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SUMMARY  

Integration of transposable elements into the genome is mutagenic. Mechanisms that target 

integration into relatively safe locations and minimize deleterious consequences for cell 

fitness have emerged during evolution. In budding yeast, the integration of the Ty1 LTR 

retrotransposon upstream of RNA polymerase III (Pol III)-transcribed genes requires the 

interaction between the AC40 subunit of Pol III and Ty1 integrase (IN1). Here we show that 

the IN1-AC40 interaction involves a short linker sequence in the bipartite nuclear localization 

signal (bNLS) of IN1. Mutations in this sequence do not impact the frequency of Ty1 

retromobility, instead they decrease the recruitment of IN1 to Pol III-transcribed genes and 

the subsequent integration of Ty1 at these loci. The replacement of Ty5 retrotransposon 

targeting sequence by the IN1 bNLS induces Ty5 integration into Pol III-transcribed genes. 

Therefore, the IN1 bNLS is both necessary and sufficient to confer integration site specificity 

on Ty1 and Ty5 retrotransposons.  

 

KEY WORDS 
 
Transposable element, Ty1 retrotransposon, integration targeting, RNA Polymerase III, 

nuclear localization signal  
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INTRODUCTION 

Transposable elements (TEs) are mobile repetitive DNA sequences found in the genomes of 

most organisms (Huang et al., 2013). TEs are mutagenic and represent a threat to genome 

integrity, inactivating or altering host gene expression or inducing large chromosomal 

rearrangements (Bourque, 2009; Levin and Moran, 2011). In humans, more than hundred 

heritable diseases have been assigned to de novo TE insertions (Hancks and Kazazian 2016). 

TEs also play a role in genome evolution by modifying host functions, phenotypes, and gene 

regulation, and can contribute to the long-term adaptation of organisms to different 

environments (Chuong et al., 2016).  

Where TEs integrate in the genome will determine their impact on their host. TE distribution, 

which is rarely random (Sultana et al., 2017), arises from the balance between two processes. 

First, selection leads to the elimination of strongly deleterious insertions, and the maintenance 

of beneficial ones (Chuong et al., 2016; Cosby et al., 2019). Second, TEs have repeatedly 

evolved mechanisms that direct their integration into “safe” locations, where insertions will 

have minimal adverse effect on the organism’s fitness (Boeke and Devine, 1998; Cheung et 

al., 2018; Spaller et al., 2016). These regions often consist of non-essential repeated 

sequences, such as telomeric regions, ribosomal DNA arrays, and transfer RNA genes 

(tDNAs), or non-essential regions upstream of open reading frames (Baller et al., 2012; 

Fujiwara et al., 2005; Guo and Levin, 2010; Kling et al., 2018; Mularoni et al., 2012; Naito et 

al., 2009; Pardue and DeBaryshe, 2011; Penton and Crease, 2004; Ye et al., 2005; Zou et al., 

1996). Preferential targets have been described for the integration of different classes of TEs, 

including retroelements (Sultana et al., 2017). 

Long terminal repeat (LTR) retrotransposons are retroelements related to retroviruses. They 

replicate by reverse transcription of their mRNA into a double-stranded DNA copy (cDNA), 

which is imported into the nucleus and integrated into the genome by the LTR-

retrotransposon integrase (IN). The interaction between IN and cellular tethering factors plays 

a major role in integration site selection by targeting pre-integration complexes (PICs) to 

specific chromosome locations. Tethering factors were first identified for Ty3 and Ty5 in S. 

cerevisiae. These LTR retrotransposons integrate at the transcription start site of Pol III-

transcribed genes and in subtelomeric regions, respectively (Kirchner et al., 1995; Xie et al., 

2001). The Tf1 LTR retrotransposon of Schyzosaccharomyces pombe and the MLV retrovirus 

both target the promoter region of Pol II-transcribed genes (Gupta et al., 2013; Hickey et al., 
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2015; Jacobs et al., 2015; De Rijck et al., 2013; Sharma et al., 2013), and the HIV-1 retrovirus 

targets the gene body of Pol II-transcribed genes (Cherepanov et al., 2003; Llano et al., 2006). 

In all cases, tethering factors bind chromatin or have functions related to DNA transcription 

or replication (Sultana et al., 2017).  

Ty1, the most active and abundant LTR-retrotransposon in S. cerevisiae, integrates 

preferentially within a 1kb window upstream of Pol III-transcribed genes. It targets 

nucleosomal DNA near the H2A/H2B interface (Baller et al., 2012; Mularoni et al., 2012). 

This integration pattern allows Ty1 to replicate while minimizing disruption to the host 

genome, as most Pol III-transcribed genes are multicopy tDNAs and thus individually non-

essential. Furthermore, Ty1 insertion has a limiting impact on tDNA expression (Bolton and 

Boeke, 2003). Targeted integration proximal to tDNAs is a strategy that has been adopted 

several times by TEs to minimize damage to compact genomes (Cheung et al., 2018; Kling et 

al., 2018). The integration of Ty1 in these regions requires a functional Pol III promoter in the 

target gene (Devine and Boeke, 1996) and is influenced by the chromatin-remodeling factor 

Isw2 and the Bdp1 subunit of TFIIIB (Bachman et al., 2005). 

Recently, we have shown that an interaction between Ty1 IN (IN1) and the AC40 subunit of 

Pol III is a major driver for Ty1 integration upstream of Pol III-transcribed genes (Bridier-

Nahmias et al., 2015). The study used the S. pombe AC40 ortholog (AC40sp) as a loss-of-

interaction mutant. The replacement of AC40 by AC40sp severely compromised Ty1 

integration upstream of Pol III-transcribed genes, leading to a redistribution of Ty1 insertions 

in the genome. IN1 binding to other Pol III subunits was also described in vitro (Cheung et 

al., 2016). However, it is not clear whether these interactions participate to Ty1 integration 

site selection.  

IN1 has a three domains organization common to all retroelement integrases; the Zn2+ 

coordinating N-terminal domain (NTD), the catalytic core domain (CCD) and the less 

conserved C-terminal domain (CTD) (Figure 1A, top) (Wilhelm et al., 2005). IN1 C-terminal 

residues 578-635 are necessary and sufficient to mediate the interaction with AC40 in vivo 

(Bridier-Nahmias et al., 2015). This region also contains a bipartite nuclear localization signal 

(bNLS, residues 596-630; Figure 1A, top) consisting of two Lys-Lys-Arg motifs separated by 

a 29 amino-acid linker (Kenna et al., 1998; Lange et al., 2011; Moore et al., 1998). This raises 

the question of whether IN1 nuclear import and interaction with AC40 could act in concert 

during Ty1 replication. 
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In this study, we identify a short sequence in the bNLS linker of IN1 that directs the 

interaction with AC40. Single amino acid substitutions in this sequence do not affect the 

frequency of Ty1 retrotransposition but impair the recruitment of IN1 to Pol III-transcribed 

genes. Consequently, these IN1 mutations induce the same changes in the Ty1 integration 

profile as observed in the AC40sp loss-of-interaction mutant. When the IN1 bNLS is used to 

replace the Ty5 IN sequence responsible for Ty5 integration into heterochromatin, Ty5 

integration is re-directed to Pol III-transcribed genes. This work therefore confirms the 

fundamental role of the IN1-AC40 interaction in Ty1 integration site selection and reveals 

that the IN bNLS is necessary and sufficient to confer Ty1 integration preference to another 

retrotransposon.   
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RESULTS 

bNLS linker sequence mutations abolish the interaction with AC40.  

S. cerevisiae LTR-retrotransposons Ty1, Ty2, and Ty4 have the same integration preferences 

for regions upstream of Pol III-transcribed genes (Carr et al., 2012; Kim et al., 1998) and the 

C-termini of their integrases (IN1, IN2, and IN4, respectively) interact with the Pol III subunit 

AC40 (Bridier-Nahmias et al., 2015). To identify conserved amino acids potentially involved 

in the AC40 interaction, we aligned the C-terminal sequences of IN1, IN2, and IN4 (Figure 

1A, bottom) and observed that IN1 and IN2 are highly similar in this region, whereas IN4 is 

more divergent. Amino acids at positions 600-601, 609-610, and 617-623 in IN1 were either 

identical or highly similar in all three INs. We replaced each of these amino acids by alanine, 

individually or in pairs, in a Gal4 activating domain GAD-IN1578-635 fusion protein and 

studied the interaction of the mutant fusion proteins with Gal4 binding domain GBD-AC40 

using a two-hybrid assay. The interaction between IN1578-635 and AC40 was maintained in the 

presence of mutations LE600-601AA, VS609-610AA, N618A or E623A, and suppressed by single 

alanine substitution of K617, M619, R620, S621 or L622 (Figure 1B). GBD-AC40 interacted with 

GAD-IN1578-635 but not with GAD-IN11-578, as shown previously (Bridier-Nahmias et al., 

2015). Since amino acids K617-L622 are located in the IN1 bNLS linker sequence, we also 

tested the interaction between GBD-AC40 and GAD fused to the entire bNLS sequence 

(GAD-IN596-630). Interaction between the two fusion proteins was detected, suggesting that 

this region of 34 amino acids in IN1 is required for interaction with AC40 (Figure 1C).  

To determine whether amino acids required for the two-hybrid interaction between AC40 and 

the IN1 C-terminus were also critical for the interaction between the two full-length proteins, 

we co-expressed AC40-strep and WT or mutant IN1-EPEA (Glu-Pro-Glu-Ala) tagged 

proteins in E. coli and performed immunoprecipitation of the purified proteins. We focused 

on K617, S621 and L622, given their strict conserved in IN1, IN2 and IN4 (Figure 1A, bottom). 

In the presence of Strep-Tactin beads, AC40-strep co-immunoprecipitated with WT IN1-

EPEA but not with the IN1-EPEA K617A, S621A, and L622A mutants (Figure 1D). Thus, full-

length IN1 and AC40 proteins bind directly to each other, and their interaction depends on 

residues K617, S621 and L622 located in the IN1 bNLS.  
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Non-AC40 binding IN1 mutants do not affect Ty1 integration frequency.  

Mutations in the IN1 bNLS that induce a substantial or complete loss of IN1 nuclear 

accumulation reduce the frequency of Ty1 retromobility, as seen when the two Lys-Lys-Arg 

(KKR) motifs are mutated, either individually or simultaneously, but also for mutations of 

specific acidic residues in the linker region (Kenna et al., 1998; Lange et al., 2011; Moore et 

al., 1998). To investigate whether the bNLS amino acids we identified as being necessary for 

the AC40 interaction were also required for Ty1 nuclear import and retromobility, we 

introduced K617A, S621A or L622A mutations into a GFP2-bNLS fusion protein previously used 

to assess IN1 bNLS function (McLane et al., 2008). In contrast to the IN1-bNLSmut construct 

(596KKR598-AAA and 628KKR630-AAA), the three IN1-bNLS single mutants were still able to 

target GFP2 into the nucleus (Figure 2A). Thus, amino acids required for the IN1-AC40 

interaction are dispensable for NLS function.  

The same mutations were introduced individually into a Ty1 element containing the 

retromobility indicator gene his3AI, allowing detection of Ty1-HIS3 insertion events as His+ 

prototroph cells and expressed from the GAL1 promoter in a 2-micron plasmid (Curcio and 

Garfinkel, 1991). To determine the frequency of Ty1his3AI integration in the genome, we 

expressed this plasmid in a spt3-101 null rad52∆ mutant strain, deficient in endogenous Ty1 

expression and homologous recombination. SPT3 is required for Ty1 transcription and its 

absence prevents the trans-complementation of the mutant IN1 by WT IN1 from endogenous 

Ty1 elements (Winston et al., 1984). RAD52 deletion precludes insertion of the Ty1-HIS3 

cDNA by homologous recombination with preexisting genomic Ty1 copies, a preferred 

pathway when IN1-dependent integration is defective (Sharon et al., 1994). The frequency of 

His+ cells was similar between strains expressing WT or K617A, M619A, R620A, S621A or L622A 

mutant Ty1his3AI (Figure 2B). In contrast, mutations that inactivate IN1 nuclear import 

(Moore et al., 1998) or catalytic activity (Wilhelm and Wilhelm, 2005) caused a substantial 

decrease in the frequency of His+ cells compared to WT (Figure 2B, mutants KKR628-630GGT 

and D154A, respectively). 

Thus, single amino acid mutations in the linker of the IN1 bNLS that prevent the interaction 

with AC40 do not impair Ty1 retrotransposition. These data confirm that the IN1-AC40 

interaction is not required for Ty1 overall integration frequency (Bridier-Nahmias et al., 

2015).  
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AC40 recruits IN1 at Pol I and Pol III-transcribed genes.  

In addition to AC40, other Pol III subunits have been suggested to mediate the interaction 

between IN1 and Pol III (Cheung et al 2016). To determine whether IN1 remains associated 

with Pol III in the absence of the IN1-AC40 interaction, we immunoprecipitated Pol III 

(Oficjalska-Pham et al., 2006) in yeast cells expressing hemagglutinin (HA)-tagged C160, the 

largest Pol III subunit, and WT or mutant IN1 fused to streptavidin (IN1-strep). WT IN1 was 

associated to Pol III but not the K617A, S621A or L622A IN1 mutants (Figure 3A). Therefore, 

the interaction with AC40 is necessary for IN1 binding to Pol III in vivo.  

To determine if AC40 plays a major role in IN1 recruitment to Pol III-transcribed genes, we 

developed IN1 chromatin-immunoprecipitation (ChIP) experiments to assay the effect of the 

K617A, S621A, and L622A mutations on recruitment. WT IN1 and the various mutants were 

tagged at their N-terminus using a 3xHA epitope tag and expressed from a tetracycline-off 

promoter. Quantitative PCR revealed significant enrichment of ectopic WT HA-IN1 at all 

tested Pol III-transcript loci, compared to background level measured on the GAL1 gene 

promoter (Figure 3B). In contrast, HA-IN1 mutants that did not interact with AC40 were 

barely detected at these loci. Thus, recruitment of IN1 to Pol III-transcribed loci depends on 

its interaction with AC40. 

To assess if the genome-wide occupancy of WT IN1 correlates with Ty1 integration site 

preferences, we performed ChIP sequencing (ChIP-seq) using the same HA-IN1 constructs, 

with an untagged IN1-expressing strain as control. Analysis of reads mapping to unique sites 

revealed a strong association of WT HA-IN1 with most nuclear tDNAs and the Pol III-

transcribed genes SNR6, SNR52, SCR1, RPR1, and RDN5. Very weak or no HA-IN1 binding 

was observed for RNA170 and ZOD1, previously shown to have low level of Pol III 

occupancy (Moqtaderi and Struhl, 2004) (Figure 3C and Table S1). Three tDNAs, tK(CUU)C, 

tM(CAU)C, and tD(GUC)N, were not recovered: These genes are either absent or 

transcriptionally inactive in the laboratory strain we used (Kumar and Bhargava, 2013; 

Patterson et al., 2019). HA-IN1 was absent from most Pol II-transcribed genes (Table S1) or 

present at a much lower level than at Pol III-transcribed genes (Figure 3C). Low HA-IN1 

occupancy at Pol II transcribed-genes may be an artifact of ChIP-seq due to the level of 

expression of these genes (Teytelman et al., 2013). We did not detect significant HA-IN1 

binding at other chromosomal loci. The genome-wide distribution of ectopic WT IN1 

revealed a strong bias for Pol III-transcribed genes, confirming that the interaction of IN1 
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with the Pol III is the main driver for targeted integration of Ty1. Under physiological 

conditions, IN1 is associated with Ty1 cDNA as part of the PIC. In our experimental 

conditions, IN1 was expressed ectopically at 30°C, a temperature that restricts Ty1 

replication. Therefore, our results indicate that the cDNA is not necessary for IN1 recruitment 

at Pol III. A recent study reached a similar conclusion for the recruitment of Ty3 integrase at 

tDNA genes (Patterson et al., 2019). 

ChIP-seq analysis of the HA-IN1 mutants that compromise the IN1-AC40 interaction (K617A, 

S621A, and L622A) revealed their occupancy was substantially reduced at all Pol III-transcribed 

genes, as indicated by the lower number of reads corresponding to Pol III-transcribed genes 

with the three mutants, compare to WT HA-IN1 (Figure 3D), and by a metagene analysis 

comparing WT and mutant HA-IN1 binding on all the 275 nuclear tDNAs (Figure 3E). No 

similar effect of these mutants was observed at Pol II-transcribed genes (Figure 3F). 

Quantification by pair-wise Spearman correlation between WT and either K617A, S621A, or 

L622A IN1 confirmed the apparent stronger decrease in Pol III occupancy of K617A HA-IN1 

compared to the other mutants (Figures 3E and S2A-B). The metagene analysis indicated a 

sharp peak around the transcription start site (TSS), which does not coincide with Ty1 

integration sites, normally located upstream of Pol III-transcribed genes (Baller et al., 2012; 

Bridier-Nahmias et al., 2015; Mularoni et al., 2012). This suggests that in addition to the 

interaction with Pol III, other features may determine Ty1 integration site preference. HA-IN1 

occupancy was not completely suppressed in the three mutants, suggesting that the K617, S621 

or L622 Ala substitutions may have a residual level of interaction with AC40 not detected by 

two-hybrid or coIP assay. Alternatively, additional protein-protein interactions, like those 

previously identified with other Pol III subunits, could contribute to the recruitment of Ty1 

integration complex at Pol III transcribed-genes in the absence of the IN1-AC40 interaction 

(Cheung et al., 2016).  

AC40 is common to both Pol I and Pol III, suggesting that IN1 may also interact with Pol I. 

Consistently, we found that Pol I is associated with IN1 in vivo. Pull-down of A190-TAP, the	  

largest subunit of Pol I, retained WT IN1, whereas no association was detected	  with the IN1 

mutants (Figure 3G). The RDN1 locus is composed of 100-200 tandem repeats of the 35S-

precursor rDNA, transcribed by Pol I, and the 5S rDNA, transcribed by Pol III (Dammann et 

al., 1993). Analysis of ChIP-seq reads mapping at multiple positions revealed WT HA-IN1 at 

this locus (Figure 3H). IN1 occupancy may be overestimated, as reads corresponding to all 

repeats are aggregated on the two copies that are represented in the S. cerevisiae reference 
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genome (https://www.yeastgenome.org). However, IN1 mutants compromising the IN1-AC40 

interaction —S621A, L622A, and particularly K617A— reduced HA-IN1 occupancy at Pol I-

transcribed loci. Thus, IN1, through its interaction with AC40, is also recruited to genes 

transcribed by Pol I. 

Collectively, these results indicate that the IN1-AC40 interaction is necessary for the 

interaction between IN1 and Pol III and thus its recruitment at Pol III-transcribed genes. IN1 

also interacts with Pol I via AC40 and is present at Pol I-transcribed genes.  

 

AC40 interaction defective Ty1 mutants have altered integration profiles. 

The reduced association of HA-IN1 mutants with Pol III-transcribed genes did not result in a 

significant increase in mutant HA-IN1 occupancy at other specific loci, as revealed by ChIP-

seq (Table S1). To investigate the integration profile of Ty1 mutants that have an impaired 

IN1-AC40 interaction, libraries of His+ selected de novo Ty1 insertion events were generated 

in cells expressing WT or mutant Ty1his3AI elements from the GAL1 promoter (Barkova et 

al., 2018). We used an spt3-101 rad52∆ mutant strain to avoid both trans-complementation of 

the mutant IN1 by endogenous WT IN1 and Rad52-dependent recombination events. Initially, 

we performed qualitative PCR to monitor Ty1 insertion events at the SUF16 tRNA gene and 

the SEO1 subtelomeric gene. These genes were identified as hot spots of Ty1 integration in 

WT and AC40sp loss-of-interaction mutant, respectively (Bridier-Nahmias et al., 2015). In 

independent cultures expressing WT Ty1his3AI, we observed multiple bands upstream of the 

SUF16 tRNA gene, characteristic of Ty1-HIS3 insertion in the three nucleosomes upstream of 

tDNA genes (Bachman et al., 2005; Dakshinamurthy et al., 2010) (Figure 4A). This profile 

was significantly different for Ty1his3AI harboring K617A, S621A, or L622A mutations in IN1, 

with many fewer integration events upstream of SUF16, and increased insertion at SEO1, 

compared to WT Ty1his3AI (Figure 4A). This observation suggests that IN1 mutations at 

K617, S621, and L622 have the same effect on Ty1 integration site targeting as the AC40sp loss-

of-interaction mutant.  

To extend our analysis to the entire genome, we characterized Ty1-HIS3 de novo insertion 

event libraries using high-throughput sequencing. We could discriminate Ty1-HIS3 de novo 

insertions from endogenous elements using six nucleotides in the 3’ LTR that were specific to 

the Ty1his3AI element (Baller et al., 2012). By comparing the Z-score of Ty1 insertions on 
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four non-overlapping features (Figure 4B), we confirmed that WT Ty1 insertions occurred 

mainly in a 1-kb window upstream of most Pol III-transcribed genes (Table S2), the only 

exceptions being tDNAs that were absent or not transcribed in our strain. There were 

significantly fewer Ty1-HIS3 insertions at Pol III-transcribed genes with the three IN1 

mutants (Figure 4B). However, the preference for Pol III-transcribed genes was not 

completely lost, as insertions in these regions were higher than expected if Ty1 targeting was 

random, supporting the idea that the interaction with Pol III is not fully abolished with these 

mutants.  

WT Ty1-HIS3 insertions displayed a periodic profile in the region of the three nucleosomes 

located upstream of Pol III-transcribed genes, with two insertion sites per nucleosome, as seen 

previously (Figure 4C) (Baller et al., 2012; Bridier-Nahmias et al., 2015; Mularoni et al., 

2012). This profile was modified with the three mutants, with the first site of the first 

nucleosome being less affected with the S621A mutant, suggesting that close proximity to the 

tDNA is a determinant of integration. The K617A mutant, which had the lowest HA-IN1 

occupancy at Pol III-transcribed genes (Figure 3D and 3E), displayed the largest decrease in 

integration events at Pol III-transcribed genes (Figures 4B and 4C). This correlation suggests 

that the strength of the IN1-AC40 interaction influences integration efficiency at Pol III-

transcribed genes. Concomitant with the decrease in integration at Pol III-transcribed genes, 

the three IN1 mutants showed an increase in integration events at the end of each 

chromosome arm, a phenotype that was most pronounced for the K617A mutant (Figure 4D). 

These results are consistent with the redistribution of Ty1 insertions in these regions observed 

in the AC40sp loss-of-interaction mutant (Bridier-Nahmias et al., 2015). Ty1 de novo 

insertions at the ends of chromosomes were mostly located in regions defined as 

subtelomeres, based on heterochromatin specificities or loss of synteny between different 

Saccharomyces strains (Hocher et al., 2018; Yue et al., 2017), suggesting that these 

subtelomeric regions  harbor determinants allowing Ty1 targeting (Figure 4E).  

Altogether, these results further support a major role for the IN1-AC40 interaction in Ty1 

integration targeting at Pol III-transcribed genes. They also confirm that, when this interaction 

is compromised, Ty1 insertions are not random but principally occur in subtelomeres.  
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The IN1 bNLS targets Ty5 integration at Pol III-transcribed genes.  

To determine whether the IN1 bNLS sequence is sufficient to confer Ty1 integration site 

preferences, we transferred the sequence into the Ty5 retrotransposon, which preferentially 

integrates into heterochromatin at yeast silent mating loci (HMR and HML) and near 

telomeres (Zou et al., 1996). Ty5 selectivity relies on an interaction between a hexapeptide 

(TD5, targeting domain of Ty5) in the C-terminus of IN5 and the heterochromatin protein 

Sir4 (Gai and Voytas, 1998; Xie et al., 2001). Exchange of TD5 for the IN1 bNLS in IN5, 

expressed in a two-hybrid vector, resulted in IN5 interacting with AC40, but not with Sir4 

(Figure 5A). WT IN5, IN5 lacking TD5 (IN5∆TD5), and IN5∆TD5+bNLS harboring the L622A 

mutation in the bNLS sequence, all failed to interact with AC40, demonstrating that the 

interaction was strictly dependent on the IN1 bNLS sequence.  

To establish whether the interaction with AC40 is sufficient to target IN5∆TD5+bNLS to Pol III-

transcribed genes, we performed ChIP-seq in strains ectopically expressing HA-tagged IN5, 

IN5∆TD5, and IN5∆TD5+bNLS. Metagene analysis of the tagged proteins binding to tDNAs 

revealed a clear enrichment of IN5∆TD5+bNLS at these loci, not detected for IN5 and IN5∆TD5 

(Figure 5B). IN5∆TD5+bNLS was also present at the other Pol III-transcribed and Pol I-

transcribed genes (Figure 5C and S3E). Overall, IN5∆TD5+bNLS genome occupancy profile was 

very similar to that of IN1 (Pearson correlation of R=0.9 Figure S3F and Table S3), 

confirming that the IN1 bNLS-AC40 interaction is sufficient for recruitment at Pol III-

transcribed genes. We did not detect IN5 enrichment at subtelomeric regions bound by Sir4 

(Zill et al., 2010), nor at HML and HMR, which are Ty5 integration sites, which may be due 

to the weak association between Ty5 integration sites and Sir4 occupancy (Baller et al., 2011)  

and reflect a loose and dynamic interaction between IN5 and Sir4 proteins difficult to detect 

by ChIP. 

To explore the impact of the bNLS-TD5 exchange on Ty5 integration site selectivity, we 

introduced IN5∆TD5+bNLS into a functional Ty5his3AI reporter expressed from the GAL1 

promoter. This replacement caused a 10-fold decrease in the frequency of Ty5 

retrotransposition but did not inactivate the element (Figure S5G). His+ colonies represented 

bona fide integration events, as a similar colony frequency was observed in the absence of 

homologous recombination (Figure S5G). His+ selected de novo insertion events were 

generated for WT and mutant Ty5his3AI and the insertion profiles were monitored at specific 

loci by qualitative PCR (Figure 5D). We used an spt3-101 strain that does not express 

endogenous Ty1 elements, to avoid interference between insertions of endogenous Ty1 and 
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the mutant Ty5 at Pol-III transcribed genes. The Ty1his3AI profile displayed multiple 

insertion events at the Pol III-transcribed SCR1 gene and glycine tDNAs, whereas no 

insertions were seen at HML and HMR. The WT Ty5 profile displayed multiple insertion 

events at HML and HMR, whereas no insertions were recovered at SCR1 and very few were 

seen at the glycine tDNAs. In contrast, Ty5∆TD5+bNLS did not integrate at HML and HMR, 

whereas multiple insertion events were detected at the Pol III-reporter genes. The difference 

in Ty1 and Ty5∆TD5+bNLS banding patterns at Pol III-transcribed genes is probably due to Ty1, 

but not Ty5, preferentially integrating into nucleosomes, indicating that the Ty1 preference 

for nucleosomes is not dependent on interaction with AC40.  

Together, these data indicate that the IN1 bNLS sequence is sufficient to direct the integration 

of the Ty5 retrotransposon upstream of Pol III-transcribed genes.  
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DISCUSSION 

Here, we show that the Ty1 IN1 bNLS plays a critical role in the interaction with the Ty1 

tethering factor AC40. We demonstrate that the interaction with AC40 orchestrates the 

selection of Ty1 integration sites in the genome and that the IN1 bNLS can function as an 

independent module that targets the integration of another related retrotransposon upstream of 

the typical Ty1 Pol III-transcribed target genes. 

We provide several lines of evidence supporting a major role for AC40 in recruiting Ty1 to 

both Pol III and Pol I-transcribed genes. First, IN1 interacts directly with AC40 in the absence 

of other yeast proteins. Second, mutations in the IN1 bNLS that reduce the interaction with 

AC40 abolish IN1 association with both Pol III and Pol I transcription complexes. Third, 

there is a concomitant decrease in IN1 occupancy and Ty1 integration at Pol I and Pol III-

transcribed loci when the IN1-AC40 is disrupted. Direct interactions were previously 

observed in vitro between IN1 and the C31, C34, and C53 Pol III-specific subunits (Cheung 

et al., 2016) but their precise role in the recruitment of the IN1 complex in vivo was not 

determined. The redistribution of Ty1 integration into subtelomeres, seen in the absence of 

the IN1-AC40 interaction ((Bridier-Nahmias et al., 2015) and this study) was not observed in 

a rpc53∆2-280 mutant, which decreases Ty1 integration at the SUF16 tRNA gene (Cheung et 

al., 2016). This suggests that either C53 secures IN1 binding to Pol III once IN1 has been 

recruited by AC40 or helps Ty1 integration at a step downstream of IN1 recruitment. Further 

studies will be necessary to address the role of the Pol III complex, and especially of C31, 

C34 and C53, in Ty1 integration.  

We show that IN1 is present across Pol I-transcribed genes, and this presence is reduced by 

mutations that disrupt the IN1-AC40 interaction. Previous genome-wide mapping of Ty1 

insertion sites did not reveal a clear pattern of Ty1 insertion into Pol I-transcribed genes at the 

RDN1 locus (Baller et al., 2012; Bridier-Nahmias et al., 2015; Mularoni et al., 2012), likely 

due to the highly repetitive nature of the rDNA repeats (Bridier-Nahmias et al., 2015). Ty1 

insertion events at these loci seem to be rare (Bryk et al., 1997). This could be due in part to 

not all the repeats being transcribed by Pol I (Dammann et al., 1993) or to the rapid 

elimination of de novo Ty1 insertions by homologous recombination between RDN1 repeats. 

Alternatively, recruitment of IN1 might not be sufficient for Ty1 integration because the 

process requires additional cofactors or a chromatin structure that is only present at Pol III-

transcribed genes. 
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Our IN1 mutants that disrupt the interaction with AC40 induce the same redistribution of Ty1 

insertions at chromosome ends as seen in a AC40sp loss-of-interaction mutant (Bridier-

Nahmias et al., 2015). The insertion sites of these Ty1 mutants are scattered throughout 

subtelomeric regions. Ty5 insertions also occur throughout subtelomeric regions (Baller et al., 

2011). This scattered dispersion may explain why we have failed to detect IN1 and IN5 by 

ChIP-seq in these regions. High-resolution mapping of DNA binding sites will be required to 

address this point (Hafner et al., 2018; Meers et al., 2019).  

To date, the specific retargeting of transposon integration sites has only been observed for 

Ty1. When the interaction between HIV, MLV, and Ty5 INs and their primary tethering 

factors (LEDGF/p75, BET proteins, and Sir4, respectively) is altered, the integration of these 

retroelements at their usual targets decreases substantially, and becomes random (Gai and 

Voytas, 1998; De Rijck et al., 2013; Schrijvers et al., 2012; Sharma et al., 2013; Wang et al., 

2012). Chromosome ends are preferential targets of several TE families in different organisms 

(Casacuberta, 2017). In S. cerevisiae, subtelomeres are devoid of essential genes, are rich in 

stress responsive genes, and evolve rapidly in response to stress (Snoek et al., 2014) or 

domestication (Yue et al., 2017). Targeting of Ty1 integration may have evolved to provide a 

balance between integration into “safe” genomic regions, i.e. tDNAs, and integration into fast 

evolving regions when adaptation is necessary, i.e. subtelomeres. Accordingly, we propose 

that the IN1-AC40 interaction may be regulated by environmental stress. The observations 

that Ty5 targeted integration requires phosphorylation of the IN5 targeting domain, which is 

reduced by stress (Dai et al., 2007), and nutrient starvation regulates the Ty1 replication cycle 

(Morillon et al., 2000; Todeschini et al., 2005)) both lend support this hypothesis. 

The pattern of integration of the Ty1 IN1 mutants largely overlaps in subtelomeric domains 

(Hocher et al., 2018; Yue et al., 2017). This correlation suggests that specific feature(s) in 

subtelomeres attract or facilitate Ty1 integration in the absence of the IN1-AC40 interaction. 

As we failed to detect an interaction between IN1 and Sir4, Ty1 integration into subtelomeres 

probably involves a mechanism different from that of Ty5. In a cis-targeting model, IN1 is 

tethered to subtelomeres through a weak interaction with a subtelomeric specific co-factor, 

such that the subtelomeric interaction will only be favored when binding to AC40 is 

compromised. The dispersed nature of Ty1 insertion sites suggests that the co-factor could be 

distributed across subtelomeres, like a histone mark specifically enriched in these regions 

(Hocher et al., 2018). Alternatively, IN1 co-factor could be present at a limited number of 

subtelomeric sites, and after recruitment, the Ty1 PIC would scan for a chromatin 
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environment favorable for integration. Given Ty1 targets stable nucleosomes upstream of Pol 

III-transcribed genes (Baller et al., 2012; Mularoni et al., 2012), nucleosome stability could 

also be a determinant for integration at subtelomeres. A similar two-step targeting model has 

been proposed to explain the absence of correlation between Sir4 binding sites and Ty5 

integration sites in subtelomeres (Baller et al., 2011). In a trans-targeting model, the 

proximity of the subtelomeres with the nuclear pores (Zimmer and Fabre, 2011), through 

which the Ty1 PIC transits, would facilitate Ty1 integration in these regions, especially when 

the interaction with AC40 is compromised. Consistent with this hypothesis, mutations in 

several components of the nuclear pore alter Ty1 integration preferences (Manhas et al., 

2018). HIV integration also occurs preferentially in chromatin proximal to the nuclear 

periphery (Lelek et al., 2015; Marini et al., 2015; Di Primio et al., 2013). 

This work demonstrates that the IN1 bNLS functions as an independent module to target 

integration at Pol III-transcribed genes: The addition of this sequence to Ty5 IN is sufficient 

to direct Ty5 integration to these loci. Entry of the Ty1 PIC into the nucleus involves the 

classical import machinery and requires an interaction between importin-α and the IN1 bNLS 

(McLane et al., 2008). The IN1 NLS consists of two regions of basic amino acids, which are 

essential for IN1 nuclear import, separated by a linker sequence that also contributes, 

although to a lesser extent, to import (Kenna et al., 1998; Lange et al., 2011; Moore et al., 

1998). The residues that are required for IN1 interaction with AC40 and Ty1 integration 

upstream of Pol III-transcribed genes cluster in a short peptide within the linker. Mutations in 

the linker substantially reduce the interaction with AC40 but not Ty1 retrotransposition 

frequency or IN1 nuclear import (this study). Thus, the IN1 bNLS is involved in nuclear 

import and integration targeting.  

The IN1 linker has been proposed to induce a conformation that facilitates interaction of the 

two basic amino acid-rich regions with two NLS-binding pockets present in importin-α 

(Kosugi et al., 2009; Lange et al., 2011). The conformation of the linker when the basic amino 

acid-rich regions are bound to importin-α could expose the sequence recognized by AC40. 

Once in the nucleus, interaction with AC40 would assist Ran-GTP to dissociate the IN1-

importin-α complex (Passos et al., 2017; Rothenbusch et al., 2012), with nuclear entry and 

interaction with Pol III being coupled (Figure 6). Such coupling could promote Ty1 targeting 

to tDNAs, as these genes are recruited to the nuclear pore to be transcribed (Chen and 

Gartenberg, 2014). 

Retroviral vectors have been used in gene therapy to correct various monogenic disorders. 
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However, these vectors rely on the properties of HIV and MLV integrases, whose preferences 

for either transcribed genes (i.e. HIV) or promoters (i.e. MLV) make them potentially harmful 

for the genome (Anguela and High, 2019; Goswami et al., 2019). As Ty1 integration 

upstream of Pol III-transcribed genes preserves gene integrity (Bolton and Boeke, 2003), and 

given Pol III transcription and structure, including the presence of AC40, are highly 

conserved between yeast and humans, adapting Ty1-integration targeting to retroviral 

integrases could overcome the risk of insertional mutagenesis associated with current MLV 

and HIV retroviral-based vectors, allowing the development of safer retrovirus-based vectors 

for use in human gene transfer technologies.  
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FIGURE LEGENDS 

Figure 1. bNLS linker sequence mutations abolish the interaction with AC40.  

A. Top. The Ty1 integrase (IN1) showing N-terminal and catalytic core domains (NTD and 

CCD) and the bipartite NLS at the C-terminus (CTD). Bottom. Alignment of amino acid 

sequences of Ty1, Ty2, and Ty4 integrase C-termini (IN1, IN2, and IN4, respectively). In 

bold: basic amino acids required for NLS function. In red: amino acids in the NLS linker 

relatively conserved between the three integrases. *, Identity; :, high similarity; ., low 

similarity; -, gap in sequence. 

B. Two-hybrid interaction between GBD-AC40 and WT or mutant GAD-IN1578-635. Alanine 

substitutions in IN1578-635 are indicated. Cells were plated in two-fold serial dilutions on DO-

Leu-Trp-His plates to detect interaction. No growth or protein expression defects were 

detected (Figure S1A-B). +, Interaction; -, no interaction.  

C. Two-hybrid interaction between GBD-AC40 and different IN1 regions fused to GAD, as 

indicated. Cells were plated in ten-fold serial dilutions on DO-Leu-Trp-His plates to detect 

interaction. No growth or protein expression defects were detected (Figure S1C-D). +, 

Interaction; -, no interaction.  

D. In vitro interaction between AC40 and IN1 proteins co-expressed in E. coli. Immuno-

precipitation of protein extracts was performed from bacteria cells expressing IN1-EPEA or 

K617A, S621A, or L622A IN1-EPEA mutants alone (-) or together with AC40-Twin-Strep-tag 

(+). Cell lysates (Input) and immunoprecipitates (IP Strep) were analyzed by Western blot 

with anti-Strep-Tactin antibody and CaptureSelect™ Biotin Anti-C-tag Expected sizes are 41 

kDa for AC40-Twin-Strep-tag and 100 kDa for IN1-EPEA (WT and mutants). 

 

Figure 2. Non-AC40 binding IN1 mutants do not affect Ty1 integration frequency. 

A. Localization of GFP2-IN1 bNLS variants. Yeast cells expressing GFP2-IN1 bNLS variants 

and Nup49-mCherry were analyzed by direct fluorescence microscopy. The C-terminal 54 

amino acids of IN1 containing the bNLS were fused to the C-terminus of two tandem GFPs 

(GFP2-IN1 bNLS) to create a reporter protein that would be too large for passive diffusion 

through NPCs. The GFP2-IN1 bNLSmut construct is mutated for both key regions of the bNLS 
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(596KKR598-AAA and 628KKR630-AAA). Nup49-mCherry signal was used to visualize the 

location of the nuclear envelope. Corresponding DIC images are shown. 

B. Retrotransposition frequency (log scale) of pGAL1-Ty1his3AI bearing substitutions of 

conserved residues by alanine (K617A, M619A, R620A, S621A, and L622A) in a spt3-101 rad52∆ 

strain. IN1 catalytic core domain mutant D154A is defective for integration and NLS mutant 

(KKR628-630GGT) for nuclear import. Values are an average of four experiments, each 

performed with four independent colonies. *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001; Student 

t-test. 

 

Figure 3. AC40 recruits IN1 at Pol I and Pol III-transcribed genes. 

A. Co-immunoprecipitation between endogenous Pol III (C160-HA) and ectopic IN1 tagged 

with streptavidin (IN1-Strep) expressed from the GAL1 promoter. Protein extracts of yeast 

cells expressing HA-tagged (+) or untagged (-) C160 respectively, and WT or K617A, S621A, 

or L622A IN1 mutants were incubated with anti-HA coated beads. Cell lysates (Input) and 

immunoprecipitates (IP HA) were analysed by immunoblotting with anti-HA and anti-Strep 

antibodies. Expected sizes are 160kDA for C160-HA and 100kDa for IN1-strep (WT and 

mutants). 

B. Quantitative ChIP analysis of HA-IN1 enrichment at Pol III-transcribed genes. 

Immunoprecipitated DNA from yeast cells producing ectopic IN1 is expressed as a value 

relative to that of the input. Pol III transcribed-genes: tDNA-Leu and tDNA-Ile families (22 

and 16 genes, respectively) and the unique SCR1 gene. GAL1 ORF serves as a control. The 

mean values and standard deviation (indicated by error bars) of at least three independent 

experiments are shown.  

C. Fold enrichment of WT HA-IN1 over input at all the genes where HA-IN1 has been 

detected by ChIP-seq analysis. Each dot represents a gene. Grey, tDNAs ; Red, other Pol III-

transcribed genes ; Blue,  Pol II-transcribed genes.  

D. WT and mutant IN1 association with all Pol III-transcribed genes (tRNA and ncRNA 

genes). Values obtained from ChIP seq analysis have been normalized in log2 RPKM (reads 

per kilobase per million mapped reads). Control is anti-HA immunoprecipitation of chromatin 

extracts in cells expressing IN1-Strep. 
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E. Genome-wide occupancy profiles (top) and heatmaps (bottom) of WT and HA-IN1 

mutants over a 1kb window upstream and downstream of all tDNAs. Average ChIP-seq 

signals have been computed per 10bp bin, normalized to input and adjusted in log2 RPKM. 

Pearson correlation values corresponding to Figure S2B are indicated. 

F. WT and mutant IN1 association to all Pol-II transcribed genes respectively. Values 

obtained from ChIP seq analysis have been normalized in log2 RPKM. Control, as described 

for panel D.  

G. Co-immunoprecipitation between endogenous RNA Pol I (TAP-tagged-A190) and ectopic 

Ty1 integrase (IN1-HBH). Protein extracts of yeast cells expressing TAP-tagged (+) or 

untagged (-) A190 and transformed with pCM185 derivatives expressing WT or K617A, 

S621A, or L622A IN1-HBH mutants were incubated with IgG beads. Cell lysates (Input) and 

immunoprecipitates (IP TAP) were revealed by immunoblotting with anti-TAP and anti-Strep 

(five thousand-fold dilution). Expected sizes are 204 kDA for A190-HA and 82 kDa for IN1-

strep (WT and mutants). 

H. Genome browser visualization of HA-IN1 occupancy at the RDN1 locus encoding 

ribosomal RNA genes. The 100 to 200 RDN1 repeats of the yeast genome on chromosome 

XII are aggregated into two repeats. RDN37-1 and RDN37-2 are transcribed by RNA 

Polymerase I as a 35S precursor rRNA. RDN5-1 and RDN5-2 are transcribed by RNA 

Polymerase III to give the 5S RNA. Occupancy of WT HA-IN1 and K617A, S621A and L622A 

HA-IN1 mutants is represented in each panel. Control, as described for panel D. Values 

obtained from ChIP seq analysis have been normalized for each condition (WT and mutant 

IN1) to input and adjusted in log2 RPKM. 

 

Figure 4.  AC40 interaction defective Ty1 mutants have altered integration profiles.  

A. Detection of de novo Ty1 insertions upstream of the SUF16 and SEO1 genes by PCR using 

a primer in HIS3 (red triangle) and a primer in the locus of interest (blue triangle). Ty1 

retrotransposition was induced in spt3-101 rad52Δ cells transformed with plasmids 

expressing WT or mutant (IN1 K617A, S621A and L622A) Ty1his3AI from the GAL1 promoter. 

Total genomic DNA was extracted from His+ cells obtained from independent cultures 

induced for retrotransposition.  
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B. Genome-Wide Ty1 insertion frequencies at each genomic feature are clustered in a 

heatmap. Score is computed in column Z-score. ORFs, all RNA Pol II transcribed genes 

except gene at subtelomeres; rDNA, one RDN1 copy; up 1kb Pol III, 1kb upstream of all Pol 

III transcribed genes; Subtelomeres, genomic coordinates corresponding to chromatin covered 

by Sir2 and Sir3, when they are co-overexpressed (Hocher et al., 2018); Random, 100.000 

random Ty1 computed insertions in the genome. 

C. Ty1 insertion profile upstream of tDNAs. Total genomic DNA extracted in (B) was 

prepared for Ty1 de novo integration event sequencing. Ty1 insertions are computed in a 1kb 

window upstream of all the 275 nuclear tDNAs (position 0 in the graph). Each position is 

divided by the number of insertions at this position (weight). The Smoothing curves indicate 

the general trend. Nucleosome center positions are from (Brogaard et al., 2012).  

D. Ty1 insertion frequencies for each left and right subtelomere of chromosomes are clustered 

in a heatmap. Score is computed in row Z-score. Random, as described for panel B. 

E. Genome browser visualization of WT and IN1 K617A mutant Ty1-HIS3 insertions into 

chromosome V left and chromosome VI right subtelomeres compare to the subtelomere 

boundaries defined by (Hocher et al., 2018; Yue et al., 2017). Red stars indicate the first 

essential gene of each subtelomere. 

 

Figure 5. The IN1 bNLS targets Ty5 integration at Pol III-transcribed genes. 

A. Two-hybrid interaction between GBD-Sir4 (left) or GBD-AC40 (right) and different 

GAD-IN5 or GAD-IN1 constructions. IN1578-635 and IN11-578 are used as positive and negative 

control for interaction with AC40, respectively. IN5 and IN5ΔTD5 are used as positive and 

negative control for interaction with Sir4, respectively. Cells were plated in five-fold serial 

dilutions on DO-Leu-Trp-His plates to detect interaction. No growth or protein expression 

defects were detected (Figure S5A-B).  

B. Genome-wide occupancy profiles (top) and heatmaps (bottom) of IN5, WT, and indicated 

mutants, +/- 1kb upstream and downstream of all tDNAs. Average ChIP-seq signals have been 

computed per 10bp bin, normalized to the input and adjusted in RPKM.  

C. Genome browser visualization of different HA-IN occupancy for chromosome V 

(chrV:431129..443275). Occupancy of WT IN5, IN5ΔTD, IN5ΔTD+bNLS and WT IN1 is 
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represented in each panel. Control, anti-HA immunoprecipitation of chromatin extracts 

expressing IN1-Strep. The region contains four tDNAs (tH(GUG)E2, tK(CUU)E2, 

tV(ACC)E1, tI(AAU)E1) and two ncRNA genes transcribed by Pol III (SNR52 and SCR1). 

Values obtained from ChIP seq analysis have been normalized to input and adjusted in 

RPKM. 

D. Detection by PCR of Ty5, Ty5ΔTD5+bNLS or Ty1 de novo integration events at the HMR and 

HML loci, SCR1 and upstream of all glycine tDNAs using a primer in HIS3 and a primer in 

the locus of interest. Retrotransposition was induced for three to four days at 20°C in spt3-101 

cells transformed with WT or mutated pGAL1-Ty5his3AI (Ty5 or Ty5ΔTD5+bNLS) and pGAL1-

Ty1his3AI (Ty1). Genomic DNA was extracted from HIS+ cells for subsequent PCR assays. 

Ty5, Ty5ΔTD5+bNLS or Ty1 de novo integration events were detected by using a primer in HIS3 

gene and a primer in the gene of interest. PCR have been performed on genomic DNA 

extracted from three independent retrotransposition assays. 

 

Figure 6. Model coupling the nuclear entry of Ty1 pre-integration complex with Ty1 

integration at Pol III-transcribed genes. 

1) The Ty1 IN1 bNLS binds to importin-α, allowing the Ty1 pre-integration complex to enter 

the nucleus. 2) Pol III genes are transcribed at the nuclear pores (Chen and Gartenberg, 2014). 

The conformation adopted by the IN1 bNLS linker sequence when the two basic amino acid-

rich regions are bound to importin-α exposes the sequence recognized by AC40. 3) The 

binding of AC40 to IN1 assists Ran-GTP dissociate of the IN1-importin-α complex. 4) The 

association with AC40, in the Pol III complex, targets Ty1 integration upstream of Pol III-

transcribed genes.  
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Figure 6. Model coupling the nuclear entry of Ty1 pre-integration conplex with 
                Ty1 integration at Pol III-transcribed genes
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