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Abstract 

 Thanks to the many chemical and nutritional components it carries, diet critically affects human 

health. However, the currently available comprehensive databases on food composition cover only 188 

nutritional components that are essential for our health, a tiny fraction of the total number of chemicals 

present in our food. Indeed, thousands of other molecules, many of which have well documented health 

implications, remain untracked. To explore the body of knowledge available on food composition, we 

built FoodMine, an algorithm that uses natural language processing to identify papers from PubMed 

that potentially report on the chemical composition of garlic and cocoa. After extracting from each 

paper information on the reported quantities of chemicals, we find that the scientific literature carries 

extensive information on the detailed chemical components of food that is currently not integrated in 

databases. Finally, we use unsupervised machine learning to create chemical embeddings, finding that 

the chemicals identified by FoodMine tend to have direct health relevance, reflecting the scientific 

community’s focus on health-related chemicals in our food. 

Introduction 

Decades of research in nutrition have documented the exceptional role of diet in health, 

unveiling the role of selected nutrients, like sugars, fats, proteins, vitamins, and other biochemical 

factors, as well as factors contributing to non-communicable diseases like deficiency diseases, 

cardiovascular disease, obesity, and diabetes mellitus. However, our ability to explore how food affects 

our health is severely limited by the lack of systematic knowledge on food composition. The most 

accurate data on food composition is maintained by USDA, tracking 188 biochemicals, often called 

nutritional components.1,2 Yet, when it comes to the biochemical composition of the food we consume, 

these nutritional components represent only a tiny fraction of definable biochemicals reported in food. 

For example, FooDB, a database that integrates food composition data from databases like USDA, DTU, 
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Duke, Phenol Explorer, and others catalogues altogether 26,625 compounds.3–6 The majority of these 

compounds are only identified, with no information on their quantities in specific ingredients. For 

example, sulfides are reported to be present in the Allium family, like garlic or onion, but the precise 

quantities for important sulfides like diallyl disulfide (garlic) and dipropenyl sulfide (onion) remain 

unknown, despite their well-documented role in cancer prevention.7–10 The current incomplete 

knowledge of the full biochemical composition of food impedes the research community’s ability to 

uncover the mechanistic effect of the thousands of untracked molecules and their ultimate mechanistic 

roles in health, achieved either through the microbiome,11 by contributing to the body’s metabolism, or 

by regulating molecular processes in human cells.  

The lack of centralized information on the chemical composition of food does not equal a lack of 

scientific or commercial interest in these chemicals: an exceptional amount of research focuses on 

identifying and quantifying the presence of certain chemicals in various foods, as well as the health 

implication and the biochemical role of specific food-borne chemicals. The problem is that data on the 

chemical composition of food is scattered across the multiple research literatures, spanning different 

scientific communities, from agriculture to food research, and from health sciences to biochemistry. 

While we witness notable efforts to mine this extensive literature and catalogue the scattered data into 

databases, like Phenol Explorer’s focus on polyphenols or eBASIS’s  prioritization of human intervention 

studies,12,13 we lack efforts to achieve this across the full food supply and chemicals. 

The lack of systematic efforts to map out the existing information on food prompted us to ask 

how much information is really available on food composition.  We developed FoodMine, a pilot project 

designed to systematically mine the scientific literature to identify and collect all the chemical 

compositional data for specific ingredients. Hence we demonstrate the capabilities offered by FoodMine 

by focusing on garlic and cocoa, foods with well documented health effects, which suggests the 

existence of a sizable yet scattered literature pertaining information on their chemical contents.14,15 The 
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knowledge gathered here serves as a pilot towards future comprehensive systematic efforts aimed at 

identifying and organizing the available information on the chemical composition of all food throughout 

the whole scientific literature. 

Results 

 The FoodMine protocol leveraged the PubMed databases to systematically analyze the title and 

the abstract of the research papers related to garlic and cocoa (Fig 1).16 We entered each food as a 

search term, obtaining 5,676 papers for garlic and 7,620 papers for cocoa. We subset the search results 

by applying text matching between predefined vocabularies, mesh terms and the abstract of the paper 

listed in the PubMed entry, narrowing the results to 415 papers for garlic and 475 papers for cocoa. 

After obtaining the subset of results, we manually accessed the paper if we could access a “full text 

link”, downloading 299 papers for garlic and 324 papers for cocoa. Finally, we manually evaluated each 

paper to identify relevant chemical contents and extract information from it. Of the 623 manually 

evaluated papers, 77 papers contained chemical composition data for garlic and 93 for cocoa, yielding 

1,426 and 5,855 individual chemical measurements in total for garlic and cocoa, respectively (See 

Supplementary Material Section 1). In the resulting FoodMine database a compound is “quantified” 

when chemical measurements report absolute contents, and “unquantified” otherwise. Supplementary 

Fig S1 shows that the majority of papers for both foods contained only one or at most a few chemical 

measurements, referred to as records. However, an outlier for cocoa reported 960 records,17 measuring 

the contents of several compounds in cocoa sourced from 15 different origins; the permutations of 

these variables resulted in the high number of data points.  Another outlier examined a large spread of 

compounds related to human taste perception, reporting 68 unique compounds.18  For garlic the outlier 

was a paper reporting 198 records.19 
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 We integrated the compound records into single compound entries, and manually divided 

quantified entries into their respective compound class based on FooDB classifications, as shown in 

Supplementary Fig S2. We find that ‘Carboxylic Acids and Derivatives’ contains the most explored 

compounds for both garlic and cocoa, and the ‘Flavonoids’ class is in the top three for both ingredients. 

Compounds from these two classes are common in plant-based food, hence are expected to be present 

in garlic and cocoa. We also uncovered reports pertaining to various metallic classes, ‘Toxins’, and 

‘Pesticides’. Many compounds in the pesticides class came from a paper focusing on the pesticide 

residues in cocoa products from local markets in Southwestern Nigeria.20 Despite its local focus, the 

examined compounds could directly affect health outcomes worldwide, as Nigeria is the world’s 3rd 

largest exporter of cocoa.21 

The FooDB and USDA databases allowed us to verify if the information recovered from the 

literature matches or contrasts the existing knowledge on the composition of these ingredients (See 

Supplementary Material Section 2). For this we merged different variations of garlic and cocoa within 

the USDA and FooDB databases, like merging “Garlic” and “Soft-necked Garlic” in FooDB when 

comparing the information to FoodMine. In USDA, all reported compounds are quantified, while FooDB 

lists both quantified and unquantified compounds. We consider a compound quantified if at least one 

absolute measurement is reported for the selected foods. Taken together, we find that FoodMine 

recovered more unique compounds than catalogued by USDA (Fig 2A and 2B), and more quantified 

compounds than catalogued by FooDB. While only 7-9% of compounds are quantified in FooDB and 

USDA for garlic and cocoa, through FoodMine we collected quantified information for 70% of garlic 

compounds and 66% of cocoa compounds (Supplementary Material Section 3). For cocoa and garlic, 

FooDB and USDA contain more unquantified compounds than quantified. However, we find that ~70% 

of the information reported in the literature was quantified, indicating that the literature contains an 

extensive body of information currently not recorded in databases (Supplementary Material Section 3). 
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Furthermore, 96 quantified garlic compounds and 283 quantified cocoa compounds are novel, meaning 

that they were not previously linked to the two ingredients in USDA or FooDB. In summary, 48% and 

72% of quantified compounds are novel in both garlic and cocoa, respectively, hence the average 

increase in quantified measurements offered by FoodMine exceeds 137% (Supplementary Material 

Section 3). These findings suggest that a systematic mining of the information scattered in the scientific 

literature could significantly improve our current knowledge of food composition. 

 The most frequently reported compounds (Fig 3) in FoodMine are known to play important roles 

in health effects and flavor. For example, diallyl disulfide is known to contribute to garlic’s smell and 

taste. More importantly, it is implicated in the health benefits of garlic, in particular garlic allergy.22,23 

Yet, neither USDA nor FooDB offers quantified information for the compound. This is not an isolated 

case, as Fig 3 shows FooDB and USDA lack information on other frequently explored compounds as well. 

The need to systemically characterize the nutrient profile of a large number of food items, as USDA 

does, misses information on those compounds that are specific to a few individual foods, despite the 

potential role they play in health. Indeed, three of the top ten compounds for cocoa are not quantified 

in FooDB and one is not listed, while for garlic, five of the top ten compounds are not quantified. 

 To understand the accuracy of the collected quantified data, we compared the FoodMine 

compound measurements to their corresponding values in USDA, which is considered the gold standard 

for measurement reliability. Given the limited nutrient panel reported by USDA, we were able to 

compare only 11% of the chemical compounds we recovered for garlic, and 5% for cocoa. The recovered 

information spanned a full spectrum of molecules, mixing compounds with both small and large relative 

mass (Fig 4). Overall, we find a good agreement between the FoodMine-recovered and the USDA-

reported values (see Supplementary Material Section 3 for fit statistics supporting the identity relation 

𝑦 = 𝑥). Garlic has a logarithmic R-squared of .82, indicating a notable correlation between the known 

and the FoodMine records, while cocoa has a logarithmic R-squared of only .56. The lower correlation 
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for cocoa is due to a group of amino acids, that came from papers that examined the contents of 

roasted cocoa, a processing step that systematically alters the quantities of many chemicals, potentially 

explaining the greater difference from the USDA measurements.17,18 If we remove the data pertaining to 

roasted cocoa, we find an R-squared of .75. 

To offer a more comprehensive understanding of the classes of chemicals we retrieved and their 

relation across different databases, we created chemical embeddings using the unsupervised machine 

learning tool Mol2Vec.24 Chemical embeddings capture the structural similarity of the chemicals in a low 

dimensional space. Indeed, as shown in Supplementary Fig S3, when the chemical classification is 

known, chemicals belonging to the same class tend to be closer in the embedding space defined by 

Mol2Vec, suggesting that chemical embeddings successfully capture structural information. This process 

maps the structural knowledge of the compounds we retrieved, and can be used to integrate further 

information characterizing the compounds. For instance, given the interest in the association between 

food-borne chemicals and health outcomes, we can start from the Comparative Toxicogenomics 

Database (CTD) that reports manually curated associations between chemicals and diseases.25 After 

matching the total number of health implications to each of the chemicals in FoodMine, FooDB, and 

USDA, we layered this information on the obtained Mol2Vec embedding (Fig 5). We find that FoodMine 

covers more chemicals with health effects than FooDB and USDA (see Fig 5 A vs B and C, D vs E and F), a 

difference particularly clear for cocoa (D vs E and F). Further, we find that the chemicals with health 

associations are more evenly dispersed throughout the embedding space for FoodMine, implying that 

FoodMine captures chemicals from rather different chemical classes. Overall, the FoodMine cocoa pilot 

has detected noticeably more organic, benzenoid, and hydrocarbon compounds, as seen by the absent 

spaces in E (USDA) and F (FooDB) compared to D (FoodMine, Fig 5) (Supplementary Material Section 3). 

In summary, compared to the existing databases, FoodMine detects more chemicals with health 

associations, distributed over a wider range of chemical classes, reflecting a selection bias in the 
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literature: the research community appears to be more focused on chemicals with known health 

outcomes. Interestingly, there is no overlap between the papers contributing to FoodMine and those 

manually curated in CTD, meaning that we are recovering information from multiple scientific 

communities, not only health sciences (Supplementary Material Section 3). 

Discussion 

Our knowledge pertaining to the more than 26,000 chemicals expected to be present in food, as 

reported in various databases, is highly incomplete. This incompletion inspired our efforts to examine 

how much additional uncatalogued knowledge is scattered in the scientific literature. The invisibility of 

these compounds to experimental, clinical, epidemiological, and demographic studies – the virtual “dark 

matter” of nutrients – represents a major roadblock towards a systematic understanding of how diet 

affects our health. The introduced FoodMine pilot systematically scanned the scientific literature, 

identifying information about a large number of novel, quantified compounds reported by individual 

papers. We find that the collected information considerably extends our understanding of food 

composition. Furthermore, many of the recovered compounds have direct relevance to health and 

nutrition. For instance, the sulfides, quantified by FoodMine, are responsible for garlic’s unique health 

effects, yet are currently not quantified in USDA or FooDB. 

Garlic and cocoa are only two of the over a thousand natural ingredients commonly consumed 

by humans, hence our study supports the hypothesis that there is abundant information in the literature 

on the composition of other ingredients as well. Indeed, the search terms we used in FoodMine to 

retrieve papers from PubMed were narrow, and the selection of papers we manually evaluated is small 

compared to the total body of potential knowledge present in the literature. Consequently, likely there 

is additional information for garlic and cocoa, not yet captured by FoodMine. Other search terms, 

focusing on compound classes rather than foods, could uncover an additional body of information about 
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the chemical composition of these ingredients, knowledge that can be generalized to other ingredients 

as well. 

Methods  

Literature mining consisted of three steps: search, selection, and information extraction. We 

began by searching PubMed with the search term ‘garlic’ and ‘cocoa’ using the Pubmed Entrez 

Programming Utilities API.26 After retrieving the PubMed ID’s for search results, we again used the API to 

retrieve information for each PubMed entry associated with the PubMed ID. We used text matching to 

scan each PubMed entry’s mesh terms and abstract for words relevant to biochemicals, food, and pre-

selected measurement methodologies after the API query (Supplementary Material Section 1). The 

algorithm filtered 5,676 results for garlic and 7,620 papers for cocoa to 415 and 475 results, 

respectively. We collected papers from the “Full text links” of the combined 900 entries. We skipped an 

entry if it did not list any “Full text links” or we did not have access to the paper associated with the 

links, recovering papers for 299 of the 415 and 324 of the 475 PubMed entries for garlic and cocoa, 

respectively. We also spot-checked search results that fell outside the assessment criteria to quantify 

the effectiveness of the filtration step. Of those, 0/10 papers contained relevant information for garlic 

and 3/10 papers contained relevant information for cocoa, indicating that the filtering did eliminate 

some papers with potentially relevant information. 

Papers were individually read by a human assessor to determine whether or not they contained 

information on the chemical composition of garlic or cocoa. The assessment fell into three categories: 

“not useful” (papers not containing relevant for chemical contents in food), “quantified” (papers 

containing quantitative chemical composition that could be translated to unveil its precise contents in 

samples), and “unquantified” (paper containing chemical composition, but it could not be converted to 

unveil precise quantities). Examples of unquantified results were compounds detected by a mass 
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spectrometer that only reported relative percentages, hence we could not record their contents in garlic 

or cocoa. In addition to the human mining procedure, we used machine learning to create a paper 

classification algorithm, helping to automatize future information collection. This algorithm takes as 

input the filtered samples and predicts which papers will contain information on the chemical content of 

cocoa or garlic. We applied the SMOTE sampling technique to balance the labeled data, as only 27% of 

the reviewed papers contained information on the chemical content of cocoa or garlic.27 Our algorithm 

achieved an f1 score of 75.5% on the testing set, better than random. These results are in spite of a 

limited training set, and could improve with more labels from other foods than garlic and cocoa.  

All records for a single unique compound were merged into a single entry. As different papers 

use different variations of a compound’s name, we applied a chemical disambiguation scheme using 

PubChem CIDs to add keys to the compounds (Supplementary Material Section 2).28 For each entry, we 

reported the average content value across all data points standardized in units of mg/100g, and 

captured additional statistics, such as the highest and lowest reported measurement of the chemical, 

variance across measurements, and number of measurements. Finally, we leveraged the PubChem CIDs 

to retrieve a string representation of the structural properties of the molecule (chemical SMILE) which 

we used as the input for Mol2Vec. Once we learned the vector representation for each chemical, we 

further reduced the dimensionality using TSNE to obtain the maps shown in Fig 5 and Supplementary Fig 

S3.29 

Data Availability: 

The raw data from FoodMine and processing code is available on our GitHub page. 

https://github.com/fhooton/FoodMine 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880062doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880062


11 
 

References 
1. USDA. National Nutrient Database for Standard Reference, Release 28 (2015) Documentation and 

User Guide. 28, (2015). 

2. Bhagwat, S. & Haytowitz, D. B. USDA Database for the Flavonoid Content of Selected Foods 
Release 3.2 Prepared by. (2015). 

3. FooDB. Available at: http://foodb.ca/about. (Accessed: 25th June 2019) 

4. Frida Food Data, version 1. (2015). 

5. U.S. Department of Agriculture, A. R. S. Dr. Duke’s Phytochemical and Ethnobotanical Databases. 
(1992). doi:10.15482/USDA.ADC/1239279 

6. Rothwell, J. A. et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to 
incorporate data on the effects of food processing on polyphenol content. Database 2013, 
bat070–bat070 (2013). 

7. Munday, R. & Munday, C. M. Relative Activities of Organosulfur Compounds Derived From 
Onions and Garlic in Increasing Tissue Activities of Quinone Reductase and Glutathione 
Transferase in Rat Tissues. Nutr. Cancer 40, 205–210 (2001). 

8. Nohara, T. et al. Antitumor Allium Sulfides. Chem. Pharm. Bull. (Tokyo). 65, 209–217 (2017). 

9. Wang, H., Yang, J.-H., Hsieh, S.-C. & Sheen, L.-Y. Allyl Sulfides Inhibit Cell Growth of Skin Cancer 
Cells through Induction of DNA Damage Mediated G2/M Arrest and Apoptosis. J. Agric. Food 
Chem. 58, 7096–7103 (2010). 

10. Nicastro, H. L., Ross, S. A. & Milner, J. A. Garlic and onions: their cancer prevention properties. 
Cancer Prev. Res. (Phila). 8, 181–9 (2015). 

11. Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016). 

12. Kiely, M. et al. EuroFIR eBASIS: application for health claims submissions and evaluations. Eur. J. 
Clin. Nutr. 64, S101–S107 (2010). 

13. Plumb, J. et al. eBASIS (Bioactive Substances in Food Information Systems) and Bioactive Intakes: 
Major Updates of the Bioactive Compound Composition and Beneficial Bioeffects Database and 
the Development of a Probabilistic Model to Assess Intakes in Europe. Nutrients 9, (2017). 

14. Garlic and Organosulfur Compounds. Oregon State University Available at: 
https://lpi.oregonstate.edu/mic/food-beverages/garlic. (Accessed: 25th June 2019) 

15. Katz, D. L., Doughty, K. & Ali, A. Cocoa and chocolate in human health and disease. Antioxid. 
Redox Signal. 15, 2779–811 (2011). 

16. PubMed. National Institutes of Health Available at: https://www.ncbi.nlm.nih.gov/pubmed/. 
(Accessed: 25th June 2019) 

17. J.  Serra Bonvehí*, † and & Coll‡, F. V. Factors Affecting the Formation of Alkylpyrazines during 
Roasting Treatment in Natural and Alkalinized Cocoa Powder. (2002). doi:10.1021/JF011597K 

18. Timo  Stark, †, Sabine  Bareuther, † and & Thomas  Hofmann*, ‡. Molecular Definition of the 
Taste of Roasted Cocoa Nibs (Theobroma cacao) by Means of Quantitative Studies and Sensory 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880062doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880062


12 
 

Experiments. (2006). doi:10.1021/JF0608726 

19. Lee, J. & Harnly, J. M. Free Amino Acid and Cysteine Sulfoxide Composition of 11 Garlic ( Allium 
sativum L.) Cultivars by Gas Chromatography with Flame Ionization and Mass Selective Detection. 
J. Agric. Food Chem. 53, 9100–9104 (2005). 

20. Oyekunle, J. A. O., Akindolani, O. A., Sosan, M. B. & Adekunle, A. S. Organochlorine pesticide 
residues in dried cocoa beans obtained from cocoa stores at Ondo and Ile-Ife, Southwestern 
Nigeria. Toxicol. Reports 4, 151–159 (2017). 

21. Verter, N. & Bečvářová, V. Analysis of Some Drivers of Cocoa Export in Nigeria in the Era of Trade 
Liberalization. AGRIS on-line Pap. Econ. Informatics 06, 1–11 (2014). 

22. Rao, P. S. S. et al. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, 
Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr. Drug 
Metab. 16, 486–503 (2015). 

23. Garcia-Abujeta, J. L. et al. Allergic Contact Dermatitis to Diallyl Disulphide in Spain. J. Allergy Clin. 
Immunol. 117, S130 (2006). 

24. Jaeger, S., Fulle, S. & Turk, S. Mol2vec: Unsupervised Machine Learning Approach with Chemical 
Intuition. J. Chem. Inf. Model. 58, 27–35 (2018). 

25. Davis, A. P. et al. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res. 47, 
D948–D954 (2019). 

26. Entrez Programming Utilities Help. (2010). Available at: 
https://www.ncbi.nlm.nih.gov/books/NBK25501/. (Accessed: 26th June 2019) 

27. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-
sampling Technique. J. Artif. Intell. Res. 16, 321–357 (2002). 

28. PubChem. National Center for Biotechnology Information Available at: 
https://pubchem.ncbi.nlm.nih.gov/. (Accessed: 25th June 2019) 

29. Van Der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine Learning 
Research 9, (2008). 

 

Acknowledgements: 

We thank Daniela Barbery-Flambury for the manual data collection and Michael Sebek for advice on 
compound classes. 

Author Contributions: 

FH performed data analysis, programming, and contributed to writing the manuscript. GM designed the 
project procedure and analysis, and contributed to writing the manuscript. ALB contributed to 
interpreting the results and writing the manuscript. GM and ALB conceived the project. FH and GM 
contributed equally to the project. 

Competing Interests 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880062doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880062


13 
 

ALB is the founder of Scipher Medicine, Foodome, and Nomix companies the leverage the application of 
big data in health. 

Additional Information: 

See Supplementary Material for more information. 

Figures 
 

 
 

Figure 1: Overview of Data Collection Process. Starting from PubMed, we retrieved a list of paper titles 
and abstracts using the Pubmed Entrez API, and then applied text matching to automatically filter the 
search results, obtaining a subset of papers, which were then read and manually evaluated. If papers 
contained information on the chemical content of cocoa or garlic, we manually extracted the relevant 
information. Finally, we converted values in comparable units. The “Output” bar shows the result of each 
step for garlic and cocoa. 
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Figure 2: Number of Unique Compounds Recovered by FoodMine, USDA, and FooDB. The plots show 
the number of unique compounds reported by USDA, FooDB, and FoodMine. The columns display 1) the 
total number of unique quantified compounds, 2) the total number of unique unquantified compounds, 
and 3) the number of novel quantified compounds found by FoodMine for (A) Garlic and (B) Cocoa. 
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Figure 3: Most Frequently Occurring Compounds in FoodMine. The graphs show the top 10 most 
frequently occurring compounds in terms of number of recovered papers for (A) garlic and (B) cocoa, 
gauging the research interest in each product. The y-axis displays the compound name, and the x-axis 
shows the number of papers that contain records for the given compound. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880062doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880062


16 
 

Figure 4: Measurement Comparisons Between FoodMine and USDA. The nutrient concentrations 
reported by USDA (x-axis), plotted against the content values of matching compounds in FoodMine (y-
axis). The dotted line represents the diagonal. We excluded three and two compounds for (A) garlic and 
(B) cocoa, respectively, because USDA reported zero values for those compounds. 

 

 

Figure 5: TSNE of Chemical Embeddings with Health Associations. TSNE plots of Mol2Vec chemical 
embeddings for garlic (A, B, and C) and cocoa (D, E, and F). The colors of each data point encode the 
number of health implications associated with those compounds based on the CTD database. Dark gray 
represents chemicals with 0 health associations. We show chemicals catalogued by each studied 
database for FoodMine (A & D), USDA (B & E), and FooDB (C & F). Points are filled if the database 
contains the chemical, and empty if it does not. 
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10 Most Frequent Compounds 

not in foodb not quantified in foodb quantified in foodb

Cocoa

Number of Papers

(-)-Epicatechin
Caffeine
Theobromine
Ochratoxin a
Procyanidin b1
Acetic acid
Phenylethanol
Benzaldehyde
Phenyl acetate
Sucrose

0 2 4 6 8 10 12 14 16

B

Number of Papers

Diallyl disulfide
Diallyl sulfide
Alliin
Diallyl trisulfide
Allicin
Selenium

      Allyl methyl sulfide       
      Allyl methyl disulfide
Dimethyl disulfide
Methiin
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A Garlic
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Number of Health AssociationsNumber of Health Associations
No health associations Not in database

Cocoa FooDB

Phenol

L-Ascorbic acid

Vanilin Folic acid

Iodine
Chromium

Vitamin D
Theophylline

Retinol

Sucrose

Hexadeconic acid

Citric acid

(z,z)-9,12-
Octadecadienoic acid
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Methionine

Lycopene

Alpha-tocopherol

CholineCaffeine

Nicotinic Acid
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Genistein
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