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Highlights 
• A lightweight deep learning model, Simple Fully Convolutional Network (SFCN), is 

presented, achieving state-of-the-art brain age prediction performance in UK Biobank 
MRI brain imaging data. 

• Even with limited number of training subjects (e.g., 50), SFCN performs better than 
widely-used regression models. 

• A semi-multimodal ensemble strategy is proposed and achieved first place in the PAC 
2019 brain age prediction challenge. 

• Linear regression can remove brain age predication bias (even on unlabelled data) 
while maintaining state-of-the-art performance. 

Abstract 
Deep learning has huge potential for accurate disease prediction with neuroimaging data, but 
the prediction performance is often limited by training-dataset size and compute memory 
requirements. To address this, we propose a deep convolutional neural network model, 
Simple Fully Convolutional Network (SFCN), for accurate prediction of brain age using T1-
weighted structural MRI data. Compared with other popular deep network architectures, 
SFCN has fewer parameters, so is more compatible with small dataset size and 3D volume 
data. The network architecture was combined with several techniques for boosting 
performance, including data augmentation, pre-training, model regularization, model 
ensemble and prediction bias correction. We compared our overall SFCN approach with 
several widely-used machine learning models. It achieved state-of-the-art performance in UK 
Biobank data (N = 14,503), with mean absolute error (MAE) = 2.14y in brain age prediction 
and 99.3% in sex classification. SFCN also won (both parts of) the 2019 Predictive Analysis 
Challenge for brain age prediction, involving 79 competing teams (N = 2,638, MAE = 2.90y). 
We describe here the details of our approach, and its optimisation and validation. Our 
approach can easily be generalised to other tasks using different image modalities, and is 
released on GitHub. 
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1 Introduction 
The emergence of machine learning techniques has made automatic disease prediction from 
medical imaging data possible. The recent development of deep learning pushes prediction 
accuracy beyond human performance in some scenarios, and is able to assist clinical 
diagnosis/treatment decisions (De Fauw et al., 2018; Kohl et al., 2018; LeCun et al., 2015). In 
neuroimaging, deep learning has had some successes, and yet faces several challenges (Arslan 
et al., 2018; Baumgartner et al., 2018; Cole et al., 2017; Kawahara et al., 2017). For example, 
3D neuroimaging data requires much more GPU memory than most 2D images, meaning that 
models successful in 2D data (e.g., ImageNet classification (Krizhevsky et al., 2012; Simonyan 
and Zisserman, 2014)) are infeasible in the 3D scenario. Further, deep networks usually 
require a large sample size for model fitting, but neuroimaging datasets often have relatively 
few samples compared to existing million-sample natural image datasets (Russakovsky et al., 
2015), which could limit the ability to learn image features effectively, and result in overfitting 
problems. To design models to address these challenges for neuroimaging applications, we 
need to evaluate them with a publicly available and broadly accepted benchmarking platform. 
 
Predicting chronological age based on structural brain magnetic resonance imaging (MRI) 
data not only provides a way for benchmarking, comparing and improving deep learning 
algorithms, but also receives attention for its potential clinical and biological relevance (Cole 
et al., 2018; Cole and Franke, 2017; Franke and Gaser, 2019; Kaufmann et al., 2019). The 
predicted age can be considered the “brain age”, because it is derived purely from the brain 
imaging data. After estimating brain age, a further quantity of interest is the difference 
between the predicted age (brain age) and the actual age, sometimes referred to as the brain-
age delta. Positive delta implies that a subject’s brain looks older than their actual age, i.e., 
they are experiencing accelerated aging. For example, existing studies have observed that the 
brain-age delta is an effective biomarker that shows differences between different clinical 
groups (Kaufmann et al., 2019) and is predictive for mortality (Cole et al., 2018). Achieving 
accurate brain age prediction is an essential pre-requisite for optimising brain-age delta as a 
biomarker. To reach this goal, many studies have used different models, such as regularized 
linear regression, support vector machines and Gaussian process regression, for brain age 
prediction (Franke and Gaser, 2019). Some studies have used deep learning methods (Cole et 
al., 2017; Feng et al., 2019; Kolbeinsson et al., 2019). However, challenges exist for further 
improvement of prediction accuracy, especially on small datasets, and some studies have 
shown that deep learning performs no better than simpler machine learning models in typical 
neuroimaging datasets (He et al., 2019; Schulz et al., 2019). It has not yet, for example, been 
clearly established whether more complex deep learning models perform better than simpler 
models (for the task of brain age prediction using structural MRI data). In addition, predicted 
brain age is often systematically biased towards the group mean value, resulting in a 
correlation between the delta and the chronological age, which weakens the validity of the 
delta as a biomarker (Smith et al., 2019b). Therefore, it is both methodologically interesting 
and scientifically important to develop unbiased high-performance deep learning strategies 
for brain age prediction. 
 
In this paper, a lightweight deep learning architecture, Simple Fully Convolutional Network 
(SFCN), is presented for brain age prediction. Its architecture is based on the fully 
convolutional network (FCN) (Zhang et al., 2018) and the VGG net (Simonyan and Zisserman, 
2014) and takes 3D minimally-preprocessed T1 brain images (and/or preprocessed 
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segmentation outputs) as input. Using proper data augmentation and regularization 
techniques, the model achieved state-of-the-art mean absolute error (MAE) of 2.14 years in 
the UK Biobank dataset (14,503 subjects, of which 12,949 are used for training). This model 
performs better than several widely-used machine learning models in the literature. In 
addition, we propose a model ensemble strategy that averages the outputs of deep learning 
models based on different kinds of preprocessing applied to the T1 data, namely, white 
matter segmentation, grey matter segmentation, linearly-registered raw T1 and nonlinearly 
registered raw T1; this further boosts the accuracy of brain age prediction. Finally, we 
extended the bias correction techniques proposed by (Smith et al., 2019b) to greatly reduce 
the correlation between the brain-age delta and the chronological age, with very little 
compromise of performance, even when the true ages of test (validation) subjects are 
unknown. The ensemble SFCN came first in the Predictive Analysis Challenge 2019 in brain 
age prediction (MAE = 2.90 years) among the 79 participating teams1. With bias correction, 
our model achieved an MAE of 2.95 years, thereby ranking first also in the other part of the 
competition (most accurate age prediction while minimising bias). The trained model is 
available in the GitHub repository: 
https://github.com/ha-ha-ha-han/UKBiobank_deep_pretrain/ 
 

 

 
1 PAC 2019 website: https://www.photon-ai.com/pac2019 

 
 
Figure 1. Illustration of the core network for the Simple Fully Convolutional Neural 
Network (SFCN) model. The model takes 3D brain image data and contains 7 blocks. 
Each of the first 5 consecutive blocks consists of a 3x3x3 3D convolution layer, a Batch 
Norm layer, a Max Pooling layer and a ReLU activation. The 6th block contains one 1x1x1 
3D convolution layer, a Batch Norm layer and a ReLU activation. The 7th block contains 
an average pooling layer, a dropout layer, an 1x1x1 3D convolution layer and a softmax 
layer. 
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2 Methods 
2.1 Model: Simple Fully Convolutional Network (SFCN) 
We use a convolutional neural network (CNN) architecture to estimate brain age using 3D T1 
images. The architecture is based on VGGNet (Simonyan and Zisserman, 2014) and uses a fully 
convolutional structure (Zhang et al., 2018), but we keep the number of layers as small as 
possible to reduce the number of parameters to about 3 million, and therefore to reduce 
computational complexity and memory cost. We name this model structure “Simple Fully 
Convolutional Neural Network” (SFCN) to reflect its simplicity. 
 
The model consists of seven blocks, as shown in Figure 1. Each of the first five blocks contains 
a 3-by-3-by-3 3D convolutional layer, a batch normalisation layer (Ioffe and Szegedy, 2015), a 
max pooling layer and a ReLU activation layer (LeCun et al., 2015). The 1mm-input-resolution 
160x192x160 3D input image (with little or no brain tissue loss) goes through each block 
sequentially, with its feature map generated and spatial dimension reduced to 5x6x5 after 
the fifth block. The sixth block contains a 1x1x1 3D convolutional layer, a batch normalisation 
layer and a ReLU activation layer. The seventh block contains an average pooling layer, a 
dropout layer (only used for training, with 50% random dropout rate) (Srivastava et al., 2014), 
a fully connected layer and a softmax output layer. The channel numbers used in each 
convolution layer are [32, 64, 128, 256, 256, 64, 40]. The output layer contains 40 digits that 
represent the predicted probability that the subject’s age falls into a one-year age interval 
between 42 to 82 (for UK Biobank) or a two-year age interval between 14 to 94 (for PAC). A 
weighted average of each age bin is calculated to make the final prediction: 

𝑝𝑟𝑒𝑑 = 	'𝑥) ∙ 𝑎𝑔𝑒)

-.

)

 

𝑥)   stands for the probability predicted for the 𝑐01 age bin and 𝑎𝑔𝑒)  stands for the bin centre 
for the age interval.  
The internal process of the model can be interpreted as three stages: 1) The first five blocks 
extract feature maps from each input image. 2) The sixth block further increases the 
nonlinearity of the model by adding one extra nonlinear layer but without changing the 
output size of feature maps. 3) The seventh block maps the generated features to the 
predicted age probability distribution. The first two stages encode the input image to a 
feature vector, and the third stage can be viewed as a classifier based on the deep feature. At 
the first stage, the spatial information is maintained and takes most of the memory. To reduce 
the overall GPU memory consumption, we limited the channel numbers of the first layer to 
32 and put only one convolutional layer in every block. To compare, a VGGnet usually has two 
convolutional layers inside a block and has 64 channels in the first layer (Simonyan and 
Zisserman, 2014). At the later stages (higher-level layers) of deep learning models, fully 
connected (FC) layers usually have the largest number of learnable parameters. For example, 
the penultimate layer of VGGnet (FC-4096) consists of about 16 million parameters. By 
removing most of the FC layers and keeping the number of channels small in the last two 
stages in SFCN, the number of learnable parameters is greatly reduced. Although reducing 
the number of FC layers can potentially reduce the nonlinearities learnt by the model, in most 
neuroimaging classification tasks, the number of classes is smaller than that for natural 
images. For example, there are only 40 “classes” (age bins) for brain age prediction, which is 
a very small number compared to 1000 classes in the ImageNet classification task. In this case, 
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the small parameter number and the lack of FC layers do not harm the testing (validation) 
performance. 
 
To compare SFCN with a popular CNN architecture, we implemented a 3D version of ResNet 
(He et al., 2016). The architecture of 3D-ResNet follows the literature but the convolution 
filters are changed to 3D. For the experiments, the SFCN and the ResNet share the same 
training parameters and both achieve successful performance in the training set. (Comparison 
against a broader set of alternative approaches is of course provided via the results from the 
PAC competition.) 
 
SFCN contains only 3.0 million parameters, which is less than one tenth of the 33.2 million for 
3D ResNet-18, 46.2 million for 3D ResNet50 and 133 million for 2D VGGnet (Simonyan and 
Zisserman, 2014). 
 
2.2 Regression models: Elastic Net 
We compared our deep learning model with simpler machine learning models using T1 MRI 
derived features as inputs (Schulz et al., 2019). We choose Elastic Net for our comparison, 
because it has been shown to be a high-performance and stable machine learning model for 
neuroimaging data (Jollans et al., 2019). Three forms of the T1 data from UKB were 
(separately) used for age prediction: (1) Voxel-level linearly registered “raw” T1 images; (2) 
Voxel-level grey matter partial-volume estimated by FSLVBM voxel-based morphometry; (3) 
T1-image derived region-level phenotypes (Miller et al., 2016). In the training set, we used 
principal component analysis (PCA) to reduce the data into an L-dimensional space  (L=5000 
for (1) and (2), no PCA for (3)), and then used Pearson correlation to select the top k features 
(from k=10 to all features) that correlate with age, and finally used elastic net regression 
(implemented in the glmnet package) to predict age (Friedman et al., 2010). All model 
parameters were optimised via internal cross-validation within the validation set. The 
selected best model was applied to the test set and performance reported. We also 
implemented a widely-used support vector machine for brain age prediction, but did not find 
better performance compared with the above model. 
 
 
2.3 Bias correction 
We used the linear bias correction method described in (Smith et al., 2019b) for bias 
correction for the delta. Such a bias correction is valuable for most brain-age prediction 
studies, as there is normally an underfitting of the prediction, due to problems such as 
regression dilution and non-Gaussian age distribution. Defining 𝑦 to be chronological age and 
𝑥 the predicted age, we fitted a linear regression 𝑥 = 𝑎𝑦 + 𝑏 to the left-out validation set 
(with labels). The corrected predicted age is estimated by 

𝑥5 = (𝑥 − 𝑏)/𝑎 
This method requires (at the point of estimating a and b from x and y) that the chronological 
ages are known. For the label-missing (final evaluation) test set, we assumed that 𝑎 and 𝑏 are 
generalisable, and used the coefficients previously fitted in the left-out validation set to 
estimate the corrected brain-age delta. 
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3 Experiments 
3.1 Datasets and preprocessing 
3.1.1 UK Biobank 
UK Biobank is collecting a large-cohort of brain imaging data from predominantly healthy 
participants (Miller et al., 2016). In this study, we used the T1 data from 14,503 subjects 
(mean age 52.7 years, standard deviation 7.5 years, range 44-80 years), of which 12,949 were 
used for training, 518 for validation and 1,036 for testing. The image preprocessing pipeline 
is described in (Alfaro-Almagro et al., 2018). The input data to the deep neural network model 
was brain extracted, bias corrected and linearly registered to MNI152 standard space (unless 
otherwise specified). 
 
3.1.2 PAC 2019 
As part of testing the performance of our method objectively, we participated in the 
Predictive Analytic Challenge (PAC) 2019. This competition was broken down into two parts: 
a) to achieve the lowest mean absolute error (𝑀𝐴𝐸 = =

>
∑ |𝑝𝑟𝑒𝑑A − 𝑎𝑔𝑒A|	>
AB= ) for brain age 

prediction; and b) to achieve the lowest MAE while keep the Spearman correlation between 
the brain-age delta and the chronological age under 0.1 (because in general, ideally delta 
would have no bias or age dependence). The dataset contains T1 structural MRI brain images 
from 2,638 subjects (mean age 35.9 years, standard deviation 16.2 years, range 17-90 years).2 
We used 2,199 subjects for training, and 439 subjects as a left-out validation set. In addition, 
there were 660 subjects whose labels were unknown to the challenge participants, forming a 
test set for benchmarking (i.e., the results on this test set determined the final challenge 
scores).  
 
3.2 Training and testing 
During the training process, we use an Stochastic Gradient Descent (SGD) optimiser 
(Sutskever et al., 2013) for the UKB dataset to minimise a Kullback–Leibler divergence loss 
function between the predicted probability and a Gaussian distribution (the mean is the true 
age, and the distribution sigma is 1 year for UKB) for each training subject. This soft-
classification loss encourages the model to predict age as accurately as possible. To reduce 
over-fitting, two data augmentation methods are applied during the training phase.  In every 
epoch, the training input is 1) randomly shifted by 0, 1 or 2 voxels along every axis; 2) has a 
probability of 50% to be mirrored about the sagittal plane.  
 
The performance of the model can be evaluated by Mean Absolute Error (MAE) and Pearson 
correlation coefficient (r-value) in the validation and test sets.  
 
All the models were trained with two NVIDIA P100 GPUs. The training time was approximately 
0.5 hour to go through each of the 12,949 training subjects once (i.e., one training epoch). 
The L2 weight decay coefficient was 0.001. The batch size was 8. The learning rate for the SGD 
optimiser was initialized as 0.01, then multiplied by 0.3 every 30 epochs unless otherwise 
specified. The total epoch number is 120 for 12,949 training subjects. The epoch number is 
adjusted accordingly for the experiments with smaller training sets so that the training steps 
are roughly the same. The epoch with the best validation MAE is used for testing.  

 
2 This information is publicly available in the challenge website: https://www.photon-ai.com/pac2019 
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For the ensemble strategy, we randomly initialised and trained 20 models; 5 (identical 
network structure but randomly-initialised parameters) models were trained on each of the 
four input data types: linearly registered GM and WM, non-linearly registered T1 and linearly 
registered T1. The ensemble experiments use 2,590 subjects for training to reduce the overall 
computation time. The prediction is made by averaging the results of all 20 models. 

Model Test MAE 
(years) Train MAE (yrs) Test-Train MAE 

gap (yrs) 
SFCN without 
regularization 2.60±0.06 0.337±0.012 2.26 

SFCN 2.14±0.05 1.36±0.03 0.78 
3D ResNet18 2.50±0.06 0.40±0.04 2.10 
3D ResNet50 2.32±0.05 0.88±0.05 1.44 

 
 
Table 1. Performance of different deep learning models in UK Biobank data. The 
training set size is 12,949. The input data are T1 MRI images which are linearly registered 
to a standard space. After the training is done, the epoch with the best validation MAE is 
selected to be evaluated on the test set. The test results are bootstrapped 1000 times to 
compute the mean test MAE and the standard deviation. Epochs 95 to 110 are selected to 
compute the train MAE, standard deviation of the train MAE and the mean test-train MAE 
gap (the difference between the test MAE and the train MAE).  
 

Data Augmentation 
and Regularisation Test MAE (yrs) Train MAE (yrs) Test-Train MAE gap 

(yrs) 
None 3.67±0.09 0.305±0.006 3.29 

DP 3.59±0.08 0.92±0.03 2.75 
VS 3.05±0.07 0.59±0.01 2.55 
MR 3.13±0.08 0.47±0.01 2.78 

DP + VS + MR 2.82±0.07 1.51±0.03 1.21 
DP + VS + MR + 1FC 3.59±0.08 1.50±0.06 2.04 

 
Table 2. Performance of SFCN with different regularisation and data augmentation 
methods. DP=Dropout, VS=Voxel Shifting, MR=Mirroring, 1FC = SFCN with one extra 
fully connected layer. The training set size is 2,072. The input data are T1 MRI images which 
are linearly registered to a standard space. After the training is done, the epoch with the best 
validation MAE is selected to be evaluated on the test set. The test results are bootstrapped 
1000 times to compute the mean test MAE and the standard deviation. Epochs 185 to 200 
are selected to compute the train MAE, standard deviation of the train MAE and the mean 
validation-train MAE gap (the difference between the test MAE and the train MAE).  
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3.3 Sex classification 
To show the generalisability of SFCN to other tasks, we also tested the performance for sex 
classification. The architecture of the model and the training setting remains mostly the same 
as for age prediction, with differences now described.  Training was performed with two 
NVIDIA GTX1080ti GPUs and the channel numbers are reduced to [28, 58, 128, 256, 256, 64] 
to accommodate to the GPU memory. The number of classes is two and the loss function is 
the cross entropy. The training set size is 5,180 and the test set is the same as for age 
prediction. The input brain is linearly registered to standard space so that the overall brain 
size is the same for all subjects of both sexes. 
 

4 Results 
4.1 The performance of SFCN in UK Biobank data 
Table 1 shows the performance of the SFCN in the UKB dataset with 12,949 training subjects. 
SFCN with data augmentation and dropout achieved an MAE of 2.14 years, which is 0.46 years 
better than that without these regularizations.  
 
With the same regularization techniques, we then compared SFCN with other popular CNN 
architectures, namely the 3D version of ResNet-18 and ResNet-50 (He et al., 2016). MAE is 
2.50 years for ResNet-18, and 2.32 years for ResNet-50. SFCN performs 0.36 years and 0.18 
years better, respectively.  
 
We attribute this performance boost of SFCN to the lightweight model structure. As shown in 
Table 1, the SFCN with regularizations achieved the best test performance but by far the worst 
in the training set, suggesting a significant difference (between models) in levels of over-
fitting. The gap (a measure of over-fitting) between the test MAE and the train MAE is 0.78 
years for the SFCN, which is the smallest among all the models (ResNet18: 2.10 years, 
ResNet50: 1.44 years).  
 
The SFCN model trained with a dropout layer and data augmentation achieves the best MAE. 
To study the effect of the regularisation techniques, we trained models with one of the three 
techniques, namely, dropout, voxel shifting and mirroring, and show the test results in Table 
2, with 2,072 training subjects (hence the worse overall results compared with the above). 
When applied to each of these 3 techniques individually during training, each of the 
regularisation methods reduces over-fitting and improves the test MAE by about 0.1-0.5 years. 
Combining all the three methods together, the model achieves the best test performance 
given this number of training subjects (MAE = 2.82 years), showing a large improvement of 
0.85 years compared with the unregularized model. Finally, we added one fully connected 
layer with 64 channels (together with batch normalisation) before the final layer. While giving 
similar training MAE, the added layer reduces the generalisability to the test set (test 
MAE=3.59y). These results clearly show that the lightweight model structure and the 
regularisation techniques improve the model performance and can be used for future 
reference to design deep learning strategy in neuroimage datasets. 
 
Our presented strategy achieves state-of-the-art results in brain age prediction. Table 3 shows 
a summary of previously reported brain age prediction MAE results (Kolbeinsson et al., 2019; 
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Ning et al., 2018; Smith et al., 2019b). To eliminate the effect of sample size differences (i.e., 
to make these comparisons as meaningful as possible), we trained SFCN with comparable 
training set sizes as the previous studies, and compared performance with those. With about 
2600 training subjects, SFCN achieves an MAE of 2.76 years, while linear regression achieves 
MAE 3.5 years (Ning et al., 2018). With about 5000 training subjects, SFCN achieves 2.28 years 
MAE while 3D-ResNet with tensor regression achieves 2.58 years (Kolbeinsson et al., 2019). 
For the larger training set with more than 10,000 subjects, linear regression with multi-
modality IDPs (including fMRI and DTI features) achieves an MAE of 2.9 years (Smith et al., 
2019b, 2019a), whereas SFCN obtains the best MAE in UK Biobank with an MAE of 2.14 years.  
 
Besides the state-of-the-art brain age MAE performance among all the reported studies in UK 
Biobank, our model and strategy also achieved 99.3% accuracy for sex classification (0.7% 
error rate) based on T1 images, which is a considerate improvement compared to the 
previously reported results (classification accuracies varying from 69% to 93%, with or 
without head size regressed out) (Chekroud et al., 2016; Giudice et al., 2016; Joel et al., 2016, 
2015; Rosenblatta, 2016). This result suggests that SFCN is generalisable to other tasks for 
neuroimaging research. 
 
 
 
4.2 Comparing the learning curves of SFCN with simpler regression models 
There are controversies regarding whether a deep learning model can perform better than 
linear models to predict phenotypic and behavioural variables using neuroimaging data (He 
et al., 2018, 2019; Schulz et al., 2019). For the task brain age prediction using T1 structural 
MRI data, two questions remain to be answered: 1. Do DL models surpass the performance 
of simpler regression models? 2. How many training samples do DL or simpler regression 
models need for good performance?  
 
We compared our deep learning model and a well-tuned regression model, elastic net, for 
brain age prediction. We also explored the effect of the training dataset size (from 50 to 

Training set size Model Performance 
MAE (yrs) 

2590 SFCN 2.76±0.06 

2679 Linear regression Ning 
et al. 2019 bioRxiv 3.5 

5180 SFCN 2.28±0.05 

5700 
3D-ResNet + Tensor 

Regression Kolbeinsson 
et al. 2019 arxiv 

2.58 

12949 SFCN 2.14±0.05 

17100 
SVD + Linear regression 

Smith et al. 2019 
NeuroImage 

3.6 

 
Table 3. A summary of the reported UK Biobank study in brain age prediction. 
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12,949 subjects) on the performance of the two models. As summarised in Figure 2, we find 
that the SFCN outperforms elastic net regardless of the training set size. Even with as few as 
50 training subjects, the DL model achieves better performance.  
 
MAE decreases with the increase of training set size, and approximately follows a linear-log 
relationship for all methods. If the training set size doubles, the MAE decreases by about 0.3 
to 0.4 years. In our experiment setup, there is no conclusive signature of performance 
saturation for the large dataset size, although the last few data points do deviate from the 
simple linear-log relationship. With the increasing size of UK Biobank and other datasets, we 
can expect even better performance in future studies. 
 
 
4.3 Semi-multimodal model ensemble improves the performance with limited 

number of training subjects 
In previous sections, we trained our SFCN model using only one modality, namely raw T1 data 
linearly registered to the MNI space (Lin). To test whether adding other modalities (here 
“modalities” refers to different kinds of preprocessing of the T1 data) can further boost 
performance, we trained SFCN using three other modalities derived from T1 image data: raw 

T1 data nonlinearly registered to the MNI space (NonLin), segmented grey matter (GM) and 
white matter (WM) volumes.  
 
For each of the above 4 modalities, we trained 5 models using different random parameter 
initializations. To prove the effectiveness of the ensemble strategy without greatly increasing 

 
 
Figure 2. Learning curve for SFCN in UK Biobank data. The methods include SFCN, 
Elastic nets (glmnet) with different input features, and existing studies. The error bars show 
the standard deviation by 1000 bootstrap samples. The dashed lines show the log-linear 
relationship between the training set size and the testing MAE. This shows that as the dataset 
size doubles, the MAE decrease by around 0.3 to 0.4 years for the linear and the deep 
learning models. The horizontal dark solid line indicates the MAE when using the population 
mean age as the predicted age for every testing subject. 
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the computing time, we choose a training dataset size of 2,590 subjects for all the models 
used in this section. 
 
Models trained with different modalities achieve comparable performance with small 
differences in MAE. NonLin achieved the best MAE (2.73 years), while the Lin and GM 
achieved comparable MAE of 2.80 years. These modalities are all better than the MAE for 
WM (2.86 years), as shown in Table 4.  

 
Even though different modalities may result in similar MAEs, the trained models (and deltas) 
may contain distinct information. This is shown in the correlation matrix of deltas predicted 
by each of the 20 models in the test sets in Figure 3A (these correlations are between any two 
estimates of the Nsubjects x 1 vector of deltas). Models with the same modalities show higher 
correlation for the brain-age delta prediction.  
 
To better utilise the information contained within different modalities, we used all four 
modalities to form an ensemble. For every subject, the 20 models predicted 20 brain ages. 
The final prediction for the subject was made using the mean of all the predicted ages. This 
strategy achieved an MAE of 2.58 years, which is 0.22 years better than single model 
prediction, with 2,590 training subjects. 
 
The success of the ensemble strategy is not only owing to the large number of models, but 
also to the independent information gathered from different modalities. To illustrate this, we 
combined every pair of models and plotted the MAE improvement after ensemble averaging 
against the delta correlation coefficient in Figure 3B. The result clearly shows that the less 
correlated two models are, the better performance the ensemble will produce. It is also 

Modality 
Performance 

Single Model Ensemble 
MAE (yrs) r value MAE (yrs) r value 

Raw, linearly 
registered 2.80±0.03 0.883±0.003 2.71±0.03 0.892±0.002 

Raw, non-linearly 
registered 2.73±0.02 0.890±0.002 2.62±0.03 0.900±0.002 

Grey matter 2.80±0.04 0.881±0.003 2.72±0.02 0.888±0.002 
White matter 2.86±0.04 0.878±0.003 2.78±0.02 0.887±0.002 

All models 2.80±0.06 0.883±0.005 2.58±0.01 0.904±0.001 
 
Table 4. Performance of models trained/tested with different modalities in the test set 
of the UK Biobank dataset. 5 models were trained for each modality and used to predict 
brain age individually. The mean and the standard deviation of the single model 
performances were computed within each modality. For the ensemble performance, 5 
models are randomly selected (with duplications allowed) and the predictions were averaged 
to give the ensemble prediction. This process is repeated for 1000 times to compute the mean 
test MAE and the standard deviation. For the final ensemble with all modalities, 5 models 
are randomly selected (with duplications allowed) within each modality and the 20 selected 
models were used to make the final prediction. This process is repeated for 1000 times to 
compute the mean test MAE and the standard deviation. 
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shown that models trained from different modalities tend to be less correlated. Therefore, 
combining models from different modalities with complementary information gives the 
greatest performance enhancement. 
 

4.4 Bias correction 
The next challenge is bias correction. We illustrate the age prediction results of SFCN trained 
with 12,949 subjects in Figure 4. The predictions tend to bias towards the mean age of the 
cohort, which means that younger subjects will be predicted to be older and vice versa. This 
is due to regression dilution (MacMahon et al., 1990) and other factors (Smith et al., 2019b), 
and results in a high correlation between brain-age delta (prediction – age) and chronological 
age (Spearman’s r=-0.39). We followed (Smith et al., 2019b) to regress age out of the delta. 
In the PAC 2019 competition framework, we do not know the label of the test set. In this case, 
we regressed out age in the 518-subject validation set and then used the estimated bias 
correction regression coefficients for bias removal in the test set. This process does not 
require any knowledge of the age labels in the test set. This reduced the bias Spearman’s r-
value from -0.37 to 0.03, with an increase of just 0.15 years, in the MAE for the validation set. 
The generalised strategy (for unlabelled data) reduced the r-value from -0.39 to 0.01, with a 
small increase (0.11 years) in the MAE for the test set.  
 

 
Figure 3. Model ensemble. A) Correlations of brain-age delta predictions between models 
trained and tested with different modalities. The color coding shows the correlation r-value. 
For each modality, the training subjects are split into 5 folds, and each model is trained with 
one-fold being left-out. The delta estimation is made in the common validation set. Any two 
models trained with the same modality show stronger correlation (between their respective 
delta estimates) than the models trained with different modalities. The bottom row shows 
the correlation between individual models and the ensemble prediction. B) Scatter plot: 
ensemble performance improvement versus delta correlation of any two models. Purple dots 
represent for ensembles with different modalities. Red dots are for ensembles with the same 
modality. Normalized histograms of performance improvement and delta correlation of the 
two-model combinations are plotted alongside. The combination of two models with smaller 
correlation shows better improvement for the ensemble performance.  
 

A B

delta = pred_age – label

Same Modality
Different Modalities
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Finally, we tested our methods of SFCN, data augmentation, ensemble and bias correction in 
the PAC 2019 brain age prediction challenge and achieved first places in both goals of the 
challenge: 1. to achieve the smallest MAE and 2. To achieve the smallest MAE with bias 
Spearman’s r-value under 0.1. For the first objective, we achieved MAE=2.90 years, which was 
0.18/0.42 years better than the second/third places. For the second objective, we achieved 
MAE=2.95 years, and this result was 0.85/0.97 years better than the second/third places, i.e., 
a significant improvement (over the other best approaches) of almost one year. These results 
are available in the challenge website3. 
 
 

5 Discussion 
To conclude, we proposed SFCN, a lightweight deep neural network architecture, which 
achieved state-of-the-art brain age prediction using T1-weighted structural MRI images. We 
investigated different approaches for boosting the performance of the deep learning model, 
and tested three factors that are valuable for improving the performance of a single deep 
learning model in a neuroimaging dataset: 1) the lightweight model structure, 2) data 
augmentation and regularisation techniques (e.g., dropout, voxel shifting and mirroring), 3) 
large dataset size. For semi-multimodal data (i.e., data from a single modality but which has 
been through several distinct processing steps), we presented an ensemble strategy that 
improved single modality results by utilising the (somewhat) independent information from 
different modalities. Finally, we showed that regressing the true age out of brain-age delta 
(predicted age minus actual age) can effectively correct bias, and the fitted slope and 
intercept can be directly transferred to the unknown test set.  

 
3 Link to the results: https://www.photon-ai.com/pac2019#results Team: 
BrainAgeDifference 

 
 
Figure 4. Bias correction. (Left panel) Results of brain age prediction for the UK Biobank 
test set, SFCN trained with the full training set. (Middle) Results of delta without correction. 
(Right) Results of delta with correction. 
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We have demonstrated that with a well-trained model, deep learning method can achieve 
better performance than the simpler regression models tested. While a few studies have 
shown the opposite conclusion (that linear regression outperforms deep learning in 
neuroimaging data (Schulz et al., 2019), we argue that DL method is a large family of 
algorithms and techniques, some more suitable than others for neuroimaging. Different 
choices of model architectures and training strategies can result in very different results. In 
our study, we successfully demonstrated the effectiveness of SFCN, as an example of a DL 
method, in UK Biobank, one of the largest neuroimaging datasets. We also show that even in 
a training set size as small as 50 subjects, SFCN can outperform simpler regression models. 
These results are successful explorations of the application of DL in the neuroimaging data. 
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Dataset 

Performance Performance with Bias Correction 

MAE (years) 
Spearman 

Correlation  
delta vs age 

MAE (years) 
Spearman 

Correlation  
delta vs age 

UK Biobank  
validation set 2.10 -0.37 2.25 0.03 

UK Biobank 
test set 2.14 -0.39 2.25 0.01 

PAC 2019 Brain 
Age Prediction 

Challenge1 
2.90 -0.39 2.95 -0.03 

 
 
Table 5. Performance of the ensemble model with and without bias correction. The UK 
Biobank validation set is used to estimate the slope and intercept from a linear fitting, which 
is then used to generalized in the unseen UK Biobank test set. This strategy, together with 
SFCN and the ensemble, was used to take first place in the PAC 2019 Brain Age Prediction 
Challenge. 
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