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ABSTRACT

Motivation: Antimicrobial peptides (AMPs) have the potential to tackle multidrug-resistant pathogens in both clinical and
non-clinical contexts. The recent growth in the availability of genomes and metagenomes provides an opportunity for in silico
prediction of novel AMP molecules. However, due to the small size of these peptides, standard gene prospection methods
cannot be applied in this domain and alternative approaches are necessary. In particular, standard gene prediction methods
have low precision for short peptides, and functional classification by homology results in low recall.
Results: Here, we present Macrel (for metagenomic AMP classification and retrieval), which is an end-to-end pipeline for the
prospection of high-quality AMP candidates from (meta)genomes. For this, we introduce a novel set of 22 peptide features.
These were used to build classifiers which perform similarly to the state-of-the-art in the prediction of both antimicrobial and
hemolytic activity of peptides, but with enhanced precision (using standard benchmarks as well as a stricter testing regime).
We demonstrate that Macrel recovers high-quality AMP candidates using realistic simulations and real data.
Availability: Macrel is implemented in Python 3. It is available as open source at https://github.com/BigDataBiology/macrel
and through bioconda. Classification of peptides or prediction of AMPs in contigs can also be performed on the webserver:
http://big-data-biology.org/software/macrel.

1 Introduction

Antimicrobial peptides (AMPs) are short proteins (containing fewer than 100 amino acids) that can decrease or inhibit bacterial
growth. Given the dearth of novel antibiotics in recent decades and the rise of antimicrobial resistance, prospecting naturally-
occurring AMPs is a potentially valuable source of new antimicrobial molecules (Theuretzbacher et al., 2019). The increasing
number of publicly available metagenomes and metatranscriptomes revealed a multitude of microorganisms so far unknown,
harboring an immense biotechnological potential (Pascoal et al., 2020; Bernard et al., 2018). It presents an opportunity to
use these (meta)genomic data for finding novel AMP sequences. However, methods that have been successful in prospecting
other microbial functionality, cannot be directly applied to small genes (Saghatelian and Couso, 2015), such as AMPs. In
particular, there are two major computational challenges: the prediction of small genes in DNA sequences (either genomic or
metagenomic contigs) and the prediction of AMP activity for small genes using homology-based methods.

Current automated gene prediction methods typically exclude small open reading frames (smORFs) (Miravet-Verde et al.,
2019), as the naïve use of the methods that work for larger sequences leads to unacceptably high rates of false positives when
extended to short sequences (Hyatt et al., 2010). A few recent large-scale smORFs surveys have, nonetheless, shown that these
methods can be employed if the results are subsequently analyzed to eliminate spurious gene predictions. This procedures
reveal biologically active prokaryotic smORFs across a range of functions (Miravet-Verde et al., 2019; Sberro et al., 2019).

Similarly, the prediction of AMP activity requires different techniques than the homology-based methods that are applicable
for longer proteins (Huerta-Cepas et al., 2017). In this context, several machine learning-based methods have demonstrated
high accuracy in predicting antimicrobial activity in peptides, when tested on curated benchmarks (Xiao et al., 2013; Meher
et al., 2017; Lata et al., 2010; Thakur et al., 2012; Sharma et al., 2016; Bhadra et al., 2018). However, to be applicable to the
task of extracting AMPs from genomic data, an AMP classifier needs to be robust to gene mispredictions and needs to be
benchmarked in that context. In particular, realistic evaluations need to reflect the fact that most predicted genes are unlikely to
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have antimicrobial properties.

2 Results
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Figure 1. (Meta)genomic AMPs Classification and REtrievaL: Macrel pipeline. The blue arrows show the Macrel
workflow from the processing of reads until AMP prediction. The user can alternatively provide contigs or peptide sequences
directly, skipping the initial steps of the short-read pipeline. The yellow arrow shows the abundance profiling of AMPs using
Macrel output and reads.

2.1 Macrel: (Meta)genomic AMPs Classification and REtrievaL

Here, we present Macrel (for (Meta)genomic AMPs Classification and REtrievaL, see Fig. 1), a simple, yet accurate, pipeline
that processes either genomes or metagenomes/metatranscriptomes and predicts AMP sequences. We test Macrel with standard
benchmarks for AMP prediction as well as both simulated and real sequencing data to show that, even in the presence of large
numbers of (potentially artifactual) input smORFs, Macrel still outputs only a small number of high-quality candidates.

Macrel can process metagenomes (in the form of short reads), (meta)genomic contigs, or peptides. If short reads are given as
input, Macrel will preprocess and assemble them into larger contigs. Automated gene prediction then extracts smORFs from
these contigs which are classified into AMPs or rejected from further processing (see Fig. 1 and Methods). Putative AMPs are
further classified into hemolytic or non-hemolytic. Unlike other pipelines (Jhong et al., 2019), Macrel can not only quantify
known sequences, but also discover novel AMPs.

Macrel is also available as a webserver at http://big-data-biology.org/software/macrel, which accepts both peptides and contig
sequences, and retrieves AMPs coded by their own genes.

2.2 Novel set of protein descriptors for AMP identification

Two binary classifiers are used in Macrel: one predicts AMP activity and another the hemolytic activity (which is invoked only
for putative AMPs). These are feature-based classifiers and use a set of 22 variables that capture the amphipathic nature of
AMPs and their propensity to form transmembrane helices (see Suppl. Table S1).
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Peptide sequences can be characterized using local or global features: local features depend on the order of the amino acids,
while global ones do not. Local features have been shown to be more informative when predicting AMP activity and its targets,
while global features are more informative when predicting the potency of a given AMP (Bhadra et al., 2018; Fjell et al., 2009;
Boone et al., 2018). Thus, Macrel combines both, including 6 local and 16 global features (see Methods and Suppl. Table S1):

• Free energy transition (FET) (3 local features). This is a novel feature group, which was designed to capture the fact that
AMPs usually fold from random coils in the polar phase to well-organized structures in lipid membranes (Nagarajan
et al., 2019). Each amino acid is assigned to one of three groups of increasing free-energy change (von Heijne and
Blomberg, 1979). The three features consist of the position of the first amino acid in each group, normalized to the length
of the sequence (see Fig. 2). Earlier works had shown that the N-terminal is particularly informative for determining
AMP activity (Bahar and Ren, 2013; Bhadra et al., 2018). We adopted the fractional position encoding from the more
general CTD framework (Dubchak et al., 1995, 1999).

Figure 2. The FET–Free energy transition—measures estimates the propensity of peptides to fold when transferring
from water to the membrane. The estimated change in the free-energy of the conformational change of an amino acid from
random to organized structures in lipid membranes (a) was used to cluster amino acids into 3 groups (b). These groups were
used to encode peptide sequences as the relative position of the first amino acid in each group (c).

• Solvent accessibility (3 local features). Computed in the same way as the FET features, with amino acids groups
representing levels of solvent accessibility.

• Amino acid composition (9 global features). As AMPs usually have biased amino compositions (Nagarajan et al., 2019;
Jhong et al., 2019), we used the fraction of amino acids falling into 9 partially overlapping classes defined by charge,
size, polarity, and hydrophobicity (see Methods and Suppl. Table S1).

• Charge (1 global feature). AMPs typically contain approximately 50% hydrophobic residues (Zhang and Gallo, 2016;
Malmsten, 2014; Pasupuleti et al., 2012), and their net charges are crucial to promote the peptide-induced membrane
disruption (Malmsten, 2014; Pasupuleti et al., 2012; Ringstad et al., 2006).

• Membrane binding and solubility in different media (6 global features). These capture predisposition of peptides bind to
membranes, and their solubility (Ebenhan et al., 2014; Dathe et al., 1997; Jhong et al., 2019).

All 22 descriptors used in Macrel are important for classification (see Suppl. Fig. S1). The fraction of acidic residues, charge,
and isoelectric point were the most important variables in the hemolytic peptides classifier. Those variables tend to capture
the electrostatic interaction between peptides and membranes, a key step in hemolysis. For AMP prediction, charge and the
distribution parameters using FET and solvent accessibility are the most important variables. This is consistent with reports
that cationic peptides (e.g., lysine-rich) show increased AMP activity (Bhadra et al., 2018; Jhong et al., 2019; Nagarajan et al.,
2019).
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2.3 Compared to other tools, Macrel achieves the highest specificity, albeit at lower sensitivity

To evaluate the feature set and the classifier used in the context of the pipeline as a whole, we benchmark both the classifier
implemented in Macrel, built with the training set adapted from Bhadra et al. (2018) (see Section 4.1.2), which consists of
1 AMP for each 50 negative examples, and a second AMP classifier (denoted MacrelX ), which was built using the same features
and methods, but using the training set from Xiao et al. (2013), which contains 770 AMPs and 2405 non-AMPs (approximately
1:3 ratio).

Benchmark results show that the AMP classifier trained with a more balanced dataset performs better than most of alternatives
considered, with AmPEP (Bhadra et al., 2018) achieving the best results (see Table 1).

In terms of overall accuracy, the AMP classifier implemented in Macrel is comparable to the best methods, with different
trade-offs. In particular, Macrel achieves the highest precision and specificity at the cost of lower sensitivity. Although we do
not possess good estimates of the proportion of AMPs in the smORFs predicted from real genomes (or metagenomes), we
expect it to be much closer to 1:50 than to 1:3. Therefore, we chose to use the higher precision classifier in Macrel for AMP
prediction from real data to minimize the number of false positives in the overall pipeline.

Table 1. The comparison of Macrel AMP classifier performance and state-of-art methods shows that Macrel is
among the best methods across a range of metrics. The same test set (Xiao et al., 2013) was used to calculate the general
performance statistics of the different classifiers, and the best value per column is in bold. Macrel refers to the Macrel classifier,
while MacrelX is the same system trained with the Xiao et al. (2013) training set. Legend: Accuracy (Acc), Sensitivity (Sn),
Specificity (Sp), Precision (Pr), and Matthew’s Correlation Coefficient (MCC).

Method Acc. Sp. Sn. Pr. MCC Reference

AmPEP∗ 0.98 - - - 0.92 Bhadra et al. (2018)
MacrelX 0.95 0.97 0.94 0.97 0.91 This study
iAMP-2L 0.95 0.92 0.97 0.92 0.90 Xiao et al. (2013)
Macrel 0.95 0.998 0.90 0.998 0.90 This study
AMAP 0.92 0.86 0.98 0.88 0.85 Gull et al. (2019)
CAMPR3-NN 0.80 0.71 0.89 0.75 0.61 Waghu et al. (2016)
APSv2 0.78 0.57 0.99 0.70 0.61 Veltri et al. (2018)
CAMPR3-DA 0.72 0.49 0.94 0.65 0.48 Waghu et al. (2016)
CAMPR3-SVM 0.68 0.40 0.95 0.61 0.42 Waghu et al. (2016)
CAMPR3-RF 0.65 0.34 0.96 0.59 0.39 Waghu et al. (2016)
iAMPpred 0.64 0.32 0.96 0.59 0.37 Meher et al. (2017)

∗ These data were retrieved from the original paper.

AMPs, as they are likely to interact with cell membranes, can cause hemolysis, which can impact its potential uses, particularly
in clinical settings (Zhang and Gallo, 2016; Ruiz et al., 2014; Oddo and Hansen, 2017). Therefore, for convenience, Macrel
includes a classifier for hemolytic activity. This model is comparable to the state-of-the-art (see Table 2).

2.4 High specificity is maintained when controlling for homology

Although we used out-of-bag estimates (see Methods) to control for exact overlap between training and testing sets in
the previous section, we still included similar sequences in training and testing, which would limit to an overestimate of
performance. To control for this effect, Macrel and three methods (those where the ability to retrain the model was provided by
the original authors) were tested using a stricter, homology-aware, scheme where training and testing datasets do not contain
any homologous sequences between them (80% or higher identity, see Methods).

As expected, the measured performance was lower in this setting, but Macrel still achieved perfect specificity. Furthermore,
this specificity was robust to changes in the exact proportion of AMPs:non-AMPs used in the training set, past a threshold
(see Suppl. Table S2 and Fig. 3). Considering the overall performance of iAMP-2L model, future versions of Macrel could
incorporate a combination of features from Macrel and iAMP-2L.

Using blastp as a classification method was no better than random, confirming that homology-based methods are not appropriate
for this problem beyond very close homologues.
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Figure 3. Specificity is maintained even when controlling for homology in training and testing. Different classifiers
(blastp besthit as a purely homology-based system, Macrel, AMP Scanner v.2, and iAMP-2L) were trained with different
proportions of non-AMPs:AMPs and tested on datasets which did not contain any homologs of sequences in the training set
(using an 80% identity cutoff). The results obtained in the homology-free datasets are showed in terms of accuracy (a),
precision (b), Sensitivity (c), and Specificity (d),
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Table 2. Macrel achieves accuracy comparable to the state-of-art in hemolytic peptides classification. Models
implemented by Chaudhary et al. (2016) were generically called HemoPI-1 due to the datasets used in the training and
benchmarking (the best values per column are in bold).

Method Acc. Sp. Sn. Pr. MCC Reference

HemoPI-1C,SVM* 0.95 0.95 0.96 0.95 0.91 Chaudhary et al. (2016)
HemoPI-1H* 0.95 0.95 0.96 0.95 0.91 Chaudhary et al. (2016)
HemoPI-1C,IBK* 0.95 0.94 0.96 0.94 0.89 Chaudhary et al. (2016)
HemoPI-1C,RF* 0.94 0.95 0.94 0.95 0.89 Chaudhary et al. (2016)
Macrel 0.94 0.96 0.92 0.96 0.88 This study
HemoPI-1C,Log* 0.94 0.94 0.93 0.94 0.87 Chaudhary et al. (2016)
HemoPI-1C,MP* 0.93 0.93 0.94 0.93 0.87 Chaudhary et al. (2016)
HemoPI-1C,JK48* 0.89 0.88 0.90 0.89 0.78 Chaudhary et al. (2016)

* These data were retrieved from the original paper.

2.5 Macrel recovers a small number of high-quality AMP candidates per (meta)genome

To evaluate Macrel on real data, we ran it on 484 reference genomes that had previously shown to be abundant in the human
gut (Coelho et al., 2019). This resulted in 171,645 (redundant) smORFs. However, only 8,202 (after redundancy removal)
of these were classified as potential AMPs. Spurio (Höps et al., 2018) classified 853 of these (circa 10%) as likely spurious
predictions.

Homology searches confirmed 13 AMP candidates as homologues from those in DRAMP database. Among them, a Lat-
erosporulin (a bacteriocin from Brevibacillus), a BHT-B protein from Streptococcus, a Gonococcal growth inhibitor II from
Staphylococcus, and other homologs of antimicrobial proteins. Seven of these confirmed AMPs were also present in the dataset
used during model training.

To test Macrel on short-reads, we simulated metagenomes composed of these same 484 reference genomes, at three different
sequencing depths (40, 60, and 80 million reads) using abundance profiles estimated from 6 different real samples (Coelho
et al., 2019) (for a total of 18 simulated metagenomes). The number of predicted smORFs increased with sequencing depth,
with about 20k smORFs being predicted in the case of 80 million simulated reads (see Fig. 4). Despite this large number of
smORF candidates, only a small portion of them (0.17-0.64%) were classified as putative AMPs.

In total, we recovered 1,376 sequences for a total of 547 non-redundant AMPs predicted from the simulated metagenomes. Of
these, only 44.5% are present in the underlying reference genomes. However, after eliminating singletons (sequences predicted
in a single metagenome), this fraction rose to 80.4%, which we thus recommend as a procedure to reduce false positives.
Although fewer than half of pre-filtered AMP predictions were present in the reference genomes, only 12% of all predictions
were marked as spurious by Spurio (see Methods). We manually investigated the origin of these spurious predictions and found
that most of the spurious peptides are gene fragments from longer genes due to fragmentary assemblies or even artifacts of the
simulated sequencing/assemblies. Interestingly, even the mispredictions were confirmed as AMPs by using the web servers of
the methods tested in benchmark. In fact, circa 90% of all AMP candidates (including spurious predictions) were co-predicted
by at least one other method than Macrel, and 61% were co-predicted by at least other 4 methods.

Having established that the rate of false positives can be kept low after singleton elimination, we investigated the recall of
macrel, namely whether it was able to recover the AMPs that were present in the underlying genomes. Post hoc, we estimated
that almost all (97%) were in genomes with a coverage of at least 4.25 (while only 9% of the non-recovered AMPs had this, or
a higher, coverage, see Fig. 4). Nonetheless, in some exceptional cases, even very high coverage was not sufficient to recover a
sequence.

2.6 Macrel predicts putative AMPs in real human gut metagenomes

To evaluate Macrel on real data, we used 182 previously published human gut metagenomes (Heintz-Buschart et al., 2016). Of
these, 177 (97%) contain putative AMPs, resulting in a total of 3,934 non-redundant sequences (see Suppl. Table S3). The
fraction of smORFs classified as AMPs per metagenome ranged 0.1–1.65%, a range similar to that observed in simulated
metagenomes (see Section 2.5).
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Found
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Figure 4. Macrel results in 6 different metagenome simulations involving variation of the number of reads (40-80
million). Six different microbial communities with realistic species abundances were simulated with increasing sequencing
depth (see Methods). Macrel recovers a large number of small ORFs (smORFs) per metagenome (a), and a small number of
AMPs from each metagenome (b). The number of AMPs returned that were present in the reference genomes covers a large
range (40–90%) (c), but only a small fraction is detected as being a spurious prediction (d) (see Methods). Detection of AMPs
is heavily dependent on coverage (e), with almost all (97%) of the detected AMPs contained in genomes with coverage above
4.25 (this is the simulated coverage of the genome, which, due to the stochastic nature of the process, will only correspond to
the local coverage, on average). Processing times increase with coverage, with the single largest sample taking 27 hours (f). In
all panels, boxplot whiskers represent 1.5 times the inter-quartile range (capped to the 0-100% range where appropriate)
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After eliminating singletons, 1,373 non-redundant AMP candidates remained, which we further tested with alternative methods.
In total, 92.8% of the AMPs predicted with Macrel were also classified as such by at least one other classifier, and 65.5% of
the times, half or more of the tested state-of-art methods agreed with Macrel results (see Suppl. Table S4). iAMPpred and
CAMPR3-RF showed the highest agreement and co-predict 74.4% and 65.7% of the AMPs predicted by Macrel, respectively.

Ten percent of all predicted AMPs (414 peptides, or 10.5%) were flagged as likely spurious (see Methods). The fraction of non-
singleton AMPs predicted as spurious was slightly lower (8%, a non-significant difference). Our final dataset, after discarding
both singletons and smORFs identified as spurious (see Methods and Suppl. Table S3), consists of 1,263 non-redundant AMPs.

As 36 metatranscriptomes produced from the same biological samples are also available, we quantified the expression of the
1,263 AMP candidates. Over 53.8% of the predicted AMPs had detectable transcripts (see Suppl. Fig. S2). For 72% of these,
transcripts were detected in more than one metagenome.

Taken together, we concluded that Macrel could find a set of high-quality AMPs candidates, which extensively agrees with
other state-of-art methods, many of which are being actively transcribed.

2.7 Macrel requires only moderate computational resources

The tests reported here were carried out on a personal laptop (32 GB of RAM and 4 cores) to show that Macrel is a pipeline
with modest computational requirements. The execution time, although naturally dependent on the input size, was not greater
than 27 h (recall that the largest simulated metagenomes contained 80 million reads). The reads trimming and assembly steps
consumed 75-80% of the execution time, while gene prediction occupies another considerable part (10-15%) (see Fig. 4).

3 Conclusions

Macrel performs all operations from raw metagenomic reads assembly to the prediction of AMPs. Using a combination of
local and global sequence encoding techniques, Macrel classifiers perform comparably to the state-of-the-art in benchmark
datasets. These benchmarks are valuable for method development, but as they contain the same number of AMP and non-AMP
sequences in the testing set, are not a good proxy for the setting in which we intend to use the classifiers. It is unlikely that
half of peptide sequences predicted from (meta)genomes will have antimicrobial activity. Therefore, we chose a classifier that
achieves a slightly lower accuracy on these benchmarks, but has very high specificity.

The main challenge in computationally predicting smORFs (small ORFs, such as AMPs) with standard methods is the high
rate of false-positives. However, after the filtering applied by Macrel classifiers, only a small number of candidate sequences
remained. Supported by several lines of evidence (low level of detected spurious origin, similar classification by other methods,
and evidence of AMPs transcription), we conclude that Macrel produces a set of high-quality AMP candidates.

Here, we presented an initial analysis of publicly-available human gut metagenomes (Heintz-Buschart et al., 2016). The 1,263
AMPs predicted with Macrel were largely congruent (92.8%) with other state-of-art methods. This opens up the possibility
of future work to understand the impact of these molecules on the microbial ecosystems or prospecting them for clinical or
industrial applications.

Macrel is available as open-source software at https://github.com/BigDataBiology/macrel and the functionality is also available
as a webserver: http://big-data-biology.org/software/macrel.

4 Methods

4.1 Macrel Classifiers

4.1.1 Features

Local features, those dependent on the order of the peptide sequence, were inspired by the composition-transition-distribution
(CTD) framework Dubchak et al. (1995, 1999). Physicochemical properties of a peptide at its N terminal are informative for
the prediction of its antimicrobial activity (Bahar and Ren, 2013; Bhadra et al., 2018). Therefore, we defined features based on
the normalized position of the first amino acid in a group of interest.

Global features, which are independent of amino acids primary sequence, were chosen to capture well-described AMP
characteristics, such as the typical AMPs composition of approximately 50% hydrophobic residues, usual positive charge
and folding into amphiphilic ordered structures (Zhang and Gallo, 2016). The mechanism of antimicrobial activity also was
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summarized in Macrel’s features by global descriptors of stability, amphiphilicity and predisposition of a peptide to bind to
membranes.

Therefore, Macrel combines 6 local and 16 global features (see Suppl. Table S1), grouped as:

1. A new local feature group (3 local features), defined as the relative position of the first occurrence of residues in 3
groups of amino acids defined by their free energy of transition in a peptide from a random coil in aqueous environment
to an organized helical structure in a lipid phase FET - see Fig. 2. The groups are: (1, lowest FET): ILVWAMGT, (2,
intermediate): FYSQCN, (3, highest): PHKEDR (von Heijne and Blomberg, 1979).

2. Solvent Accessibility (3 local features), obtained by the distribution at first occurrence of residues organized in groups
by solvent accessibility as described by Bhadra et al. (2018), using the groups: (1, buried): ALFCGIVW, (2, exposed):
RKQEND, and (3, intermediate): MSPTHY.

3. Amino acid composition (9 global features) as the fraction of amino acids in groups defined by their size (area/volume),
polarity, charge and R-groups: acidic, basic, polar, non-polar, aliphatic, aromatic, charged, small, tiny (Jhong et al., 2019;
Nagarajan et al., 2019).

4. Charge and solubility (2 global features): peptide charge (Ebenhan et al., 2014; Chung et al., 2020) and isoelectric point
(Fan et al., 2016; Wenzel et al., 2014; Chung et al., 2020).

5. Indexes for multiple purposes (3 global features): instability, aliphaticity, propensity to bind to membranes (Boman
(Jhong et al., 2019; Chung et al., 2020; Boman, 2003)).

6. Hidrophobicity (2 global features): hydrophobicity (KyteDoolittle scale) and hydrophobic moment at 100◦ to capture the
helix momentum (Ebenhan et al., 2014; Dathe et al., 1997).

4.1.2 Macrel prediction models

For AMP prediction, our training set is adapted from the one presented by Bhadra et al. (2018) by eliminating redundant
sequences. The resulting set contains 3,268 AMPs (from diverse databases, most bench-validated) and 165,138 non-AMPs (a
ratio of approximately 1:50). A random forest classifier with 101 tree was trained using scikit-learn (Pedregosa et al., 2011) (all
parameters, except the number of trees, were set to their default values).

The hemolytic activity classifier was built similarly to AMP classifier. For this, we used the training set HemoPI-1 from
Chaudhary et al. (2016), which contains 442 hemolytic and 442 non-hemolytic peptides.

The datasets used in Macrel are extensively documented elsewhere (Bhadra et al., 2018; Xiao et al., 2013; Veltri et al., 2018;
Chaudhary et al., 2016) and their description is available in the Suppl. Table S5. Briefly, the AMP dataset is formed by unique
sequences collected from ADP3, CAMPR3, LAMP databases. Non-AMP sequences were retrieved from Uniprot database
which were not annotated as AMP, membrane, toxic, secretory, defensing, antibiotic, anticancer, antiviral and antifungal.
Hemolytic peptides dataset is composed of experimentally validated hemolytic peptides from Hemolytik database and randomly
generated peptides from SwissProt as negative examples. No peptides containing non-canonical amino acids were kept.

4.1.3 Prediction in (meta)genomes

Macrel (see Fig. 1) accepts as inputs metagenomic paired-end or single-end reads in (possibly compressed) FastQ format and
performs quality-based trimming with NGLess (Coelho et al., 2019). After this initial stage, Macrel assembles contigs using
MEGAHIT (Li et al., 2016) (a minimum contig length of 1,000 base pairs is used). Alternatively, if available, contigs can be
passed directly to Macrel.

Genes are predicted on these contigs with a modified version of Prodigal (Hyatt et al., 2010), which predicts genes with a
minimal length of 30 base pairs (compared to 90 base pairs in the standard Prodigal release). The original threshold was
intended to minimize false positives (Hyatt et al., 2010), as gene prediction methods, in general, generate more false positives
in shorter sequences (smORFs) (Höps et al., 2018). Sberro et al. (2019) showed that reducing the length threshold without
further filtering could lead to as many as 61.2% of predicted smORFs being false positives. In Macrel, this filtering consists of
outputting only those smORFs (10-100 amino acids) classified as AMPs.

For convenience, duplicated sequences can be clustered and output as a single entity. For calculating AMP abundance profiles,
Macrel uses Paladin (Westbrook et al., 2017) and NGLess (Coelho et al., 2019).
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The gene prediction procedure inserts an initial methionine in the predicted peptides. However, there is not a proper system
to predict when the N-terminal methionine processing takes place in a given peptide. Thus, to avoid bias towards peptides
containing or not initial methionine, Macrel was set to always exclude it prior features calculation.

4.2 Benchmarking

4.2.1 Methods to be compared

We compared the Macrel AMP classifier to the webserver versions of the following methods: CAMPR3 (including all
algorithms) (Waghu et al., 2016), iAMP-2L (Xiao et al., 2013), AMAP (Gull et al., 2019), iAMPpred (Meher et al., 2017)
and Antimicrobial Peptides Scanner v2 (Veltri et al., 2018). Results from AmPEP on this benchmark were obtained from the
original publication (Bhadra et al., 2018). For all these comparisons, we used the benchmark dataset from Xiao et al. (2013),
which contains 920 AMPs and 920 non-AMPs.

The datasets from (Xiao et al., 2013) do not overlap. However, the training set used in MACREL and the test set from Xiao
et al. (2013) do overlap extensively. Therefore, for testing, after the elimination of identical sequences, we used the out-of-bag
estimate for any sequences that were present in the training set. Furthermore, as described below, we also tested using an
approach which avoids homologous sequences being present in both the testing and training (see Suppl. Table S5).

The benchmarking of the hemolytic peptides classifier was performed using the HemoPI-1 benchmark dataset formed by
110 hemolytic proteins and 110 non-hemolytic proteins previously established by Chaudhary et al. (2016). Macrel model
performance was compared against models created using different algorithms (Chaudhary et al., 2016): Support vector
machines—SVM, K-Nearest Neighbor (IBK), Neural networks (Multilayer Perceptron), Logistic regression, Decision trees
(J48) and RF. There is no overlap between the training set and the testing set for the benchmark of hemolytic peptides.

4.2.2 Homology-aware benchmarking

Cd-hit (v4.8.1) (Fu et al., 2012) was used to cluster all sequences at 80% of identity and 90% of coverage of the shorter length.
Only a single representative sequence from each cluster composed the dataset randomly split into training and testing partitions.
The testing set was composed of 500 AMPs : 500 non-AMPs. The training set contained 1197 AMPs and was randomly
selected to contain non-AMPs at different proportions (1:1, 1:5, 1:10, 1:20, 1:30, 1:40, 1:50).

Using the training and testing sets we tested 4 different methodologies: homology search, Macrel, iAMP-2L (Xiao et al., 2013)
and AMP Scanner v.2 (Veltri et al., 2018) (these are the tools which enable users to retrain their classifiers). Homology search
used blastp (Camacho et al., 2009), with a maximum e-value of 1e-5, minimum identity of 50%, word size of 5, 90% of query
coverage, window size of 10 and subject besthit option. Sequences lacking homology were considered misclassified.

4.2.3 Benchmarks on simulated and real data

To test the Macrel short reads pipeline, 6 metagenomes were simulated at 3 different sequencing depths (40, 60 and 80 million
reads of 150 bp) with ART Illumina v2.5.8 (Huang et al., 2012) using the pre-built sequencing error profile for the HiSeq
2500 sequencer. To ensure realism, the simulated metagenomes contained species abundances estimated from real human gut
microbial communities (Coelho et al., 2019).

We processed both the simulated metagenomes and the isolate genomes used to build the metagenomes with Macrel to verify
whether the same AMP candidates could be retrieved and whether the metagenomic processing introduced false positive
sequences not present in the original genomes.

The 182 metagenomes and 36 metatranscriptomes used for benchmarking were published by Heintz-Buschart et al. (2016)
and are available from the European Nucleotide Archive (accession number PRJNA289586). Macrel was used to process
metagenome reads (see Suppl. Table S3), and to generate the abundance profiles from the mapping of AMP candidates back to
the metatranscriptomes. The results were transformed from counts to reads per million of transcripts.

4.2.4 Detection of spurious sequences

To test whether spurious smORFs still appeared in Macrel results, we used Spurio (Höps et al., 2018) and considered a
prediction spurious if the score was greater or equal to 0.8.

To identify putative gene fragments, the AMP sequences predicted with Macrel were validated through homology-searching
against the non-redundant NCBI database (https://www.ncbi.nlm.nih.gov/). Predicted AMPs annotation was done by homology
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against the DRAMP database (Fan et al., 2016), which comprises circa 20k AMPs. The above-mentioned databases were
searched with the blastp algorithm (Camacho et al., 2009), using a maximum e-value of 1 ·10−5 and a word size of 3. Hits
with a minimum of 70% of identity and 95% query coverage were kept and parsed to the best-hits after ranking them by score,
e-value, identity, and coverage. To check whether the AMPs predicted by the Macrel pipeline were gene fragments, patented
peptides or known AMPs, the alignments were manually evaluated.

4.3 Implementation and availability

Macrel is implemented in Python 3, and R (R Core Team, 2018). Peptides (Osorio et al., 2015) is used for computing features,
and the classification is performed with scikit-learn (Pedregosa et al., 2011). For ease of installation, we made available a
bioconda package (Grüning et al., 2018). The source code for Macrel is archived at DOI:10.5281/zenodo.3608055 (with the
specific version tested in this manuscript being available as DOI:10.5281/zenodo.3712125).

The complete set of scripts used to benchmark Macrel is available at https://github.com/BigDataBiology/macrel2020benchmark
and the newly simulated generated dataset of different sequencing depths is available at Zenodo (DOI:10.5281/zenodo.3529860).
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