). Contrary to what has been stated elsewhere (Xu et 

al., 2018), this issue, and only this issue, is the main reason to use multivariate lesion 

behaviour mapping. Multivariate methods are still relatively new to the field, and many open 

questions on how to perform multivariate lesion-brain inference in the best manner are still 

open (see, e.g., DeMarco & Turkeltaub, 2018; Sperber et al., 2019a). Currently, two distinct 

main strategies to perform hypothesis-free voxel-wise lesion behaviour mapping were 

implemented and validated (Zhang et al., 2014; Pustina et al., 2018), and both have the 

potential to be further refined. Further, several region-based approaches (e.g. Yourganov et 

al., 2015; Achilles et al, 2017) also appear to be viable options for lesion-deficit inference. 

Thus, another open question is how to optimally include topographical lesion data into 

models, and under which conditions region-wise analysis can be superior to voxel-wise 

analysis. 

In many cases, purely structural topographical lesion information is not sufficient to 

fully understand lesion-deficit relations. Focal damage can affect parts of structural and 

functional brain networks, and thus functional disruption might go beyond the actually 

lesioned area (Catani et al., 2012). Accordingly, lesion-behaviour modelling can be improved 

by looking beyond the mere topographies of structural damage. For example, functional or 

structural connectome imaging (e.g., Boes et al., 2015; Siegel et al., 2016; Kuceyeski et al., 

2016; Gleichgerrcht, Fridriksson, Rorden, & Bonilha, 2017) or perfusion imaging (Karnath et 

al., 2005) can be used to better understand or predict lesion-deficit relations. Further, 

structural lesion information can be combined with, for example, functional or structural 

connectome data into models using multimodal imaging (Pustina et al., 2017; Foulon et al., 

2018). Are such approaches a solution to overcome the causation vs. association issue in 

structural lesion-deficit relations? This is unlikely. Just as the damage status between two 

brain regions can non-causally be associated, abnormalities in functional networks or in fibre 

tract integrity might be non-causally associated, simply as the vasculature supplies brain 

tissue underlying these networks or fibre tracts in a systematic manner. To conclude, lesion-
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deficit inference based on any kind of connectome data is well-suited to complement VLBM 

and MLBM, but it does not overcome the main issues of lesion-behaviour modelling 

identified in the present article. 

Stroke is the aetiology that is most commonly investigated by lesion behaviour 

mapping methods, yet focal brain damage induced by other aetiologies like brain tumours, 

surgical resections, or focal damage in inflammatory diseases is also sometimes investigated. 

Conclusions drawn in this article will likely hold true for all these aetiologies. Brain damage 

is always in some way systematic, and all aetiologies induce damage to one or multiple areas 

of connected brain voxels. However, the lesion-anatomical dependence between voxels will 

vary between aetiologies, depending on typical location, patterns and size of brain lesions. 

The present paper’s most important implication for post-stroke outcome prediction is 

that feature selection and feature reduction are not intuitively straight-forward in lesion-

behaviour models. Predictive features cannot only be found in brain regions where damage 

actually causes a long-lasting deficit, but in many areas in the brain. Another implication is 

that many features are highly redundant as their lesion-anatomical or functional information is 

highly dependent. Thus, it seems that to obtain excellent prediction algorithms, we have to 

embark on a long journey of refining modelling strategies while having in mind the high-

dimensional complexity of lesion data. 
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Figure Legends 

 
Figure 1 

Graphical causal models of lesion-behaviour relationships 

Graphical causal models illustrate different views on causality in lesion-behaviour 

relationships. Nodes illustrate different variables, and arrows indicate (putative) causal 

relations between these variables. Dotted lines indicate that no causal relation between 

variables, but merely a non-causal association exists. The brain image is a statistical map 

taken from the VLBM analysis seen in Figure 3, based on a simulation with the pars 

triangularis as ground truth. To keep the illustration simple, the non-causal associations 

between damage in different areas in panel D are not shown. 

 

Figure 2 

Comparison of mass-univariate and multivariate lesion-brain inference 

A) In the example lesion data set, a behavioural symptom was simulated for each patient 

based on damage to Brodmann areas 39 and 44. B) and C) Lesion behaviour mapping of these 

simulated behavioural data was first performed with a mass-univariate VLBM by the 

Liebermeister test (Bonferroni correction threshold for p < .05 at Z = 5.22, maximum Z = 

7.09). D) and E) The same data were also mapped using a high-dimensional approach based 

on a support vector machine. Feature weights were scaled to a maximum value of 10. Note 

that negative feature weights are not shown. 

 

Figure 3 

Positive and paradoxical negative signal in lesion-behaviour modelling 

In the example lesion data set, a behavioural symptom was simulated for each patient based 

on damage to the pars triangularis. Thus, the only causal lesion-behaviour relation in the data 

is by definition a positive one. Regardless, both multivariate and mass-univariate lesion 

behaviour mapping not only find voxels with positive lesion-behaviour relation (red-yellow 

colour map), but also large areas with a considerably high paradoxical inverse lesion-

behaviour relation (blue colour map), i.e. brain areas where damage is associated with a less 

severe symptom. Note that unthresholded maps are shown. Negative signal would surpass an 

uncorrected p-level of 0.05 in all analysis, however, in the present example it would not 

surpass a false discovery rate correction of q = 0.05. 
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Figure 4 

Functional and lesion-anatomical (dis-)similarity of voxels 

Two pairs of voxels are chosen to illustrate possible conflicts between functional and lesion-

anatomical parcellation. The yellow voxels are chosen to originate from different functional 

areas (xyz = -56,16,21 parcel index 74 (see Glasser et al., 2016 supplementary); xyz = -

44,13,15 parcel index 108 frontal opercular area 4); the turquois voxels to originate from the 

same functional area (xyz = -23, -42, 60; xyz = -46, -19, 41; both parcel index 52). The 

similarity of lesion status in these voxels in the sample of 131 left hemisphere lesions, as 

given by Pearson’s φ, is diametrical to their functional similarity (all coordinates are in MNI-

space).  

 

Figure 5 

Possibly relevant variables in lesion-behaviour modelling 

A schematic of non-topographical variables that might be of relevance in lesion behaviour 

modelling. Non-observable variables that introduce noise in lesion behaviour modelling, and 

thus generally hamper model fit, are shown in italic and with dashed lines. The red box shows 

the common variable set in lesion behaviour mapping, where non-topographical variables are 

commonly ignored. This can further limit model fit, even if the algorithm properly captures 

the variance explainable by the lesion topography. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.17.878355doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878355

