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ABSTRACT 

Biomedical research has come to rely on p-values as a deterministic measure for data-driven decision making. 

In the largely extended null-hypothesis significance testing (NHST) for identifying statistically significant 

differences among groups of observations, a single p-value computed from sample data is routinely compared 

with a threshold, commonly set to 0.05, to assess the evidence against the hypothesis of having non-

significant differences among groups, or the null hypothesis. Because the estimated p-value tends to decrease 

when the sample size is increased, applying this methodology to large datasets results in the rejection of the 

null hypothesis, making it not directly applicable in this specific situation. Herein, we propose a systematic 

and easy-to-follow method to detect differences based on the dependence of the p-value on the sample size. 

The proposed method introduces new descriptive parameters that overcome the effect of the size in the p-

value interpretation in the framework of large datasets, reducing the uncertainty in the decision about the 

existence of biological/clinical differences between the compared experiments. This methodology enables 

both the graphical and quantitative characterization of the differences between the compared experiments 

guiding the researchers in the decision process. An in-depth study of the proposed methodology is carried 

out using both simulated and experimentally obtained data. Simulations show that under controlled data, our 
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assumptions on the p-value dependence on the sample size holds. The results of our analysis in the 

experimental datasets reflect the large scope of this approach and its interpretability in terms of common 

decision-making and data characterization tasks. For both simulated and real data, the obtained results are 

robust to sampling variations within the dataset. 

KEYWORDS 
Biostatistics, Bioinformatics, Decision-making, p-value modelling, Null-hypothesis significance testing, Drug-

screening, Experiment-comparison 

INTRODUCTION 

The ability to acquire, store and disseminate large amounts of data is constantly improving in life-science 

laboratories. Having such big datasets available for multiple kinds of analysis supports the proliferation of 

many different analytic applications. Nonetheless, it has also emphasized the challenges that classical 

statistical techniques need to face when analyzing such types of datasets, often called Big Data Analysis. An 

extended practice in experimental life-science is the analysis of differences among experimental settings, 

which is usually determined through the mean values of the studied statistical variable in distinct groups. In 

order to decide whether statistically significant differences exist, null hypothesis significance testing (NHST) 

is usually performed. Namely, a formal hypothesis test is stated in which the no effect hypothesis, that is the 

equality of the mean values yielded by experimental datasets, is assessed thanks to the computation of a p-

value on sample data. This value is then compared with the threshold 0.05 to decide whether or not the null 

hypothesis is rejected. When working with large datasets, the accuracy of the estimators of those mean values 

(or other parameters) improves, Fig 1 and 2 in the Materials and Methods. While NHST nearly always finds 

statistical differences among the group means in large datasets, the researchers usually aim to find out 

whether those differences are interesting, e.g. biologically or clinically relevant. Technically, the p-value 

depends on the size of the data being tested: the larger the sample size, the smaller the p-value. An easy 

understanding of the latter relies on the evidence in the data against the null hypothesis instead of the 

existence of interesting differences among groups (Greenland, 2019). The larger the data size, the larger the 

accuracy of the statistical test, and therefore, the larger the evidence against the null hypothesis. The latter is 

in high contrast with the recurrent misleading interpretation of the p-value as a “gold standard” for the 

identification of biologically or clinically relevant differences among experiments (Altman and Krzywinski, 

2017; Amrhein et al., 2019; Greenland, 2019; Halsey et al., 2015; Nuzzo, 2014). In particular, when large 

sample are available, life-scientists could detect statistically significant evidence against the null hypothesis 

through a small enough p-value, even though there are no interesting differences from the practical point of 

view. Even more, the p-value is itself a random variable that depends on the sample data used to estimate it; 

and, therefore, has a sampling distribution that is intrinsically determined by the noise in the data. A 
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straightforward example is as follows: the p-value has a uniform distribution 𝒰(0, 1) under the null 

hypothesis, which is rejected 5% of the times when a significance threshold of 5% is being used.  Hence in 

5% of the cases, a single computation of the p-value could lead to the contradictory conclusion that there 

exist statistically significant differences among two groups identically distributed (Bruns and Ioannidis, 

2016). Similar to the examples in (Altman and Krzywinski, 2017; Halsey et al., 2015), Fig. 5 in the Materials 

and Methods further illustrates the described behavior. 

Despite this finding, there remain many situations for which the ‘dichotomy’ associated with the p-value 

is necessary for data-driven decision-making (Leek et al., 2017). Here, we present different approaches 

described in the literature. An alternative solution to facilitate the interpretability of the p-value is the use of 

Shannon information or S-values (𝑠 =  − log2 𝑝, where 𝑝 is the p-value) (Greenland, 2019). The S-values 

express the self-information given by the datasets with respect to the null-hypothesis rather than a probability 

or evidence against it. However, the S-value, same as the p-value, depends on the sample size and the datasets 

used to compute a single realization of them. Therefore, used as single numbers, they have a limited capacity 

to inform about practical relevance of the differences among the compared groups (Greenland, 2019). Other 

approaches analyze the distribution of empirically estimated p-values, also known as p-curve, (Simonsohn et 

al., 2014), which does not take into account the effect of the sample size. Computing the p-curve for large 

datasets will result in a high frequency of p-values around zero regardless the differences among the 

compared groups. There are also works that focus on the sample-size-dependence and the sensitivity of the 

p-value to this size, commonly denoted by 𝑛 (Lin et al., 2013). The authors provide a detailed description of 

the drawbacks of NHST applied to large datasets and they suggest the use of confidence intervals and effect 

sizes as alternative measures. However, to the best of our knowledge, there are no methods that exploit the 

exponential behavior of the p-value using easily interpretable parameters to assess the existence of interesting 

differences from the biological or clinical perspective. In this work, an exponential model is fitted, which 

approximates the p-value for a continuum of sample sizes, in the context of finding statistically significant 

evidence against or in favor of differences among the mean values of an observed variable in two or more 

groups. Namely, we aim to answer the question of when we can solidly assert that bona fide differences exist 

from the practitioner’s perspective rather than just statistically significant. This paper presents an easily 

interpretable tool to support biomedical researchers in their statistical analyses. 

Our method is based on assuming an exponential relationship between the sample size 𝑛 and the p-value. 

We compute the Mann-Whitney U statistical test to find statistically significant differences between two or 

more groups. Then, for a given sample size 𝑛 its p-value, 𝑝(𝑛) is approximated using: 

p(n) = a · e−cn where a, c ∈ R+ 1 

The values of a and c are found to minimize the squared differences between a set of observed p-values for 

each of the samples of size n, which are obtained using Monte Carlo cross-validation (MCCV) (Xu and Liang, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2019.12.17.878405doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878405
http://creativecommons.org/licenses/by-nc-nd/4.0/


4  

2001), and its estimation using the exponential approach. The parameters a and c are associated with the 

dependency of the p-value on the sample size and quantitatively measure the relationship between the two or 

more groups being compared. 

In Fig. 1a, different randomly generated normal distributions are compared using the Mann-Whitney U 

statistical test (Mann and Whitney, 1947) to illustrate the decrease of the function 𝑝(𝑛) with the sample size. 

The use of the Student’s t-test was avoided as it is well known that the p-value associated to the t-statistic 

has an exponential decay (Student, 1908). Technical details about the convergence of the function 𝑝(𝑛) and 

evidence about Eq. 1 holding for any statistical test are given in the Materials and Methods. 

Note that the p-value curve, the function 𝑝(𝑛) in Eq. 1, is used to compare pairs of experimental 

conditions; therefore, 𝑝(𝑛) is computed as the exponential fit of the p-values computed on multiple samples 

of different sizes extracted from the large dataset at hand. Hence, the parameters 𝑎 and 𝑐 in Eq. 1 correspond 

to those defining the exponential fit 𝑝(𝑛). We use MCCV as the sampling strategy: two subsets of size 𝑛 

(one from each of the groups to be compared) are randomly sampled and compared with a statistical test for 

different values of the sample size n. The resulting p-value is stored and the procedure is repeated many 

times. At the end of the procedure, a large set of 𝑛-dependent p-values is obtained and the exponential 

function in Eq. 1 can be fit. 

Similar to any exponential function, 𝑝(𝑛) converges to zero. The faster the function converges, the 

stronger is the evidence against the null hypothesis. In other words, a fast decay implies finding statistically 

significant differences between the groups at small sample sizes, i.e. differences appear early. When normal 

distributions of standard deviation one and mean value in the range [0, 3] are compared, we see that the higher 

the difference among the mean values of each normal distribution, the faster the decay of the exponential 

function 𝑝(𝑛), as expected (Fig. 1a). We observe that the parameters 𝑎 and 𝑐 (Eq. 1) increase proportionally 

with the mean value of the distribution compared with 𝑁(0, 1) (Fig. 1b). Thus, 𝑎 and 𝑐 enable the spatial 

representation of each normal distribution with respect to 𝑁(0, 1). These parameters can simplify the 

identification of the existence of interesting biological differences. Indeed, they can measure how far from 

each other the distributions of the groups being compared are (Fig. 1b).  

With this new idea in mind, a robust decision index, 𝜃𝛼,𝛾, can be mathematically defined (Eq. 10 in 

Materials and Methods) which depends on the significance level α and a regularization parameter γ related 

to the convergence of the exponential fitted function. Note that subscripts 𝛼 (statistically significant 

threshold) and 𝛾 (regularization parameter) are omitted from now on.  

The idea behind the index 𝜃 is to gather the information about the p-values for different sample sizes 

against the predefined significance level 𝛼, usually equal to 5%. A distance 𝛿 (Eq. 9 in the Materials and 

Methods) is defined to compare the function 𝑝(𝑛) with 𝛼 for all 𝑛 values. The distance 𝛿 measures the 

difference between the areas under the constant function at level 𝛼 and the area under the curve 𝑝(𝑛) (Fig. 
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1c). The distance 𝛿 is then used to obtain the binary index 𝜃 that indicates whether 𝑝(𝑛) and the 𝛼 constant 

are far from each other or not. If for most values of 𝑛 the function 𝑝(𝑛) is smaller than 𝛼, then 𝜃 = 1, which 

means that there are clinically reliable differences among the datasets being tested.  Otherwise, 𝜃 = 0, which 

is interpreted as the non-rejection of the null hypothesis, and thus, the compared experimental set ups behave 

in a similar way. 

As the exponential function is defined for all values 𝑛 ∈ (−∞, +∞), it is necessary to determine a range 

of 𝑛 for which the function 𝑝(𝑛) is meaningful in the context of this study. The decay of 𝑝(𝑛) is concentrated 

in a range between 𝑛 = 0  and a certain value of 𝑛 for which 𝑝(𝑛) ≈ 0 (convergence of 𝑝(𝑛)); so, 𝛿 should 

be only calculated in that range. A parameter 𝛾 is used as a regularizer to measure the sample size of 

convergence 𝑛 = 𝑛𝛾, such that 𝑝(𝑛 = 𝑛𝛾) ≈ 0 (Fig. 1c  and Eq. 8 in the Materials and Methods). Small 𝛾 

values imply less restrictive decisions, i.e. 𝜃 = 1 when the groups being compared do not show clear 

differences.  Nonetheless, the experimental evaluation of the method over synthetic and real data evidences 

𝛾 =  5𝑒−06 to be a reasonable choice (detailed information is given in the Materials and Methods and the 

Supplementary Material).  Note that when 𝑝(𝑛) is determined simply by the definition of the parameters 𝑎 

and 𝑐 in Eq. 1, the minimum sample size needed to observe statistically significant differences at 𝛼-level can 

also be provided.  As 𝑝(𝑛) continuously decreases, the value of 𝑛 for which 𝑝(𝑛) is always smaller than 𝛼 

can be calculated easily.  This value is called 𝑛𝛼 (Fig. 1c and Eq. 12 in the Materials and Methods). 

RESULTS 

The decision index 𝜃, descriptive parameters 𝑎 and 𝑐 (Eq. 1) and minimum data size 𝑛𝛼 provide an 

intuition about the distance between the distributions of the datasets being compared. To illustrate this, 

sample data generated from different normal distributions were compared using the Mann-Whitney U 

statistical test (Mann and Whitney, 1947) assuming a significance level 𝛼 of 0.05 (Table 1 in Materials and 

Methods). When 𝑁(0, 1) is compared with 𝑁(0, 1), 𝑁(0.01, 1) and 𝑁(0.1, 1), 𝜃 is null; so those distributions 

are assumed to be equal if our approach is used. In the remaining comparisons though, according to our 

approach, 𝜃 = 1, thus there exist differences between 𝑁(0, 1) and 𝑁(𝜇, 1) for 𝜇 ∈  [0.25, 3] (Fig. 1d). 

Together 𝑎 and 𝑐 provide a spatial representation of the distance between all the normal distributions and 

𝑁(0, 1) (Fig. 1b and 1d). Likewise, when 𝑁(0, 1) is compared with 𝑁(𝜇, 1) for 𝜇 ∈  [0.1, 3], the value of 

𝑛𝛼 increases as the mean value 𝜇 decreases. Indeed, 𝑛𝛼 cannot be determined when 𝑁(0, 1) is compared with 

𝑁(0, 1) and 𝑁(0.01, 1), as the null hypothesis in this case is true. Therefore, 𝑝(𝑛) is a constant function, 

which represents the uniform distribution of p-values under the null hypothesis (Figs. 1e and 1f, and Fig. 3 

in Materials and Methods). 

To prove the benefit of the proposed method in real data, we tested its different functionalities on 

published and non-published data from biological experiments. The first application of the method consists 
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of discriminating between experimental conditions. In this case, we wanted to determine whether cancer cells 

cultured in 3D collagen matrices and imaged under a light microscope changed shape after administration of 

a chemotherapeutic drug (Taxol) (details about data collection and processing are given in the Supplementary 

Material). This information is relevant as it could give an indication about the metastatic potential of the 

treated cells (Wu et al., 2016, 2020). Three different groups were compared: control cells (non-treated), and 

cells treated with 1 nM and 50 nM Taxol respectively. Cells exposed to low concentrations of Taxol (1 nM) 

remained elongated (low roundness index, which suggests higher metastatic behavior of the cells), i.e. 𝜃 = 0 

for the comparison between control cells and those treated with Taxol at 1 nM. However, when the dose was 

increased to 50 nM Taxol, cells became circular (lower metastatic behavior); therefore 𝜃 = 1 when 

comparing cells treated with 50 nM Taxol versus control cells, or cells treated with 1 nM Taxol (Fig. 2a and 

Table S3 in the Supplementary Material).  

Secondly, we analyzed the flow cytometry data used by Khoury et al. (Khoury et al., 2018) to determine 

the transcriptional changes induced by the in vivo exposure of human eosinophils to glucocorticoids. The 

eosinophils belong to 6 different healthy human subjects. The proposed method allowed us to discriminate 

between treated and untreated eosinophils using the entire dataset. For that, we analyzed the eosinophil 

surface expression of the gene CXCR4 2 h after the exposure to 20 and 200 mcg/dL of Methylprednisolone. 

With the estimation of the function 𝑝(𝑛) (Eq. 1), it is possible to conclude that the exposure of eosinophils 

to glucocorticoids causes a differential expression of CXCR4 (Fig. 2b), i.e. 𝜃 = 1 for the comparison between 

vehicle and eosinophils treated with 20 and 200 mcg/dL (Table S6 in the Supplementary Material). Indeed 

the conclusion is the same as the one made in (Khoury et al., 2018), where only the median fluorescence 

intensity of the data from each subject was calculated and the resulting 6 data points were compared (Fig. 

2b). However, the latter approach can lead to false conclusions when the data distribution differs or when the 

data deviation is large.  

The last use of the method we propose here consists of analyzing whether a single specific feature of the 

data (variable) can fully characterize the problem at hand. Many different biomolecular and biophysical 

features of human cells were analyzed in (Phillip et al., 2017) with the aim of predicting cellular age in 

healthy humans. The cells used in Phillip et al. study were collected from human subjects from 2 to 96 years-

old. The method proposed in this manuscript can help to decide which features contain relevant information 

about subject aging. To show that, we re-analyzed the information of nuclei morphology and cell motility 

collected by Philip et al. (Phillip et al., 2017). The former is a large dataset and the latter is a small one. The 

information of 2-year-old human cells (the youngest one) was compared with the rest of the ages. The decay 

of 𝑝(𝑛)  in cell nuclei area and short axis length show that these nuclei morphology parameters are directly 

related to the age of human cells. The parameter 𝑐 (Eq. 1) of the orientation of the cell nuclei is null in all 

cases, which indicates that this measure does not contain information about aging (Fig. 2c and Table S5 in 
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the Supplementary Material). It is relevant to observe that the pattern in the plots of a and c indicates whether 

the analyzed feature can characterize the age of the patients: increasing values of a and c as the age of the 

patients increases (cell nuclei area and short axis length) and a null c regardless the age of the patient 

(orientation of the cell nuclei) (Fig. 2c). The estimated function 𝑝(𝑛) for the total diffusivity of the cells of 2 

year-old and 3 year-old human donors shows that even if a larger dataset was given, the result will remain 

the same (Fig. 2d and Table S4 in the Supplementary Material). Namely, 𝑝(𝑛) does not decrease, therefore, 

there is strong evidence that the null hypothesis is true (i.e. 𝜃 = 0, groups behave similarly). So, in this case, 

the analysis of a small number of cells is enough to conclude the non-rejection of the null hypothesis. The 

most extreme cases given by the differences between 2 and 96 year-old human donors, can also be detected 

without the need of large datasets, 𝑛𝛼 = 11 (Fig. 2d). That is, the estimation of 𝑝(𝑛) supports the decision 

about how many experimental samples need to be collected to conclude about the biological or clinical 

relevance of the differences between experimental groups. 

The use of MCCV with large enough datasets guarantees robust estimators. In this case, different 

combinations of model parameters (MCCV iterations, used sample sizes and 𝛾 value) where repeatedly tested 

to evaluate the variability of the decision index (𝜃) and its sensitivity to the method set up (Test of reliability 

in the Materials and Methods). A larger 𝛾 value results in a more restrictive decision index 𝜃 in the task of 

detecting interesting differences (Table S7 and S9 in the Supplementary Material). When the number of 

iterations of MCCV is drastically reduced, the decision index (𝜃) shows instability only in those cases for 

which it is not clear that the groups differ from each other (Table S8 and S10 in the Supplementary Material)  

DISCUSSION 

The use of statistical hypothesis testing is largely extended and well established in the scientific 

research literature. Moreover, the number of statistically significant p-values reported in scientific 

publications has increased over the years (Chavalarias et al., 2016) and there exists a tendency among 

researchers to look for that combination of data that provides a p-value smaller than 0.05 (Bruns and 

Ioannidis, 2016). However, it has been shown here and also by Altman and Krzywinski, 2017; Amrhein et 

al., 2019; Bruns and Ioannidis, 2016; Halsey et al., 2015; Nuzzo, 2014, that the assessment of the p-value has 

some drawbacks which can lead to spurious scientific conclusions. The data recorded from high-content, 

high-throughput studies, and the capacity of the computers to analyze thousands of numbers, has enabled us 

to enlighten the current uncertainty around the exploited p-value. 

We report clear evidence about the well-known dependence of the p-value on the size of the data 

(Altman and Krzywinski, 2017; Krawczyk, 2015; Lin et al., 2013). This particular feature of the p-value is 

used to characterize the differences among the groups of datasets being analyzed. Due to the lack of 

techniques that exploit the sensitivity of the p-value with respect to the sample size, we believe that our 

method will have a huge impact in the way scientists perform hypothesis testing. 
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With the proposed estimation of the decay of the p-value with the sample size, we provide a new 

perspective about hypothesis testing that prevents from treating the p-value as a dichotomous index. Using a 

simple mathematical formulation, an unbiased decision index 𝜃 is defined to enable good praxis in the same 

context as statistical hypothesis testing. The method takes advantage of large sample sizes to analyze the 

dependence of the p-value using cross validation. This approach provides stable measures that are robust to 

the noise in the data or the uncertainty around the decision making process. Indeed, the presented method is 

applicable in any field of study beyond life sciences as the classical NHST. Moreover, this methodology 

could be transferred to multiple comparison frameworks such as the ANOVA test by approximating the p-

value function for each pair of comparisons. The proposed approach used as a preliminary analysis, provides 

evidence about the existence (or not) of real differences from a practical perspective, even when large datasets 

are not available. Therefore, it supports the management of new data collection and can help researchers to 

reduce the cost of collecting experimental data. 

The decision-index 𝜃 obtained with the proposed analytic pipeline relies on a new threshold called 𝛾, 

as shown in Materials and Methods. Compared to the classical p-value and 𝛼 threshold, the parameter 𝛾 is 

mathematically constrained and 𝜃 is stable to its variations. Similarly, 𝑛𝛼 is an unbiased effect size indicator, 

i.e. how different the samples are or how big this difference is (further details about robustness are given in 

Materials and Methods). Additionally, the fitted parameters 𝑎 and 𝑐 that determine 𝑝(𝑛) in Eq. 1, represent 

graphically how each of the conditions of an experiment relate to each other regarding the distribution of 

their values (Fig 1b, 1d and 2a-c). When the differences between the compared samples increase, the value 

of a and c increase as well regardless of the sample size, which suggests again, that a and c are unbiased 

indicators of the effect size. 

The computational cost of the proposed data diagnosis increases proportionally with the number of 

groups to compare and the numerical setup of MCCV. Therefore, the optimization of the code and its 

connection to either a GPU or cloud computing is recommended. Overall, we advocate for the 

implementation of our pipeline in user-friendly interfaces connected to either cloud-computing or GPU. The 

code provided within this manuscript is built into the free software Python, so that anyone with limited 

programming skills can include any change to obtain a customized tool.   
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Fig. 1| Estimation of the p-value as a function of the size (𝑝(𝑛)) enables the correct discrimination between conditions. a) 

The p-value is a variable that depends on the sample size and can be modelled as an exponential function (𝑝(𝑛)  =  𝑎𝑒−𝑐𝑛, Eq. 1). 

For each pair of normal distributions being compared, two subsets of size 𝑛 are obtained by sampling from the corresponding 

normal distribution. Then, these datasets are compared using the Mann-Whitney statistical test and the p-value obtained is stored. 

The procedure is repeated many times for each size 𝑛. The blue bars with the standard error of the mean (SEM), show the 

distribution of all the p-values obtained at each size 𝑛 when two normal distributions of mean 0 and 0.1, and standard deviation 1 

are compared. The blue curve shows the corresponding exponential fit. The magenta and yellow curves represent the resulting 

𝑝(𝑛) function when a normal distribution of mean 0 and standard deviation 1 is compared with a normal distribution of the same 

standard deviation and mean 0.25 and 0.5, respectively; b) The decay of 𝑝(𝑛) (parameters 𝑎 and 𝑐 of the exponential fit) increases 

with the mean value of the normal distribution being compared with 𝑁(0, 1). The larger the distances between the means of the 

distributions, the higher the decay of the exponential function (Table 1 in Materials and Methods). c) Comparison of 𝑝(𝑛) (red 

curve) and significance area at 95% (blue area). If the area under the red curve is smaller than the blue area, then there is a strong 

statistical significance. The parameter 𝑛𝛼 measures the minimum data size needed to find statistical significance.  The parameter 

𝑛𝛾 measures the convergence of 𝑝(𝑛):  𝑝(𝑛 = 𝑛𝛾 ) ≈  0.  The binary decision index 𝜃 indicates whether the area under 𝑝(𝑛) from 

0 to 𝑛𝛾 is larger than the area under the 𝛼-level (blue box) in the same range; d) The faster the decay of 𝑝(𝑛), the stronger the 

statistical significance of the tested null hypothesis. For 𝛾 =  5𝑒−06, 𝜃𝛼,𝛾 = 1 whenever the mean value of the normal distribution 

compared with 𝑁(0,1) is larger than 0.5 (Table 1 in Materials and Methods).  e) The empirical estimation of 𝑝(𝑛) with small 

datasets enables the detection of the most extreme cases: those in which the null hypothesis can be accepted, and those in which it 

clearly cannot; f) The minimum data size needed to obtain statistical significance (𝑛𝛼) is inverse to the mean value of the normal 

distributions being compared. 
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Fig. 2| The function 𝒑(𝒏) acts as a data descriptor and supports the experimental study of multiple conditions. a) Breast 

cancer cells (MDA-MB-231) were cultured in collagen and imaged under a microscope to determine if cells change shape when a 

chemotherapy drug (Taxol) is administered. Three different groups were compared: control (non-treated) cells, cells at 1 nM and 

at 50 nM Taxol. (Leftmost) The cell roundness distribution of control cells and cells treated at 1 nM Taxol have lower values than 

that of cells treated at 50 nM. (Right) The three groups were compared, the p-values were estimated and 𝑝(𝑛) was fitted for each 

pair of compared groups. When Taxol at 50 nM is evaluated (blue and yellow dashed curves), 𝑛𝛼 is lower and the decay of 𝑝(𝑛) 

is higher (𝑎 and 𝑐 parameters in Eq. 1), i.e. it decreases much faster than the one corresponding comparison of control and Taxol 

at 1 nM (orange curve). b) Flow cytometry data was recorded to determine the transcriptional changes induced by the in vivo 

exposure of human eosinophils to glucocorticoids. (Left) The entire dataset has a wider range of values (black box-plots) and a 

smaller 95% confidence interval around the mean (black error-plots) than the distribution obtained when the median fluorescence 

intensity (MFI) is calculated by each of the 6 subjects (red error-plots). (Right) There is an increase of the surface expression of 

CXCR4 when human eosinophils are exposed to 20 or 200 mcg/dL of Methylprednisolone. Namely, the minimum size 𝑛𝛼 is low 

and the decision index θ = 1 when any of those conditions are compared with the vehicle condition. Note that the decay 

parameters 𝑎 and 𝑐 are almost the same in those two cases, so the markers co-localize (Supplementary Material). The minimum 

size 𝑛𝛼 when eosinophils are treated (blue circle) is not shown as it has infinite value. c) The morphology of 2 year-old human 

cells is compared with the morphology of 3, 9, 16, 29, 35, 45, 55, 65, 85 and 96 year-old human cells. For both, nuclei area and 
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nuclei short axis measures, the minimum size 𝑛𝛼 and the decay 𝑎 change proportionally with the age of the donor. The nuclei 

orientation does not characterize the age of the human donors for all the comparisons; the parameter 𝑐 is null, and therefore, 𝑝(𝑛) 

is constant. d) The analysis of a small dataset is enough to determine that the total diffusivity can characterize the cellular aging in 

humans. The total diffusivity of 2, 3 and 9 year-old human cells are equivalent, while it differs when compared to cells from older 

human donors. 
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Materials and Methods 
 

DATA DETAILS 
 

We describe the non-published dataset that corresponds to the first example in the main text. 

Drug analysis on phase contrast microscopy 

Phase contrast microscopy images of a human invasive ductal carcinoma (MDA-MB-231) cell line were 

acquired. The set-up used was composed by a Cascade 1K CCD camera (Roper Scientific), mounted on a 

Nikon TE2000 microscope with a 10X objective lens. Cells were embedded in 3D collagen type I matrix at 

100.000 cells/mL. The time lapse videos were recorded every two minutes with a focus plane of at least 

500 𝜇𝑚 away from the bottom of the culture plates to diminish edge effects (He et al., 2017). Three different 

groups of cells were analyzed: control and treated with fresh media at 1 nM Taxol and 50 nM Taxol. Ten 

videos of 16.5 hours (500 frames of 809 𝜇𝑚 x 810 𝜇𝑚 with a resolution of 0.806 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙) each were 

analyzed per group. 

All videos were automatically processed using a convolutional neural network (U-net (Ronneberger et al., 

2015)) to get binary masks for the cell bodies and their protrusions. The resulting semantic segmentation 

corresponds uniquely to focused cells in the image. For each of these cells, their body and protrusions are 

segmented. See some examples of the resulting segmentation in Figure S2. 

Using the segmentations, eight different morphological measurements were calculated: cell body size 

(CS), cell body perimeter (CP), cell body roundness (CR), cell with at least one protrusion (Pb), protrusion 

size (PS), protrusion perimeter (PP), protrusion length (PL) and protrusion diameter (PD) (Table S1). Further 

information about the distribution of each of the measurements is given in the Supplementary Material. Same 

as the analysis done for CR (Fig. 2a in the main manuscript), the differences between control and 1 mM and 

50 nM Taxol were analyzed using each of the remaining variables (Figures S4-S6 and Table S3). 

METHOD DETAILS 

Here, we first show the relation between the accuracy of an estimator and the size of the data being analyzed. 

Then, we provide the mathematical details behind our hypothesis that the p-value is a random variable that 

critically depends on the size of the sample and that the p-value function can be approximated with an 

exponential function of the sample size 𝑛. With this idea in mind, we define the method of how to work with 

the p-value as a function and to determine when a statement of practical significance can be made (𝜃𝛼,𝛾, Eq. 

9). Once the problem is described technically, it is possible to calculate the minimum size 𝑛𝛼 at which the 

null hypothesis of the test is statistically significant (Eq. 11). This parameter 𝑛𝛼 can be used to characterize 

the data.  Finally, the reliability of our method is rigorously tested. 
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The effect of the data size in empirical estimators. 

Fig. 1- 2 illustrate that the precision on the mean estimators increase with the size of the data (Krzywinski 

and Altman, 2013c; Lin et al., 2013). For each sample size, we use Monte Carlo with simulated samples from 

normal distributions to calculate both the mean and its two sided 95% confidence interval (CI). Note that we 

distinguish between the theoretical CI (Fig. 1) and the bootstrapped CI (Fig. 2). Following the same 

procedure, two of the most common measures of effect sizes are also calculated: Cohen’s d and Jensen-

Shannon divergence and distance, Fig 3-4 respectively. We compute both, their mean value for all the 

computations at each fixed sample size and the bootstrapped two-sided 95% CI. Fig.1-4 do also display the 

maximum and minimum simulated values for each sample size. In all cases, there is an exponential 

convergence to the estimated value. 

 

Figure 1. Estimated two-sided 95% confidence interval for the mean of different normal distributions with standard deviation of 

1 and mean values of 0, 0.1, 0.5 or 1. For each fixed value of the sample size, 15000 confidence intervals for the mean of each 

normal distribution were calculated using the mathematical expression 𝑥 ̅  ± 𝑡
𝑠

√𝑛
, where 𝑥 ̅ is the estimated mean value, 𝑡 is the 

critical value of Student’s t-distribution for a 0.025 of significance, 𝑠 is the estimated variance and n is the sample size (filled area). 

The dashed lines show the maximum and minimum values of the calculated confidence intervals obtained for each sample size. 

The information is shown both in linear and logarithmic scale.  
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Figure 2. Bootstrapping estimation of two-sided 95% confidence interval for the mean of different normal distributions with 

standard deviation of 1 and mean values of 0, 0.1, 0.5 or 1. For each value of the sample size, we compute the mean of a simulated 

normal distribution 15000 times. The final confidence interval is obtained by clipping 95% of the values among the 15000 (filled 

area). The dashed lines show the maximum and minimum values of the sample mean value obtained for each sample size. The 

information is shown both in linear and logarithmic scale.  

 

Figure 3. Estimation of the Cohen’s d value between a normal distribution with standard deviation of 1 and mean value 0, and 

normal distributions with standard deviation of 1 and mean values of 0, 0.1, 0.5 or 1. For each value of the sample size, we compute 

the Cohen’s d between simulated datasets from the two compared normal distributions 15000 times. The final confidence interval 

is obtained by clipping 95% of the values among the 15000 (filled area). The dashed lines show the maximum and minimum 

Cohen’s d values obtained for each sample size. The information is shown both in linear and logarithmic scale.  
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(a) 

 

(b) 

Figure 4. Estimation of the (a) Jensen-Shannon divergence and (b) distance values between a normal distribution with standard 

deviation of 1 and mean value 0, and normal distributions with standard deviation of 1 and mean values of 0, 0.1, 0.5 or 1. For 

each value of the sample size, we compute the Jensen-Shannon divergence and distance between simulated datasets from the two 

compared normal distributions 15000 times. The final confidence interval is obtained by clipping 95% of the values among the 

15000 (filled area). The dashed lines show the maximum and minimum Jensen-Shannon divergence and distance values obtained 

for each sample size. The information is shown both in linear and logarithmic scale. 

p-value as an exponential function of data size 

Fig. 5 illustrates the idea that the p-value is a function that depends on the sample size 𝑛. There exists a 

continuous inverse relation between p-values and 𝑛, i.e. p-values decrease when 𝑛 increases, (Altman and 

Krzywinski, 2017; Krzywinski and Altman, 2013a, 2013b). This allows us to assume that p-values can be 

considered indeed, as a function of 𝑛, i.e. 𝑝(𝑛). 

Either with Mann Whitney U test (Mann and Whitney, 1947) or with Student’s t-test (Student, 1908), it 
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can be proved that the obtained p-value converges to zero when the sample size is large and the distributions 

being assessed are not exactly the same, i.e.,  the p-value  tends to  zero when the sample size tends to infinity. 

A mathematical demonstration of this statement is available in the Supplementary Material.   

Going a step further, we claim that the p-values can be indeed written directly as a function of 𝑛, 𝑝(𝑛), 

and that this function adjusts well to an exponential function. To show this, we first estimate the value that 

the p-value function has at each possible value of 𝑛. This can be done easily with the Monte Carlo cross 

validation method (MCCV) (Xu and Liang, 2001): at each iteration 𝑖 of the procedure, 𝑛 =  𝑛𝑖 is fixed, and 

two populations of size 𝑛𝑖 are compared. This procedure is repeated many times in each given iteration 𝑖 to 

cover the variability of the problem at 𝑛 = 𝑛𝑖. At the end, we have as many sets of p-values as iterations 𝑖 

that are of the form: 

𝒫𝑖 =  {(𝑛𝑖 , 𝑝𝑖
𝑗
), 𝑗 ∈ [1, … , 𝑓𝑖]}, 𝑛𝑖 ∈ 𝒩, 𝑓𝑖  ∈  ℱ .   1 

where 𝒩 and ℱ are grids of natural numbers defined according to the sample size, so the computational cost 

of MCCV is reduced without losing information. Further details are given in the description of the MCCV 

routine in the Supplementary Material. Note that this procedure is similar to the upstrap (Crainiceanu, 2018) 

using an increasing fraction of the sample. The details about the procedure followed for the estimation of the 

p-values are explained in the Supplementary   Material. 

In Fig. 5, the procedure is applied using random populations from different normal distributions. We 

distinguish two different situations: either the obtained distributions are uniform, so the mean value of all the 

𝑝𝑖
𝑗
 values is constant for any 𝑖 (Figs. 5a and 5b); or the mean value tends to decrease when the sample 

size 𝑛 increases (Figs. 5c-f). In other words, 𝑝(𝑛) can be written as a continuous function.  Hence, for each 

iteration 𝑖, each set of 𝑝𝑖 values is averaged to obtain the empirical estimation of the function 𝑝(𝑛) at 𝑛 = 𝑛𝑖 

(red markers in Fig. 5). Then, a smooth curve is fitted to these values using locally weighted scatter plot 

smoothing (LOWESS) (Cleveland, 1979), which shows 𝑝(𝑛) has an exponential shape (Figs. 6a and 6b). 

To prove that the estimated function 𝑝(𝑛) can be written as an exponential function, it is sufficient to verify 

that the quotient between its first derivative 𝑝′(𝑛) and the function 𝑝(𝑛) is itself a constant, i.e. 

𝑝′(𝑛)

𝑝(𝑛)
= 𝑐 ↔ 𝑝(𝑛) = 𝑎 ∙ 𝑒𝑐𝑛 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑐 ∈ ℝ .   2 

Collecting the values 𝑝(𝑛) of the LOWESS fit, the quotient 
𝑝′(𝑛)

𝑝(𝑛)
 is calculated (Figs. 6c and 6d). Most of the 

quotients verify the condition in Eq. 2. In Fig 6c, we show cases in which it is more challenging to decide 

whether there exists a statistical difference, as for instance, when 𝑁(0, 1) and 𝑁(0.1, 1) are compared.  When 

𝑝(𝑛) becomes very small, the quotient 
𝑝′(𝑛)

𝑝(𝑛)
 has more outliers, especially when the sample size 𝑛 is small. This 
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can be observed when comparing 𝑁(0, 1) with 𝑁(0.75, 1), 𝑁(1, 1), 𝑁(2, 1) and 𝑁(3, 1). (Fig. 6d). These are 

extreme cases in which there exist clear differences between populations and therefore, p-values are close to 

zero most of the time.  

As we have proved above that the estimated function 𝑝(𝑛) can be written as an exponential function, 

an exponential curve is fitted to all the pairs of values 𝒫𝑖 calculated with MCCV (Figs. 6a and 6b). Both 

LOWESS and exponential curves are very close to each other, even if the former was fitted using the mean 

values of each group 𝒫𝑖 and the latter with all of them. An exponential fit is more suitable in this case as it is 

calculated with all the values obtained through MCCV, and only outputs positive values by definition. A 

LOWESS approximation can occasionally lead to biased negative values, such as when 𝑁(0, 1) and 

𝑁(0.75, 1) are compared while the p-values are positively defined. Note that as 𝑝(𝑛)  →  0 when 𝑛 →  ∞, 

𝑐 <  0 necessarily in Eq. 2. Therefore, we assume from now on that 𝑝(𝑛) can be given as an exponential 

function of the form 

𝑝(𝑛) ≈  𝑎 ∙ 𝑒−𝑐𝑛 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑐 ∈ ℝ+.     3 

Here the parameters 𝑎 and 𝑐 control the amplitude and the decay of the function 𝑝(𝑛), respectively.  If 𝑐 =

 0, then the value of 𝑝(𝑛) would be uniform in 𝑎: 𝑝(𝑛)  =  𝑎.  As p-values are computed probabilities and 

the global maximum of 𝑝(𝑛) is 𝑎, 𝑎 belongs to the [0, 1] interval. 
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Figure 5. Distribution of the p-values obtained when two normal distributions are compared. For each fixed value of the sample 

size (3, 5, 10, 15, 30, 45, 60, 90, 200, 670, 1750 and 2499 points), two normal distributions of that size are simulated and compared 

via the Mann-Whitney statistical test. This procedure is repeated multiple times. A normal distribution with a mean of 0 and a 

standard deviation of 1 is compared with a normal distribution of mean: (a) 0, (b) 0.01, (c) 0.1, (d) 1, (e) 2, and (f) 3 and a standard 

deviation of 1. When both normal distributions are almost the same, (a) and (b), the p-value follows a uniform distribution. Though, 

as long as both normal distributions get farther to each other, the distribution of p-values become closer to a normal distribution 

with a faster decay. 
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Figure 6. A normal distribution with a mean of 0 and a deviation of 1 is compared with a normal distribution of mean (0, 0.01, 

0.1, 0.25, 0.5, 0.75, 1, 2 and 3). Multiple p-values are calculated for a sample size between two and 2500 (Fig. 3). (a) and (b) 

Locally weighted scatter plot smoothing (LOWESS) fit to the mean p-values  (red markers in Fig. 3) computed for each value of 

the sample size 𝑛. Likewise, an exponential function is fitted to all the simulated p-values. (c) and (d) Quotient between each 

LOWESS curve and its differential. (c) Comparison of 𝑁(0, 1), with 𝑁(0, 1), 𝑁(0.01, 1), 𝑁(0.1, 1), 𝑁(0.25, 1) and 𝑁(0.5, 1).  

(d) 𝑁(0, 1) is compared with 𝑁(0.75, 1), 𝑁(1, 1), 𝑁(2, 1) and 𝑁(3, 1). Constant quotients and accurate exponential fits show 

empirically that 𝑝(𝑛) has an exponential nature. 
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Figure 7. Comparison of a 95% of statistical significance (𝛼 =  0.05) and an n-dependent p-value curve. The parameter 𝑛𝛼 

represents the minimum sample size to detect statistically significant differences among compared groups. The parameter 𝑛𝛾 

represents the convergence point of the p-value curve. When the p-value curve expresses statistically significant differences, the 

area under the red curve (𝐴𝑝(𝑛)) is smaller than the area under the constant function 𝛼 =  0.05 (𝐴𝛼=0.05) when it is evaluated 

between 0 and 𝑛𝛾. 

 

Distance to the 𝜶-level of statistical significance 

The ideal case of a true (1 −  𝛼) statistical significance would lead to the rejection of the null hypothesis 

independently of data size, i.e., (1 −  𝛼)·100% of  p-values would always be lower than 𝛼.  Hence, we claim 

that whenever there exist clinically meaningful differences between two samples, 𝑝(𝑛) reaches 𝛼 rapidly. 

So, the values of 𝑝(𝑛) are mostly distributed in a range smaller than α. Therefore, we compare all the values 

of the curve 𝑝(𝑛) with 𝛼(𝑛) =  𝛼.  In the discrete case, we would evaluate 𝛼 −  𝑝(𝑛 =  𝑛𝑖) for each index 𝑖 

and sum all the results: if the sum is positive, then 𝑝(𝑛) is smaller than α most of the time. In the continuous 

case, this sum is obtained by integrating the difference 

𝛿𝛼(𝑛) = ∫(𝛼 − 𝑝(𝑛))𝑑𝑛 =  𝐴𝛼(𝑛) − 𝐴𝑝(𝑛),    4 

where 𝐴𝛼 is the area under the constant function 𝛼 and 𝐴𝑝(𝑛) is the area under the estimated p-values’ curve,  

𝑝(𝑛) (Fig. 7). A positive 𝛿(𝑛) implies that 𝐴𝛼 is larger than 𝐴𝑝(𝑛), i.e. most of the values in 𝑝(𝑛) are below 

the significance threshold 𝛼; a negative 𝛿(𝑛) implies the opposite. 

As shown in the next paragraphs, Eq. 4 aims to quantify and evaluate the distribution of p-values (i.e., 

the distribution of {(𝑛, 𝑝(𝑛)), 𝑛 ∈  𝑁}) taking into account two aspects, whether (1) most of the p-values are 

smaller than 𝛼 and (2) the decay of 𝑝(𝑛) is large enough. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2019.12.17.878405doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.878405
http://creativecommons.org/licenses/by-nc-nd/4.0/


10  

Mathematical formulation of the decision index 

By means of the exponential expression of 𝑝(𝑛) given in Eq. 3, the measure 𝛿𝛼(𝑛) (Eq. 4) can be rewritten 

as follows 

𝛿𝛼(𝑛) =  𝛼𝑛 −  
𝑎

𝑐
(1 − 𝑒−𝑐𝑛) .     5 

Due to the limits of 𝑎 and 𝑐, 𝛿𝛼(𝑛) is still well-defined.  However, in the limit of 𝑛, 𝛿𝛼(𝑛) will always be 

positive and it tends to infinity:  

lim
𝑛→∞

𝛿𝛼(𝑛) ≈ lim
𝑛→∞

(𝛼𝑛 −  
𝑎

𝑐
)  → ∞.     6 

Also, from a practical perspective, the area of interest to evaluate the decay of 𝑝(𝑛) is that enclosed 

between zero and its convergence point 𝑛: |𝑝′(𝑛)| ≈ 0. Namely, a relevant sub-sample of size 𝑛 can be 

computed as 

𝑛𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑛{ |𝑝′(𝑛)| <  𝛾},     7 

where 𝛾 is the threshold chosen to determine the convergence point (Fig. 7). Finally, 𝛿𝛼,𝛾 is now formally 

defined as 

𝛿𝛼,𝛾 = 𝐴𝛼,𝛾 −  𝐴𝑝(𝑛=𝑛𝛾 ) = 𝛼𝑛𝛾 − 
𝑎

𝑐
(1 −  𝑒−𝑐𝑛𝛾).   8 

As claimed at the end of the last section, the computation of 𝛿𝛼,𝛾 enables the identification of a rapid 

convergence to zero at small values of 𝑛 induced by the fast decay of 𝑝(𝑛), which is indicative of the 

existence of relevant differences from a practical perspective. 

The decision index we propose, 𝜃𝛼,𝛾, is defined as 

 

𝜃𝛼,𝛾 = {
1, 𝛿𝛼,𝑦  ≥ 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,      9 

where 𝛿𝛼,𝛾 follows Eq. 8. 
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Figure 8. Decision index 𝜃𝛼=0.05,𝛾 for different values of parameters 𝑎 and 𝑐 in the function 𝑎𝑒−𝑐𝑛 and threshold 𝛾: (a) Each of 

the subplots is drawn for a specific value of 𝛾, being the dark area the cases for which we conclude that there are meaningful 

differences (𝜃𝛼=0.05,𝛾 = 1), and white area the rest of the cases 𝜃𝛼=0.05,𝛾 = 0; (b) Colors in the image correspond to the values of 

𝛾 for which 𝛿𝛼=0.05,𝛾 = 0. The black frontier shows 𝛿𝛼=0.05,𝛾=5𝑒−06 = 0 (red box in (a)). All the values of 𝑎 and 𝑐 for which 

𝜃𝛼=0.05,𝛾=5𝑒−06 = 1 (practical differences) lie on the left side of this limit and, the rest, on the right. The plots shown in (a) show 

the influence of the parameter 𝛾 in a wide range of values, while the plots shown in (b) are limited to the range of values we find 

in this posterior experiment. The vertical dashed line indicates the cases 𝑎 =  0.05 which are the cases in which  𝑝(𝑛) outputs a 

95% statistically significant value. 

 

Delimiting the convergence of the curve 𝒑(𝒏). 

The proposed approach depends on two thresholds: (1) significance threshold 𝛼 and (2) the convergence 

threshold 𝛾. The former measures the level of statistical significance, while the latter controls decisions.  

Therefore, the only critical threshold to discuss in this work is 𝛾. 

The rules to follow for the selection of the threshold 𝛾 are: 

 The parameter 𝑎 is the maximum value that 𝑝(𝑛) can take.  Therefore, if 𝑎 is smaller than 𝛼, then 

𝜃𝛼,𝛾 = 1 for any 𝛾 given. 

 As 𝛿𝛼,𝛾(𝑛) tends to infinity with 𝑛, the smaller the value of 𝛾 is set, the larger 𝑛𝛾 will be and the 

chances of 𝜃𝛼,𝛾 = 1 will also increase. 

 The values of 𝛾 should be small:  𝛼 is considered a significant number and 𝑝(𝑛) values are 

constantly compared with it. It seems reasonable to compare the slope of 𝑝(𝑛) at the convergence 

point with a value smaller than 𝛼, which is usually smaller than 0.1. 
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Eq. 7 implies 

|𝑝′(𝑛)| =  |−𝑐𝑝(𝑛)| < 𝛾 ↔ 𝑝(𝑛) <  
𝛾

|𝑐|
 .    10 

So, if 𝛾 is chosen such that 
𝛾

|𝑐|
  is greater than 𝛼, it would vanish the assumption that 𝑝(𝑛) has arrived at a 

convergence point equivalent to zero. Therefore, our claim is that 
𝛾

|𝑐|
< 𝛼 with at least 𝛾 <  0.1.  

Data characterization in stable and uncertain cases. 

The threshold 𝛾 controls severe decisions and it is limited to 
𝛾

|𝑐|
< 𝛼 with at least 𝛾 <  0.1. In this section we 

study the range 𝛾 ∈ [1𝑒−12, 0.1] to see the effect on the decision index 𝜃𝛼,𝛾. Namely, the lower 𝛾 is set, the 

larger the value 𝑛 is to determine 𝑝(𝑛)’s convergence. Hence, when γ is small, the decision index will 

determine that there are practical differences among groups more often, becoming then less strict. In Fig. 8a, 

we show the dynamics of 𝜃𝛼=0.05,𝛾 when 𝛾 changes: the dark area (𝜃𝛼=0.05,𝛾 = 1) increases inversely to 𝛾, 

showing that the chances for which the null hypothesis is rejected increase as well. Moreover, the limit 

between dark and light (𝜃𝛼=0.05,𝛾 = 0) areas is precisely the curve 𝛿𝛼,𝛾 = 0. The value of 𝛾 determines this 

curve and therefore, the conditions for which 𝜃𝛼=0.05,𝛾 = 1 (dark area) and 𝜃𝛼=0.05,𝛾 = 0  (light area). In Fig. 

8b, we illustrate the condition 𝛿𝛼,𝛾 = 0 when 𝛼 =  0.05, as a function of 𝑎, 𝑐 and 𝛾. The case 𝛾 = 5𝑒−06 is 

underlined in black. 

There exist some points (𝑎, 𝑐) for which the rejection or not of the null hypothesis is independent of 𝛾. A 

clear example is the case in which 𝑎 ≥  𝛼 and 𝑐 ≈ 0. These cases represent the situation in which the null 

hypothesis cannot be rejected with a statistical significance of level 𝛼. For instance, when 𝑁(0,1) is compared 

with 𝑁(0,1) or 𝑁(0.01,1) (Fig. 1b in the main manuscript, Figs. 5a-b). Likewise, if 𝑎 ≤ 𝛼 or 𝑐 is large enough, 

the null hypothesis is always rejected with a statistical significance of level 𝛼. For instance, when 𝑁(0,1) is 

compared with 𝑁(2,1) or 𝑁(3,1) (Fig. 1b in the main manuscript, Figs. 5e-f). 

The proposed methodology allows us to classify by their level of uncertainty the decisions on the 

differences among the groups of observations. Namely, if the differences can be considered relevant from a 

practical perspective or not. The parameters of the exponential curve in Eq. 1 in the main text determine the 

axis of any of the plots in Fig. 8. Therefore, once an exponential curve is fitted and parameters 𝑎 and 𝑐 are 

estimated, it is possible to know in which position of the graph the case of study is: clear cases will always 

be close to the left or to the right side of the graphs in Fig. 8, while most unstable or unclear cases will be 

placed in the middle. Therefore, with this method, it is possible to determine if there are clinically significant 

differences or not. When these differences are not sufficiently clear, it might be necessary to perform a deeper 

study. 
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An intuitive interpretation of statistically significant differences between two groups (the classical threshold 

p-value <  𝛼) is that their mean CI do not overlap. These CI decrease when the size of the data increases 

(Krzywinski and Altman, 2013c), Fig. 1-2.  The rest of the section is devoted to study how large two 

populations must be in order to obtain non-overlapping CI.  Interestingly, the estimation of the function 𝑝(𝑛) 

allows us to determine the specific minimum value of 𝑛, 𝑛𝛼, for which 𝑝(𝑛) is lower than the significance 

level 𝛼 (Fig.  8). This value is the solution to the equation 

𝛼 = 𝑎𝑒−𝑐𝑛𝛼 .       11 

As computed, 𝑛𝛼 represents the minimum sample size needed to obtain a statistically significant p-value, in 

case it exists. In other words, reproducing an experiment with 𝑛𝛼 samples assures the rejection of the null 

hypothesis. The estimated 𝑛𝛼 allows to assess the strength of the evidence against the null hypothesis.  If 𝑛𝛼 

is small, the strength of the statistical difference is very clear and two populations are distinguishable. 

The parameters 𝑎 and 𝑐 in Eq. 11 are obtained empirically through MCCV so they can introduce some bias 

in the calculation of 𝑛𝛼. Hence, a better estimator of 𝑛𝛼, �̂�𝛼, can be computed using the p-values obtained 

directly from the data and their variance  

�̂�𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑛𝑖
{ (𝑝�̅� −  𝜎𝑝𝑖̅̅̅) < 𝛼},     12 

where 𝑝𝑖̅̅ ̅ represents the mean of the set of values 𝑝𝑖 (MCCV)  and  𝜎𝑝𝑖̅̅̅,  the  mean  standard  error  (SEM),  

which  is  included  to  correct  for  the variability of the estimated p-values. The estimator �̂�𝛼 is limited to 

those cases in which the data is large enough: if the size of the data is smaller than 𝑛𝛼, then �̂�𝛼cannot be 

computed (Fig. 1e-f, Fig. 2d in the main manuscript). As �̂�𝛼  is more restrictive than 𝑛𝛼, its value will always 

be slightly larger (Table 1). The values in Table 1 are similar to those values in Fig 1-2 for which the CIs do 

not overlap. 

Test of reliability 

Unlike many computational methods, the analysis of statistical significance of the differences between two 

groups cannot be evaluated by means of Ground Truth data, simulations or human-made annotations. 

Nonetheless, it is possible to determine the robustness on the reproducibility of the results. Namely, whether 

the decision taken about the stated null-hypothesis (𝜃𝛼,𝛾) is maintained when the experiment is repeated. To 

do so, we test our method using simulated normal distributions. 

Any data diagnosis carried out with the proposed method depends on the value 𝛾 chosen and the 

limitations posed by its computational intensive nature. As done at the beginning of this work, we compare 

the normal distribution 𝑁(0, 1) with 𝑁(0.01, 1), 𝑁(0.1, 1), 𝑁(0.25, 1), 𝑁(0.5, 1), 𝑁(0.75, 1), 𝑁(1, 1), 
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𝑁(2, 1) and 𝑁(3, 1).  We should obtain 𝜃𝛼,𝛾 = 1 when comparing the most similar distributions such as 

𝑁(0, 1) and 𝑁(0.01, 1). In contrast, we should get 𝜃𝛼,𝛾 = 0 when comparing the most different distributions, 

such as 𝑁(0, 1) and 𝑁(2, 1). 

To evaluate the effect of 𝛾, 𝑝(𝑛) is simulated for all pairs of normal distributions and it is compared with 

a significance level of 𝛼 =  0.05 using different values of 𝛾 (Table S7 in the Supplementary Material). The 

lower the convergence criterion 𝛾 is, the less restrictive the diagnosis is (Fig. 8). Using the simulated data, 

the range of 𝜃𝛼=0.05,𝛾 values obtained let us recommend a value for this parameter. Note that 𝛾 satisfies 
𝛾

|𝑐|
<

𝛼 and that 𝑐, even if defined as a positive value, in our experiments is shown to be in the [0, 1] range (Table 

1). When 𝑁(0, 1) and 𝑁(0.1, 1) are compared with a small 𝛾, ( 𝛾 =  2.5𝑒−06), the decision index 

𝜃𝛼=0.05,𝛾 = 2.5𝑒−06 = 1 indicates that there exist meaningful differences among both distributions, which is 

the opposite of what we expected. If the value of parameter 𝛾 increases, the decision index will output that 

the two compared groups do not display meaningful differences in those cases in which there is a larger 

uncertainty about this decision. For instance, when 𝑁(0, 1) and 𝑁(0.25, 1) are compared with 𝛾 =

5𝑒−05, 𝜃𝛼=0.05,𝛾=5𝑒−05 = 0. However, the latter is not straightforward for two reasons: 𝛿𝛼=0.05,𝛾 = 5𝑒−05 =

−5.84 (small  difference) and �̂�𝛼   =  186 (few  samples  to observe statistically significant differences). As 

it is shown in Fig. 8, a value 𝛾 >  5𝑒−04 results in 𝜃𝛼=0.05,𝛾 = 0 for all the cases in Table 1.  Note that the 

values of the function 𝑝(𝑛) are enclosed in the [0, 1] range and that 𝛾 is used to determine where the elbow of 

this function 𝑝(𝑛) lies, i.e. the convergence point. Therefore it is reasonable to use the same value of 𝛾 

regardless the data that is being analyzed. With the results of the evaluation, we strongly recommend the use 

of 𝛾 = 5𝑒−06.  Indeed the decisions about having interesting differences among the compared groups are 

robust to the changes in the value of 𝛾 in both simulated and experimental data (Tables S7 and S9 in the 

Supplementary Material). Moreover, uncertain decisions can be easily spotted by small 𝛿𝛼,𝛾 and �̂�𝛼 values. 

 
Table 1. Parameters of the function p(n) after the exponential fit with α = 0.05 and γ = 5e−06, for the comparison 

of a normal distribution with mean value 0 and standard deviation 1, and normal distributions of mean value 0, 0.01, 

Comparison 𝑎 𝑐 �̂�𝜶 𝒏𝜸 𝜃𝜶=𝟎.𝟎𝟓,𝜸=𝟓𝒆−𝟎𝟔 

𝑁(0,1)~𝑁(0,1) 0.256 0.000 ∞ 39599 0 

𝑁(0,1)~𝑁(0.01,1) 0.255 0.000 ∞ 44237 0 

𝑁(0,1)~𝑁(0.1,1) 0.257 0.002 1192 988 0 

𝑁(0,1)~𝑁(0.25,1) 0.263 0.010 185 165 0 

𝑁(0,1)~𝑁(0.5,1) 0.286 0.042 47 41 1 

𝑁(0,1)~𝑁(0.75,1) 0.304 0.091 20 19 1 

𝑁(0,1)~𝑁(1,1) 0.313 0.152 13 12 1 

𝑁(0,1)~𝑁(1.5,1) 0.411 0.344 7 6 1 

𝑁(0,1)~𝑁(2,1) 0.579 0.599 5 4 1 

𝑁(0,1)~𝑁(2.5,1) 0.738 0.794 4 3 1 

𝑁(0,1)~𝑁(3,1) 0.867 0.924 4 3 1 
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0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3. 

 

To test the generality of these results, the same procedure was repeated several times by changing the 

samples of the normal distributions being compared. Hence, it is possible to provide a probability of how 

often the resulting 𝜃𝛼,𝛾 would be the same as the one stated in Table 1. Additionally, the presented method 

has its limitations in the computational time needed to perform MCCV iterations: the more iterations we 

compute the longer the process will take. Moreover, the accuracy of any estimated 𝑝(𝑛) depends on the 

sample size  𝑛 =  𝑛𝑖   and p-values, 𝑝𝑖, that the program can evaluate. Therefore, we also tested the results of 

the method when the number of iterations 𝑖 and 𝑗 in MCCV is reduced. Overall, a rate between obtaining 

exactly the same result or a different one under any change of the previous conditions was calculated (Table 

S8 in the Supplementary Material). The rate is given as a percentage value. The closer the percentage gets to 

100, the more robust and general the result will be. We can confirm that the results are most of the time the 

same as the ones given in  Table 1 when 𝛾 =  5𝑒−06. The only critical case is the comparison 𝑁(0, 1) - 

𝑁(0.5, 1) when few 𝑛𝑖 points are used to estimate 𝑝(𝑛).  

The last procedure was repeated using the real data from the first experiment (study of the effect of Taxol 

in the cell body and protrusions morphology) (Tables S9 and S10 in the Supplementary Material). Even with 

more complex and noisier data, the results obtained show that the method is stable and robust. All technical 

details about these computations are given in the Supplementary Material. 

 

IMPLEMENTATION DETAILS 

We provide a ready-to-use Python code that implements the method explained above, outputs the decision index 

𝜃𝛼,𝛾, �̂�𝛼, 𝑎and 𝑐parameters, and generates the plots shown in the paper : https://github.com/BIIG-

UC3M/pMoSS. Together with the implementation, different Jupyter Notebooks with demos and user guidelines 

are given, making this work accessible from both local machines and Google Colaboratory. The following 

pseudocode describes the process behind the algorithm. The description of MCCV (monte_carlo_cross_validation) 

is given in the Supplementary Material. 

 

1. # Initialization of all the parameters 

2. path: location where the data is stored in the machine 

3. file_name: name of the file containing the numerical data (CSV or Excel). 

4. grid_size: number of "n-values" to evaluate (size of N-grid in the Supplementary Material) (default: 200) 

5. n0: minimum "n-value" to compute Monte Carlo cross-validation (default: 2) 

6. Nmax: maximum "n-value" to compute Monte Carlo cross-validation (default: 1200) 

7. k: this value prevents from having only one iteration for the highest "n-value", so the final  

 iterations = k*(m/min(m,Nmax)) where m is the size of a group with less observations (default: 20). 

8. initial_portion: this value prevents from having millions of iterations in n0 so 

 initial iterations = np.log((m/n0)*initial_portion) where m is the size of the group with less  

 observations(default: 1). 
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9. alpha: alpha for a 100(1-alpha)% statistical significance (default: 0.05). 

10. gamma: the gamma value in the paper (default: 5e-06). 

11. test: statistical test to evaluate (default: 'MannWhitneyU'). 

12. method = method to estimate the p-value function (default: 'exponential') 

 

13. # Run the method 

14. pvalues, param, Theta ← compute_diagnosis(file_name, path, gamma, alpha, grid_size, n0, 

 Nmax, initial_portion, method, test) 

15. compute_diagnosis{ 

16. 𝒫 ← monte_carlo_cross_validation(grid_size, n0, Nmax, k, initial_portion) 

17. p(n) ← exponential_fit(𝒫) 

18. delta ← distance(p(n), alpha) 

19. Theta ← is(delta > 0) 

20. } 

 

21. # Save computed parameters 

22. pvalues.to_csv('../data/morphology/aging_morphology_pvalues.csv',index = False) 

 

23. # Obtain the data, variables and name of the groups for which you would like to get a plot 

24. data, variables, group_labels ← morphoparam(file_name, path = path) 

 

25. # Create all the comparison combinations from the list of groups: 

26. combination ← create_combination(group_labels) 

 

27. # Get a table with the results 

28. table ← table_of_results(param, variables, combination) 

 

29. # Plot the results: 

30. composed_plot(data, pvalues, group_labels, combination, variables) 
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