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ABSTRACT 
Transcription bursting creates variation among the individuals of a given population. Bursting 
emerges as the consequence of repeated turning on and off the transcription process. There are at 
least three sub-processes involved in the mechanism of transcription bursting with different 
timescale regimes viz. flipping dynamics across the on-off states, microscopic transcription 
elongation events and the mesoscopic transcription dynamics along with the mRNA recycling. We 
demonstrate that when the flipping dynamics is coupled with the microscopic elongation events, 
then the distribution of the resultant transcription rates will be over-dispersed. This in turn reflects 
as the transcription bursting with over-dispersed non-Poisson type distribution of mRNA numbers. 
We further show that there exist optimum flipping rates (αC, βC) at which the stationary state Fano 
factor and variance associated with the mRNA numbers attain maxima. Here α is the rate of 
flipping from the on-state to the off-state, β is the rate of flipping from the off-state to the on-state. 
When α = β = χ with zero rate in the off-state channel, then there exist optimum flipping rates at 
which the non-stationary Fano factor and variance attain maxima. Close observation of the 
transcription mechanism reveals that the RNA polymerase performs several rounds of stall-
continue type dynamics before generating a complete mRNA. Based on this observation, we model 
the transcription event as a stochastic trajectory of the transcription machinery across these on-off 
state elongation channels. Each mRNA transcript follows different trajectory. The total time taken 
by a given trajectory is the first passage time (FPT). Inverse of this FPT is the resultant 
transcription rate associated with the particular mRNA. Therefore, the time required to generate a 
given mRNA transcript will be a random variable.  
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INTRODUCTION 
Subcellular process such as transcription and translation of various genes are essential for the 
survival of an organism [1, 2]. Since these processes are mesoscopic in nature, their outcomes such 
as mRNAs and protein molecules are prone to great number fluctuations. Particularly, cells with 
identical genetic materials, produce different levels of mRNAs and proteins corresponding to 
various genes at a given time point. Such variations in the expression of different genes across the 
population of individual cells is essential for the survival of an organism against various extreme 
environmental conditions. The molecular number fluctuations across various cells of a population, 
can be influenced by both intrinsic and extrinsic factors.  The intrinsic noise in gene expression 
arises well within the system itself which is characterized by a set of kinetic parameters such as 
transcription and translation rate constants. On the other hand, external environmental factors such 
as temperature and nutrient fluctuations can perturb these intrinsic kinetic parameters which 
ultimately emerges as the extrinsic noise component [3]. 
 
The stochasticity of the constitutive gene expression has been extensively investigated both 
theoretically and experimentally [4-10]. The fluctuations in the number of mRNAs and protein 
molecules can be well characterized by the corresponding population mean, variance, coefficient 
of variation and the Fano factor. Here coefficient of variation = (standard deviation / mean) and 
Fano factor = (variance / mean). The Fano factor measures the extent of deviation of the molecular 
number fluctuations from the standard Poisson process for which the Fano factor = 1. Populations 
which exhibit Fano factor < 1 are under-dispersed and those populations which exhibit Fano factor 
> 1 are over-dispersed. Detailed theoretical calculations and subsequent experimental studies on 
the unregulated gene expression have shown that the Fano factors associated with the protein 
number fluctuations is more than one and its deviation from the Poisson increases linearly with 
the translational efficiency [8, 11]. Here the translational efficiency = translation rate / decay rate 
of mRNA molecules. On the other hand, the molecular number fluctuations in mRNAs follows a 
typical Poisson process with Fano factor = 1.  
 
Gene expression was initially thought as a continuous process and the probability density functions 
associated with the mRNAs and protein number fluctuations are assumed to be a monomodal type. 
Later experiments revealed the interrupted and bursting nature of mRNAs and protein numbers 
along the temporal axis [12, 13]. Such transcriptional bursting can result in a bimodal or 
multimodal type density functions associated with the number of mRNAs and proteins [12, 14, 
15]. By definition, two stage gene expression involves only transcription and translation processes 
and three stage gene expression incudes on-off state dynamics of the promoter along with the 
transcription and translation. The main sources of transcription bursting can be attributed to the 
initiation and elongation steps [14]. In the process of transcription initiation, the promoter seems 
to be turned on and off in a random manner via the binding-unbinding of the regulatory 
transcription factors (TFs). On the other hand, the RNA polymerase enzyme complex (RNAP) can 
undergo stall-continue type dynamics in the transcription elongation process. Both these types of 
dynamics ultimately introduce a time dependent stochasticity in the overall transcription rate 
constant. Transcription bursting phenomenon has been studied in detail [16-23]. The effects of 
various factors such as negative feedback [17], presence of enhancer elements [24, 25] on the 
frequency of bursting and burst size have also been unraveled in detail. 
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Both the binding-unbinding of regulatory TFs proteins with the promoter and stall-continue type 
dynamics of RNAP in the elongation process ultimately switch on or off the transcription event in 
a time dependent and random manner. Generally, transcription elongation generates positive 
supercoiling ahead of the RNAP complex and leaves negative supercoil trail behind the RNAP 
[26-28]. For a smooth transcription elongation process, these positive and negative supercoils need 
to be relaxed by the gyrase and topoisomerase I enzymes respectively [14]. When there is a lack 
in the number of gyrase molecules to handle the accumulation of positive supercoils ahead of the 
transcribing RNAP, then RNAP complex cannot progress further and subsequently transcription 
event will be stalled. When enough gyrase molecules arrive and relax the accumulated positive 
supercoils, then the transcription event continues and so on.  
 
Clearly, there are three different timescale regimes involved in the transcription bursting viz. (a) 
the timescale associated with the microscopic elongation transitions in the generation of a complete 
mRNA transcript, (b) the timescale associated with the on-off flipping dynamics and (c) the 
timescale associated with the mesoscopic dynamics of mRNA along with its recycling. Interplay 
of these processes (a), (b), and (c) results in the over-dispersion of the distribution of mRNA 
numbers. Almost all the theoretical and experimental studies on the transcription bursting 1) 
assumed slower timescale for the on-off state flipping than the timescale of transcription and decay 
and 2) concentrated on the steady state of the gene expression. In this paper, using a combination 
of theoretical and simulation tools we will show that the flipping across the on-off transcription 
elongation channels introduce stochasticity in the transcription rate and there exists an optimum 
flipping rate at which the variance and Fano factor of mRNA numbers attain the maxima. 
 
THEORY 
Let us consider the typical transcription event along with the recycling of mRNAs well within the 
cellular environment as depicted in Fig. 1. When the transcription happens in a “stall-continue” or 
“on-off” mode of RNA polymerase enzyme complex (RNAP in prokaryotes and RNA Pol II in 
eukaryotes), then it can be described by the following set of coupled master equations. 

( ) ( )
( ) ( )

, 1, 1, , , ,

, 1, 1, , , ,

1

1

t m t r m t r m t r r m t m t m t

t m t r m t r m t r m m t m t m t

p k p m p k m p p p

p k p m p k m p p p

γ γ α β

γ γ α β

+ + + + + + + −
− +

− − − − − − + −
− +

∂ = + + − + − +

∂ = + + − + + −
                                           (1) 

Leu us denote ,m tp as the overall probability of finding m number of mRNA molecules at time t 
starting from zero number of mRNAs at time t = 0. The probabilities of finding the transcription 
machinery at the on-off states are described by ,m tp± where the superscript (+) denotes the on-state 

and (-) denotes the off-state and the corresponding transcription rates are rk ± (s-1 when mRNA 
concentration is measured in numbers or M/s when mRNA concentration is measured in M). Let 
us assume that the length of the complete mRNA transcript is L bp where 1 bp = 3.4 x 10-10 m. 
When there is a flipping across the on-off state channels, then the synthesis of a given mRNA 
transcript of interest will eventually follow a random trajectory as described in Fig. 1. We denote 
the resultant transcription rate of this random trajectory as ξ which is the inverse of the total time 
taken by the particular trajectory and it varies from trajectory to trajectory. We define the average 
effective or resultant transcription rate as kr which is the average of ξ across several trajectories 
of the transcription event as rk ξ= . In general, one finds that r rk k− +

 and r r rk k k− +≤ .  Here α 
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(s-1) is the rate of transition from the on-state to the off-state and β (s-1) is the rate of transition 
from the off-state to the on-state of transcription. The ratio rkσ α= is generally defined as the 
transcription efficiency [3] or the burst size. Here σ is the average number of mRNA molecules 
generated in the on-state of transcription. The first order decay rate of mRNAs is described by rγ
(s-1). The main assumption in Eqs. 1 is that the timescales associated with the flipping rates (α, β) 
are comparable with or higher than the timescales associated with the transcription rates rk ± . We 
will show in the later sections that rk ± will be rescaled with (α, β) when the timescales associated 
with (α, β) are shorter than the timescales associated with the generation a full mRNA transcript.   

When the average transcription speed of the RNAP is rλ
± (bp/s) and the length of the final mRNA 

transcript is L bp, then the average transcription rate through the respective on and off channels 
will be r rk Lλ± ±

  (1/s). In other words, 1r rkτ ± ±= (s) is the average time required to generate a 
full mRNA transcript via the respective on-off channels. Here one should note that the maximum 
elongation of speed of RNA pol II seems to be close to ~100 bp/s [29, 30].  Typical transcription 
elongation speed of the prokaryotic RNAP complex is rλ

+ ~ 50-60 bp/s [2]. The average resultant 
transcription rate kr will be a function of the variables rλ

± , L, α and β. The initial and normalization 
conditions associated with Eqs. 1 can be given as follows. 

( ),0 ,0 , , , , ,;  0;  1;  m m m t m t m t m t m tm m
p m p p p p p pδ+ − + − + −= = + = = +∑ ∑                                                (2) 

Eqs. 1 and 2 can be solved using the standard method of generating function formalism. Upon 
defining the generating functions as , ,0

m
s t m tm

G s p∞± ±
=

=∑ , Eq. 1 can written as follows. 

( ) ( )
( ) ( )

, , , , ,

, , , , ,

1 1

1 1
t s t r s t r s s t s t s t

t s t r s t r s s t s t s t

G k s G s G G G

G k s G s G G G

γ α β

γ α β

+ + + + + −

− − − − + −

∂ = − + − ∂ − +

∂ = − + − ∂ + −
                                                  (3) 

Upon performing few basic operations, this system can be rewritten as the following set of two 
uncoupled partial differential equations. 

( ) ( )( )
( ) ( )

( ) ( )( )

( )( ) ( ) ( )

, , , ,

22 2 2
, , , 1 , 2 , 3 ,

2
1

2 3

1 1

1 2 1

1 1

1 ;  1

s t r s s t t s t r s t

r s s t r s t s t t s t s s t t s t s t

r r r r

r r r r r r r r r

G s G G s k G

s G s G G A G A G A G

A s k k s

A k k s A s k k k s k k k

γ β α

γ γ

γ γ α β

α β γ α β

+ − − − −

− − − − − −

− +

− + − − + + −

 = − ∂ + ∂ + − + 

− ∂ = − − ∂ ∂ − ∂ + ∂ + ∂ +

 = − + + − + + 
 = − + − + + = − − + + + 

+  

                   (4) 

Here we have the initial conditions as ,0 ,01, 0s sG G+ −= = [31].  Eqs. 3-4 are the central equations of 
this paper from which we derive several interesting results. Although Eqs. 3-4 are not exactly 
solvable, one can derive several approximations under various situations. Upon approximately 
solving these partial differential equations, one can recover the expressions for the probability 
density functions associated with the mRNA fluctuations ,m tp±  as follows. 
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( )1, 1, , 1 , , 1 , ,1;  lim ! ;  lim !m m
t t m t s s s t m t s s s t s tG G p G m p G G m− + ± ± + −

→ →
  + = = ∂ = ∂ +                                   (5) 

Further, using these generating functions, one can straightforwardly derive the expressions for the 
various time dependent statistical quantities associated with the population of mRNAs such as 
mean ( ,m tη ), variance ( ,m tv ), coefficient of variation ( ,m tµ ) and Fano factor ( ,m tκ ) as follows. 

( )
( )

, 1 , ,

22 2 2 2
, 1 , , , , , , , , , ,

lim

lim ;  ;  

m t s s s t s t

m t s s s t s t m t m t m t m t m t m t m t m t

m G G

v m m G G v v

η

η η µ η κ η

+ −
→

+ −
→

 = = ∂ + 
 = − = ∂ + + − = = 

          (6) 

With this background, we will consider the following exactly solvable cases and other interesting 
approximations of Eqs. 3-4. 
 
Case I. ;  0;  0r rkα β γ−≠ = =  
Under these conditions, Eqs. 4 can be reduced to the following form which is exactly solvable. 

( ) ( )( ) ( )2
, , , , , ,1 1 0;  t s t r t s t r s t s t s t t s tG k s G k s G G G Gα β β β α− + − + − + − − ∂ − − − + ∂ − − = = + ∂                       (7) 

The general solution to this set of partial differential equations can be written as follows. 

( )( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )

, 1 2

, 1 2

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2
s t

s t

G w t F s w u ut F s w u ut

G w t F s ut F s ut

β α

β

+

−

 = − + + − − 
= − + −

              (8) 

Here 2 4u w αβ= +  where ( ) ( )1rw k s β α+= − + − . Noting that 1, 1, 1t tG G− ++ = , the functions F1(s) 
and F2(s) and the particular solution to Eqs. 8 can be derived as follows. 

( ) ( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 1 20;  2 ;  ;  F s F s F s w u F s w u F s u F s uα α α+ = + + − = ∴ = = −               (9) 

Upon substituting these functions into Eqs. 8 one finally obtains the following expression for the 
generating functions. 

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

,

,

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2

s t

s t

G w t u w u ut w u ut

G w t u ut ut

β

β α

+

−

 = − + − − − 
 = − − − 

                                (10) 

Using the overall generating function, one can derive the mean number of mRNAs as follows. 

( ) ( )( ) ( )( ) ( )2
, 1 , ,lim 1 expm t s s s t s t rm G G k t tη α α β β α β β α+ − +

→  = = ∂ + = − − + + + +          (11) 

For short timescales, ,m t rk tη +
  which is similar to the deterministic result and for long timescale 

it behaves as ( ),m t rk tη β β α+ +  . Noting that ( )2 2
1 , ,lims s s t s tG G m m+ −

→ ∂ + = − , which can be 
written explicitly as follows. 
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( )( ) ( )( ) ( )( )
( ) ( )( )

2 2
222

4 2 2

2 4 2 2 2

2 2 exp
r

t t t t
m m k

t t t t

α β β α β β β
α β

β α α αβ α β α β
+

 + + + + − + − = +  
+ − + + − − +  

                  (12) 

Using Eqs. 11 and 12 one can write down the variance, coefficient of variation and Fano factor of 
mRNAs as follows. 

( ) 22 2
, 1 , , , , , , , ,lim ;  ;m t s s s t s t m t m t m t m t m t m tv G G m m v vµ η κ η+ −

→= ∂ + + − = =                                  (13) 

It is remarkable to note down the following limits as time tends towards infinity. 

( )2
0 , , ,lim 1;  lim 1 2t m t t m t m rkκ κ κ α α β+

→ →∞ ∞= = = + +                                                             (14) 

Clearly, in Eqs. 14 the stationary state Fano factor ,mκ ∞ attains a maximum value at an optimum 

Cα β=  which can be obtained by solving , 0mκ α∞ ∂ ∂ =   for α.  

Case II. ;  0;  0r rkα β χ γ−= = = ≠  
In this case, Eqs. 4 reduce to the following set of uncoupled partial differential equations. 

( )
( ) ( )( ) ( )

( ) ( )

( )( )

2
, , , ,22 2

,

,

, , , ,

2 1 1 2 1
1

1 2 1

1

r s t s t t s t r t s t r s t

r s s t

r r r s s t

s t r s s t s t t s t

s G G k s G k s G
s G

s s k G

G s G G G

γ χ χ
γ

γ γ χ

γ χ χ

− − + − + −

−

+ −

+ − − −

 − − ∂ ∂ − ∂ + − − ∂ + − + − ∂ =  
 − − + − ∂   

= − ∂ + + ∂

   (15) 

Exact analytical solution to Eqs. 15 is not known. However, when χ →∞ , then Eqs. 15 reduce to 
the following form. 

( ) ( ), , ,0 , , ,;  lim 1 2;  1 2 1s t s t s t s t r s t r s s tG G G G k s G s Gχ γ+ − ± − + − −
→∞  = = ∂ = − + − ∂                    (16) 

These equations are exactly solvable as follows.  

[ ] ( ) ( )( )( )
( ) ( )( )( )

,

, , ,

1 2 exp 1 1 exp 2

exp 1 1 exp 2

s t r r r

s t s t s t r r r

G k s t

G G G k s t

γ γ

γ γ

± +

+ − +

= − − − −   


= + = − − − −    

                              (17) 

Using these generating functions, one can derive the Poisson type expressions for the probability 
density function associated with the mRNA population as follows. 

[ ] ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

,

, , ,

1 2 2 1 exp exp 2 1 exp !

2 1 exp exp 2 1 exp !

m

m t r r r r r r

m

m t m t m t r r r r r r

p k t k t m

p p p k t k t m

γ γ γ γ

γ γ γ γ

± + +

+ − + +

= − − − − −      

= + = − − − − −      

            (18) 

Various statistical properties of mRNA population can be derived as follows. 

( ) ( ) ( ), , , ,2 1 exp ;  1;  2 1 expm t m t r r r m t m t r r rv k t k tη γ γ κ µ γ γ+ += = − − ∴ = = − −                          (19) 
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These results clearly suggest that as χ →∞ , the overall average or effective transcription rate kr 
rescales from rk + to 2rk + . The condition χ →∞ implies that the system switches infinite number 
of times between on and off states with equal amount of dwell times at both these states. That is 
to say, the timescale of flipping between on-off states are comparable with the timescales of the 
microscopic transcription elongation events. Therefore, the condition χ →∞  violates the 
assumption of Eqs. 1 and Eqs. 16-18 since the transcription rates will be a function of the flipping 
rate χ  under such conditions. 

Case III. 0;  ;  0r rk α β χ γ− = = = =  
In this case, Eqs. 15 reduce to the following form which is exactly solvable. 

( ) ( )
( )

, , , ,

, , ,

1t s t r s t s t s t

t s t s t s t

G k s G G G

G G G

χ

χ

+ + + + −

− − +

∂ = − − −

∂ = − −
                                                   (20) 

The general solution of Eqs. 20 can be written as follows. 

( )( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )

, 1 2

, 1 2

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2
s t

s t

G w t F s w u ut F s w u ut

G w t F s ut F s ut

χ χ

χ

+

−

 = − − + + − − 
= − − + −

          (21) 

Here ( )1rw k s+= −  and 2 24u w χ= + . Noting the initial conditions ,0 ,01;  0s sG G+ −= =  for a finite 
χ values one finds the following expressions for the functions F1(s) and F2(s). 

( ) ( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 1 20;  2 ;   ;  F s F s F s w u F s w u F s u F s uχ χ χ+ = + + − = ∴ = = −           (22) 

Upon using these, one can write down the particular solution of Eqs. 20 as follows. 

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

,

,

0 , , ,

exp 2 2 2 exp 2 exp 2

exp 2 2 exp 2 exp 2

lim 0;  lim  

s t

s t

s t s t s t

G w t u w u ut w u ut

G w t u ut ut

G G Gχ χ

χ

χ χ

+

−

− + −
→ →∞

 = − + − − − 
 = − − − 

= =

              (23) 

Using Eqs. 22 and noting that , , ,s t s t s tG G G− += + one can drive the following limiting conditions of 
the generating function. 

( )( ) ( )( )0 , ,lim exp 1 ;  lim exp 1 2s t r s t rG k s t G k s tχ χ
+ +

→ →∞= − = −                      (24) 

Using Eqs. 23 one can directly derive the probability density function associated with the mRNA 
population at high and low values of the flipping rate as follows. 

( ) ( )( ) ( ) ( )( )0 , ,lim exp ! ;  lim exp 2 2 !
m m

m t r r m t r rp k t k t m p k t k t mχ χ
+ + + +

→ →∞= − = −                  (25) 

Further, one can derive the mean and the variance of the mRNA population explicitly as follows. 
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( )( )
( ) ( ) ( ) ( )( )

,

2 2
,

1 exp 2 2 4

4 2 3 4 exp 2 exp 4 4

m t r

m t r r r r r

k t t

v k k t t k k t k t

η χ χ χ

χ χ χ χ χ χ χ

+

+ + + + +

= − − + 


 = + − + + − − − −   
         (26) 

It is also interesting to note down the following limiting values.                   

0 , , 0 , ,lim ;  lim 2;  lim ;  lim 2m t r m t r m t r m t rk t k t v k t v k tχ χ χ χη η+ + + +
→ →∞ → →∞= = = =                       (27) 

Remarkably, the functional form of the mRNA variance shows a turnover type behavior with 
respect to changes in χ and it has a definite maximum at the optimum flipping rate ,C vχ . Explicit 
expression for this optimum χ can be derived from the following equation. 

( )
( )

2

,

2 3 2 exp 2 4 4 4 2
0

exp 4 2

r r r r

m t

r r

k t k t k t t k
v

t k t k

χ χ χ χ χ χ
χ

χ χ

+ + + +

+ +

  − + + − − + −   ∂ ∂ = =    − − +   
                     (28) 

Upon ignoring the terms multiplying the exponentials for large values of χ and time as t →∞ , Eq. 
28 can be approximated to 2 3 2 0r rk t kχ χ+ +− +   from which one finds the optimum value of χ at 
which the variance becomes a maximum as follows. 

( ), 3 2 1C v r rk k tχ + ++                                                                                  (29) 

However, Eq. 29 suggests that the optimum value of χ will be a time dependent quantity which 
decreases towards zero when the time increases towards infinity. Clearly, at the steady or stationary 
state i.e. in the limit as t →∞ , the existence of optimum flipping rate over the variance of the 
mRNA population will disappear. It is also interesting to note down the following limits. 

2
, , , 0 , , 0 , ,

, , , 0 , , 0 , ,

;  lim ;  lim 0;  lim 1 ;  lim 2

;  lim 1;  lim 1 2 ;  lim 1;  lim 1
m t m t m t t m t t m t m t r m t r

m t m t m t t m t t m t r m t m t

v k t k t

v k
χ χ

χ χ

µ η µ µ µ µ

κ η κ κ χ κ κ

+ +
→ →∞ → →∞

+
→ →∞ → →∞

= = ∞ = = =

= = = + = =
  (30) 

Remarkably, the Fano factor associated with the fluctuations in the number of mRNAs show a 
maximum deviation from the Poisson with respect to χ which can be demonstrated as follows. 

( )
( ) ( )[ ]

2 2 2 2

, 2 2

8 12 3 exp 2 24 18 7
0

exp 4 8 8 5 exp 6 2 1
m t

t t t t t

t t t t t

χ χ χ χ χ
κ χ

χ χ χ χ χ

  − − + − + + −    ∂ ∂ = =    − − + + + − +   
                             (31) 

Similar to the derivation of Eq. 29, one can ignore the terms multiplying the exponentials and 
finally one obtains the following approximation for large values of χ. 

2 2
,8 12 3 0;  1.72Ct t tκχ χ χ− − ∴                                                                     (32) 

Clearly, at the steady state i.e. as t →∞ , the existence of optimum flipping rate over the Fano 
factor as well as the variance of the mRNA population will disappear. In other words, steady state 
theories and experiments cannot capture these important properties. Using detailed stochastic 
simulations, we will show in the later sections that both Eqs. 29 and 32 are valid even when the 
conditions 0;  ;  0r rk α β γ− > ≠ >  are true. In these situations, we will show in the later sections 
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that the optimum flipping rates (αC, βC) which maximize the variance and the Fano factor 
associated with the fluctuations in the number of mRNA molecules asymptotically approach their 
non-zero steady state limits. 

Dependency of the transcription rate on the on-off flipping dynamics  
Let us consider a single transcription event. Here the length of the final mRNA transcript is L bp. 
Since the addition of each nucleotide at the ends of a growing mRNA is an energetically driven 
stochastic process, we can describe the entire transcription elongation as a directed walk with the 
microscopic transition rates rλ

± (bp/s). Here the superscript ‘+’ represents the on-state and ‘-’ 
represents the off-state of the promoter and ,n tq± are probabilities of finding of the transcription 
machinery with n number of transcribed mRNA bases in the respective on-off state channels at 
time t.  Now we can consider three possible scenarios as depicted in Figs. 2A-B viz. (a) when all 
the microscopic transitions of the transcription elongation event are characterized homogeneously 
with the rates rλ

± and there is no flipping across the on-off state channels, then one finds that 

r rk Lλ± ±=  and subsequently the average resultant transcription rate will be equal to either rk +  or 

rk − depending on the channel used for the transcription elongation (Fig. 1, Figs. 2B1 and 2B3 
respectively). On the other hand, when there is a flipping across on-off state channels, then the 
resultant transcription rate ξ will be somewhere in between ( ),r rk k+ −  (Fig. 2B2). Clearly the 
transcription rate ξ associated with each mRNA transcript will be a random variable and its 
ensemble average across several individual transcripts is defined as rk ξ=  . When the timescales 
of flipping across on-off states are comparable with the timescales of the microscopic transcription 
elongation events, then such randomly interrupted transcription elongation can be well described 
by the following set of coupled master equations. 

( )
( )

, 1, , , ,

, 1, , , ,

t n t r n t n t n t n t

t n t r n t n t n t n t

q q q q q

q q q q q

λ α β

λ α β

+ + + + + −
−

− − − − + −
−

∂ = − − +

∂ = − + −
                                            (33) 

Since the total time required to generate a full mRNA is a function of its length L, microscopic 
transcription elongation rates rλ

± and the on-off flipping rates (α, β), and it is a continuous process 
compared to the flipping across the on-off states, Eqs. 33 can well approximated by the following 
set of coupled differential Chapman-Kolmogorov equation [32-34]. 

( )
( )

2
, ,

2
, ,

2

2

n r r nn t n t
t

n t n tn r r n

q q
q q

λ λ α β

α λ λ β

+ ++ +

− −− −

 −∂ + ∂ −   
 ∂ =   
 −∂ + ∂ −    

                                    (34) 

Here we denote
0 0, | , ,n t n t n tq q± ±=  for simplification purpose.  The initial and boundary conditions 

associated with Eqs. 34 can be given as follows. 

( ) ( ), , , ,0 ,0 ,0 , ,0
;  ;  0;  ;  0;  0n t n t n t n n n n n t L tn

q q q q n q q n q qδ δ+ − + − ± ±

=
 = + = = ∴ = ∂ = =                         (35) 
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Upon defining
0 0 0, , | ,0

L

n t n t n tg dnq± ±= ∫  which is the overall probability of finding the system within 

( )0,n L∈  at time t starting from n = 0, one can straightforwardly derive the following results. 

0 0 0 0 0 0 0 0,0 , , , , , ,00 0 0
1;  0;  ;  1n n n t n t n t t n t n ng g T t g dt g dt g dt g g

∞ ∞ ∞± ± ± + + + + +
∞ ∞   = = = − ∂ = ∂ = − = −   ∫ ∫ ∫          (36) 

Further, we set that
0 ,0

0t n tt g dt
∞ −∂∫   especially when 0rλ

− → since the probability flux entering the 

off-state of the system will eventually return back to the on-state. The system can exit upon 
generating a complete transcript only from the on-state. Here nT ±  is the mean first passage time 
(MFPT) associated with the generation of a full mRNA transcript of length L starting from n 
number of initial bases of mRNA at time t = 0. One should note that the resultant transcription rate 
ξ is the inverse of the first passage time (FPT) which is a random variable. Clearly, the MFPTs nT ±  
obey the following set of coupled backward type Fokker-Planck equations [33, 34]. 

( )
( )

2

2

2 1
02

r n r n n

nr n r n

d d T
Td d

λ λ α β

α λ λ β

+ + +

−− −

 + −      = −    + −    
                                 (37) 

Here the boundary conditions directly follow from Eqs. 35 as
0

0;  0n n nn n L
d T T± ±

= =
   = =    . Upon 

solving Eqs. 37, the overall MFPT can be calculated as the sum n n nT T T+ −= + . When the initial 
number of bases in the mRNA transcript is n0 = 0, then the required MFPT to generate a complete 
transcript starting from zero bases will be 0 0 0T T T+ −= +  from which one can derive the expression 
for the overall average transcription rate as [ ]01rk T= . The system of coupled Eqs. 37 is exactly 
solvable. Especially, whenα β χ= =  then the system of Eqs. 37 can be split into the following 
set of uncoupled ordinary differential equations. 

( ) ( )( )
( )

4 3 2

2

4 2 4 2 4 1

2 2 2

r r n n r r n n r r r n n r r n n

n r n n r n n n

d T d T d T d T

T d T d T T

λ λ λ λ χ λ λ χλ χ λ λ

λ λ χ χ

+ − − + − − + − + − + − −

+ − − − − −

 = − + − + + + + 

= − − +
             (38) 

Upon solving the system of Eqs. 37 with appropriate boundary conditions and then substituting n 
= 0 in Tn, one finally obtains the following expression for the MFPT T0. 

( ) ( )( ) ( )2

0 2 2 2T h vw u wχ λ λ λ λ λ χ λ λ+ − − − + + −= + + − − +                                              (39) 

Here various functions and parameters in Eq. 39 are defined as follows. 
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( )( ) ( ) ( )
( ) ( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

2

2 ;  2 ;  2

2 1 2 1 2

exp 1 2 exp 1 2

exp 3 2 exp 3 2

u z u y u

v L L

w y L u z L u

h y L u z L u

λ λ χ λ λ χλ λ λ λ λ

λ λ χ λ λ χ

λ λ λ λ

λ λ λ λ

− + + − + + − + −

− − + +

+ − + −

+ − + −

= + + = − + = + 
 = + − − + −     
= − + + − +

= − + + − + 

                         (40) 

Eqs. 39 and 40 clearly suggest that the overall average transcription rate rk is a function of the 
flipping rate χ especially when the timescale associated with the flipping dynamics is much lesser 
than the timescale associated with the generation of a complete transcript. It is remarkable to note 
the following limiting values of T0. 

( ) ( ) ( )0 0 0lim exp 2 2 1 2 ;  lim exp 2 2 1r r rT L L T L Lχ χλ λ λ+ − +
→ →∞= − + − = − + − +                 (41) 

For large values of L, one finds that, 

( ) ( )0 0 0 00
lim ;  lim 2 ;  lim exp 2 2 1

r
r r r rT L T L T L Lχ χ λ
λ λ λ λ−

+ − + +
→ →∞ →

+ = − + −    .       (42) 

When 0rλ
− →  then Eqs. 43 clearly suggest that the overall MFPT T0 will be independent of the 

on-off flipping rate χ. However, the MFPT will be doubled under such situations. When r rλ λ− +


and for sufficiently large values of the transcript length L, one finally obtains the following limiting 
conditions in line with Eqs. 19 and 30. 

0lim 2 ;  lim ;  r r r r r rk L k L k Lχ χλ λ λ+ + + +
→∞ →= = =                                                             (43) 

These limiting conditions in Eqs. 43 follows directly from the initial conditions given in Eqs. 35. 
For example, when we hypothetically set up the initial conditions as ( ),0 ,0;  0n nq n qδ− += = , then we 
need to swap the on-off state superscript indices i.e. (+ and -) of Eq. 39 and subsequently one 
obtains the limiting values as follows even when r rλ λ− +< . 

( ) 0lim 2 ;  lim ;  r r r r r r rk L k L k Lχ χλ λ λ λ− + − − −
→∞ →+ = =                                                  (44) 

When 0rλ
− → then the system of Eqs. 37 will be uncoupled. In this situation, the overall average 

transcription rate kr rescales from rk + to 2rk + when χ tends towards infinity i.e. the overall 
transcription rate kr will be confined inside the interval ( )2r r rk k k+ +≤ ≤ . The complete solution to 

Eqs. 37 is given in Appendix A. It is remarkable to note from Eqs. A5 that when 0rλ
− →  and 

α β≠ then the overall average effective transcription rate can be expressed as the functions of the 
on-off flipping rates as ( )r rk k β α β+ +   . This equation suggests the probable range of kr as 

0 r rk k +≤ ≤ depending on the relative values of the on-off flipping rates. In the following sections, 
we investigate the possibility of various steady state solutions to Eqs. 1. 
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Steady state solutions 
Under steady state conditions, Eqs. 1 reduce to the following form. 

( ) ( )
( ) ( )

1, 1, , , ,

1, 1, , , ,

1 0

1 0

r m r m r r m m m

r m r m r m m m m

k p m p k m p p p

k p m p k m p p p

γ γ α β

γ γ α β

+ + + + + + −
− ∞ + ∞ ∞ ∞ ∞

− + − − − + −
− ∞ + ∞ ∞ ∞ ∞

+ + − + − + =

+ + − + + − =
                                        (45) 

Here ,mp±
∞ are the stationary state probabilities associated with the finding of m number of mRNAs 

in the respective on (+) and off (-) channels of transcription. Eqs. 45 also can be solved using the 
standard generating function formalism. One can define the steady state generating functions and 
the corresponding probability densities as follows. 

( ), , 1, 1, , ,;  1m
s m m mm m m

G s p G G p p± ± − + + −
∞ ∞ ∞ ∞ ∞ ∞= + = + =∑ ∑ ∑                                                     (46) 

Using the generating functions defined in Eqs. 46, one can recover the respective probability 
density functions as follows. 

( ), 0 , , 0 , ,lim ! ;  lim !m m
m s s s m s s s sp G m p G G m± ± + −
∞ → ∞ ∞ → ∞ ∞

  = ∂ = ∂ +                                               (47) 

Upon applying the transformation given in Eqs. 46 into Eqs. 45, one obtains the following set of 
coupled ordinary differential equations. 

( ) ( )
( ) ( )

, , , ,

, , , ,

1 1 0

1 1 0
r s r s s s s

r s r s s s s

k s G s d G G G

k s G s d G G G

γ α β

γ α β

+ + + + −
∞ ∞ ∞ ∞

− − − + −
∞ ∞ ∞ ∞

− + − − + =

− + − + − =
                                                            (48) 

In Refs. [15, 17], the solutions to Eqs. 45 were expressed in terms of confluent hypergeometric 
functions. Here we derive an alternate solution set that is easy to handle. Eqs. 48 can be split into 
the following set of uncoupled ordinary differential equations. 

( )
( ) ( )( )

2 2
, , ,

, , ,

1 0

1 1
r s s s s s s s

s r s s r s

s d G F d G H G

G s d G k s G

γ

γ β α

− − −
∞ ∞ ∞

+ − − −
∞ ∞ ∞

− + + =

 = − − − − 
                                                                 (49) 

Various functions in Eqs. 49 are defined as follows. 

( )( )( ) ( )( )1 ;  1s r r r r s r r r rF s k k H k s k kγ α β γ γ α β+ − + − += + + − − + = − − − −                            (50) 

Using the substitution as ( )( ), exp 1s r r sG k s Mγ− +
∞ = − , where Ms is an arbitrary function of s, one 

can reduce Eqs. 49 into the following form. 

( ) ( ) ( )2 0;  1 ;  1 ;  1z s z s s r r r r rzd M b z d M aM a b z k k sα γ α β γ γ− + + − − = = + = + + = − −    (51) 

Solution to Eq. 51 can be expressed in terms of Kummer functions as follows [35]. 

( ) ( )1 2KummerM , , KummerU , ,zM C a b z C a b z= +                                                               (52) 
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Since ( )KummerU , ,0a b →∞  for any arbitrary values of { }, 0a b > in Eq. 52, we need to set 2 0C =  
to enforce the normalization condition of the probability density function.  We use the following 
properties of the KummerM functions to further simplify our results [35, 36]. 

( ) [ ] ( ) ( )( )
( )
( ) ( ) ( )
( ) ( ) ( ) ( )

KummerM , , KummerM 1, , KummerM , ,

KummerM 0, , 1

KummerM , , exp KummerM , ,

KummerM , , exp KummerM 0, , exp

zd a b z a z a b z a b z

a z

a b z z b a b z

a a z z a z z

= + −


= 


= − − 
= − = 

                       (53) 

Using these properties, one finally obtains the solution to the generating functions obeying the 
set of differential equations Eqs. 48 as follows. 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

,

,

exp 1

KummerM 1 ,1 , 1

exp 1

KummerM ,1 , 1

r r

s

r r r r r

r r

s

r r r r r

k s
G

k k s

k s
G

k k s

α α β γ

α γ α β γ γ

β α β γ

α γ α β γ γ

+

−
∞ − +

+

+
∞ − +

 + − ×   =  
 × + + + − −   

 + − ×   =  
 × + + − −   

                                  (54) 

Here the KummerM function can be defined explicitly as follows [35, 36]. 

( ) ( ) ( ) ( ) ( ) ( ) ( )00
KummerM , , ! ;  1 ... 1 ;  1n

n n nn
a b z a z n b w w w w n w∞

=
 = = + + − = ∑        (55)     

Upon expanding the generating functions in terms of Macularin series with respect to s around s = 
0 and then substituting s = 1 in the computed series, one finally obtains the expressions for the 
respective probability density functions as follows.  

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )( )

,

0

,

0

! exp

1

! exp

1 1

m
r r r

n m nm m m
n r r r r rm nn m n

m
r r r

n m nm m m
n r r r r rm nn m n

m k
p

C k k k

m k
p

C k k k

β α β γ γ

α γ α β γ

α α β γ γ

α γ α β γ

+

+
−∞ + − +

+−= −

+

−
−∞ + − +

−−= −

  + − ×  =   × − Ψ + +    
  + − ×  =   × + − Ψ + +    

∑

∑

                 (56) 

Various paramaters and terms in Eqs. 56 are defined as follows. 

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( )

KummerM , 1 ,

KummerM 1 , 1 ,

! ! ! ;  

r r r r r

r r r r r

m
n u

m n m n k k

m n m n k k

C m n m n w w u w

α γ α β γ γ

α γ α β γ γ

− +
+

− +
−

Ψ = − + − + + + − −

Ψ = − + + − + + + − −

= − = Γ + Γ  

                          (57) 

From Eqs. 54, one can derive the expressions for the steady state mean, variance, coefficient of 
variation and Fano factor (we denote them as , , , ,, , ,m m m mvη µ κ∞ ∞ ∞ ∞  respectively) as follows. 
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( ) ( ) ( )

( )
( )( ) ( ) ( )

( )( ) ( ) ( )

, 1 , ,

2 2
1 , , , ,

, 23 2 2

22 3 2 2
, , ,

, ,

,

lim

lim

m s s s s r r r

s s s s m m

m

r r r r r

m m m r r r r r r

m m

m

m G G k k

G G
v

k k

v k k k k

v

η α β α β γ

η η

α α β β γ βα γ α β α β γ

µ η α α β β γ βα α β α β γ

η
κ

+ − − +
∞ → ∞ ∞∞

+ −
→ ∞ ∞ ∞ ∞

∞
− +

− + − +
∞ ∞ ∞

∞ ∞

∞

 = = ∂ + = + + 
  ∂ + + − =  =  
= +Ξ + + +Ω + + +  

= = +Ξ + + +Ω + + +

=
( )( ) ( )( )( )3 2 2

r r r r r rk k k kα α β β γ βα α β α β α β γ− + − +

=  
 
= +Ξ + + +Ω + + + +  

         (58) 

Various terms in Eqs. 58 are defined as follows. 

( )( ) ( ) ( ) ( )( )2 ;  2 2r r r r r r r r r r r r rk k k k k k k k k kβ γ β γ γ− + − − + − − + + +Ξ = + + Ω = + + + − + +                  (59) 

Eqs. 58 suggest that, in the presence of flipping across the on-off states, the effective transcription 
rate transforms as ( ) ( )r r rk k kα β α β− += + + under steady state conditions. In the following 
sections we will consider various cases of approximations to Eqs. 54-59. 

Case I. ;  0rkα β −≠ =  
In this situation, Eqs. 54 reduce to the following form. 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

,

,

exp 1 KummerM 1 ,1 , 1

exp 1 KummerM ,1 , 1

s r r r r r r

s r r r r r r

G k s k s

G k s k s

α α β γ α γ α β γ γ

β α β γ α γ α β γ γ

− + +
∞

+ + +
∞

= + − + + + − −  

= + − + + − −  
  (60) 

Upon expanding these generating functions in terms of Macularin series around the point s = 0 and 
then substituting s = 1 in the computed series, one finally obtains the following probability density 
functions associated with the steady state mRNA populations.   

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

,

0

,

0

! exp

1 1

! exp

1 1 1

m

r r r r

m m m n m
n r rm nn m n

m

r r r r

m m m n m
n r rm nn m n

m k k
p

C

m k k
p

C

β α β γ γ

α γ α β γ

α α β γ γ

α γ α β γ

+ +

+
∞ −

+ −= −

+ +

−
∞ −

− −= −

 + − ×   =  
 × − Φ + +   

 + − ×   =  
 × − Φ + + +   

∑

∑

                                       (61) 

Various terms in Eqs. 61 are defined as follows.            

( )( )
( )( )

KummerM , 1 ,

KummerM 1 , 1 ,

r r r r

r r r r

m n m n k

m n m n k

α γ α β γ γ

α γ α β γ γ

+
+

+
−

Φ = − + − + + +

Φ = − + + − + + +
                                          (62) 

From Eqs. 60, one can derive the expressions for the steady state mean, variance, coefficient of 
variation and Fano factor as follows. 
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( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

,

22
,

2
,

2
,

2
,

2

2

2

max 2

m r r

m r r r r r r

m r r r r r

m r r r r

m C C r r r C C r

k

v k k

k k

k

k

η β α β γ

β α α β γ β β γ γ α β α β γ

µ α α β γ β β γ β α β γ
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                         (63) 

Clearly when rk − = 0, then the overall transcription rate rescales as ( )r rk kβ α β+= +  and using 
the respective limiting condition from Eqs. 63 one can derive the optimum α at which the 
stationary state Fano factor ,mκ ∞  attains a maximum as ( )C rα β β γ= + . This can be obtained by 

solving , 0mκ α∞ ∂ ∂ =   for α.  Noting the definition of the burst size or the transcription efficiency

rkσ α= , one can also show that the steady state Fano factor ,mκ ∞  will attain a maximum value 

at the optimum transcription efficiency ( )C r C r rk kσ α β β γ= = + .  

Case II. ;  0rkα β χ −= = ≠  
In this case, the generating functions reduce to the following form. 

( )( ) ( )( )
( )( ) ( )( )

,

,

exp 1 2 KummerM 1 ,1 2 , 1

exp 1 2 KummerM ,1 2 , 1

s r r r r r r r

s r r r r r r r

G k s k k s

G k s k k s

γ χ γ χ γ γ

γ χ γ χ γ γ

− + − +
∞

+ + − +
∞

   = − + + − −  
   = − + − −  

             (64) 

Upon expanding these generating functions in terms of Macularin series around the point s = 0 and 
then substituting s = 1 in the computed series, one finally obtains the following probability density 
functions associated with the steady state mRNA populations. 
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( ) ( ) ( ) ( )
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0
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1 2
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m
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m n m nm m
r r r n r rm n m nn

k m
p

k k k C

k m
p

k k k C

γ γ

χ γ χ γ

γ γ

χ γ χ γ

+

+
∞ −+ − +

+ − −=

+

−
∞ −+ − +

− − −=

  − ×  =   × − ∆ +    
  − ×  =   × − ∆ + +    

∑

∑

                             (65) 

Various terms and functions in Eqs. 65 are defined as follows. 

( )( )
( )( )

KummerM , 1 2 ,

KummerM 1 , 1 2 ,

r r r r r

r r r r r

m n m n k k

m n m n k k

χ γ χ γ γ

χ γ χ γ γ

− +
+

− +
−

∆ = − + − + + − −

∆ = − + + − + + − −
                                   (66) 
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Using the generating functions given in Eqs. 64 and noting the definition of the overall generating 
function , , ,s s sG G G− +

∞ ∞ ∞= + , one can derive the following properties of the stationary state mRNA 
populations and their various limiting properties. 

( ), 2m r r rk kη γ− +
∞ = +                                                        (67) 

( )( ) ( ) ( )
( ) ( )( ) ( )

2 2
,

2 2
0 , ,

4 2 2 4 2 4 4 8
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∞
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    (68) 
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        (69) 
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        (70) 

Case III. ;  0rkα β χ −= = =  
In this situation, various statistical properties of the stationary state mRNA populations and their 
various limiting values can be derived as follows. 
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                                                 (71) 

Case IV. ;  ;  ;  0r r rkα β α γ β γ −≠ ≠   
In this case, the generating functions reduce to the following simple form. 

( ) ( )( ) ( ) ( )( ), ,exp 1 ;  exp 1s r r s r rG k s G k sα α β γ β α β γ− − + +
∞ ∞+ − + −                         (72) 

The corresponding probability density functions can be derived via expanding these generating 
functions in terms of Macularin series around s = 0 and then substituting s = 1 in the computed 
series expansion. 
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( ) ( )( )( )
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+ + +
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+ −  

= + −  



                                                               (73) 

Therefore, one finally obtains the following bimodal Poisson type expression for the probability 
density function associated with the stationary state mRNA populations. 

( )( ) ( )( )( ) ( ), exp exp !
m m

m r r r r r r r rp k k k k mα γ γ β γ γ α β− − + +
∞ = − + − +                           (74) 

These types of bimodal probability density of the mRNA populations seem to play critical role in 
the cell to cell variability within an organism [14]. From Eqs. 60, one can derive the expressions 
for the steady state statistical properties of the mRNA population as follows. 
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= + +
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= + + − + + + + +

(75) 

From Eqs. 75 one can conclude that the steady state Fano factor will attain a maximum when the 
at the flipping rates αC, βC which are connected via C C r rk kα β + −= .  

Case V. ;  ;  ;  0r r rkα β α γ β γ −≠ =   
This is exactly the scenario addressed in Ref. [14]. In this case, the generating functions defined 
in Eqs. 54 takes the following simple form. 

( ) ( ) ( )( ), ,;  exp 1s s r rG G k sα α β β α β γ− + +
∞ ∞+ + −                                                        (76) 

We have used the properties of the KummerM functions defined in Eqs. 53 to derive Eqs. 76. 
The corresponding probability density functions can be derived as follows. 

( ) ( ) ( ) ( ), ,;  exp !
m

m m r r r rp p k k mα α β β α β γ γ− + + +
∞ ∞

 + = + −         
                                (77)  

Using Eqs. 77, one finally obtains the Poisson density function with zero spike [14]. 

( ) ( ) ( ) ( ), exp !
m

m r r r rp k k mα α β β α β γ γ+ +
∞

 + + + −         
                                         (78) 

In Eq. 78, the number of mRNA molecules m takes only the integer values and Eq. 78 is valid for 
the entire range of m i.e. m = 0 to infinity. Noting that , , ,s s sG G G− +

∞ ∞ ∞= + , from Eqs. 76, one can 
derive various statistical properties such as mean, variance, coefficient of variation and Fano factor 
associated with the stationary state mRNA populations as follows.  
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STOCHASTIC SIMULATION METHODS 
To check the validity Eqs. 29 and 32 under various conditions, we performed detailed stochastic 
simulations on the complete system of master equations Eqs. 1. Here there are two different 
timescales viz. the timescale associated with the generation of a complete mRNA transcript and 
the timescale associated with the flipping dynamics across on-off state channels of transcription. 
We used the Gillespie algorithm [37, 38] to simulate the system of Eqs. 1. Let us denote the 
number of mRNA molecules at time t as m. Initially at t = 0, m = 0 and the system was in the on-
state so that r rk k +→ . Clearly, there are four different reaction transitions viz. ( )1m m− →  which 

represents the zeroth order transcription with a rate kr, ( )1m m+ → which represents the first order 

recycling of mRNA molecules with a rate γr m, [ ] [ ]+ → −  represents the flipping from the on-state 

to the off-state with a rate α and[ ] [ ]− → +  represents the flipping from the off-state to the on-state 
with a rate β. The total reaction flux here is T r rf k mγ α β= + + + . We generated two different 
random numbers which are equally distributed inside ( )1 2, 0,1r r ∈ . The reaction times were 

sampled from the exponential type distribution ( ) ( )exp Tp fτ τ∝ − . This can be achieved via 

transforming r1 using the rule ( )1ln Tr fτ = − . We used r2 to decide on which reaction takes place 

at this time point. In these iteration steps we set r rk k ±→ depending on the current state of the 
transcription channel. 
 
a) When ( )2 r Tr k f≤ then the transcription reaction will take place.  

b) When ( ) ( )( )2r T r r Tk f r k m fγ< ≤ + , then the recycling of mRNA will take place.  

c) When ( )( ) ( )( )2r r T r r Tk m f r k m fγ γ α+ < ≤ + + , then the transition from the on-state to the 

off-state will take place. Upon such transition we set the transcription rate as r rk k −→ .  
d) When ( )( ) 2r r Tk m f rγ α+ + < , then the transition from the off-state to the on-state will take 

place. Upon such transition we set the transcription rate as r rk k +→ .  
 
Several trajectories were generated each with a total time tT and various statistical properties of 
mRNA numbers such as mean, variance, coefficient of variation and Fano factor were computed 
across the time axis. To compute the optimum flipping rate, same set of simulations were 
performed at different values of the flipping rate. Using this dataset, the optimum flipping rates at 
which the variance and the Fano factor attained the maximum were numerically computed. 
 
To compute the mean first passage time (MFPT) associated with the generation of a complete 
mRNA transcript we used the following algorithm. We set up the initial number of mRNA bases 
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as n = 0 and the system starts from the on-state or off-state channel with the respective microscopic 
elongation rates rλ

± . The completely transcribed mRNA transcript will have L number of bases. 
Clearly, there are three different transitions viz. ( )1n n− →  which represents the transition with 

rate rλ
± depending on the transcription channel at that time point, [ ] [ ]+ → −  represents the flipping 

from the on-state to the off-state with a rate α and[ ] [ ]− → +  represents the flipping from the off-
state to the on-state channel with a rate β. The total reaction flux here is Q rf λ α β= + +  where 

r rλ λ±=  depending on the current state of the transcription channel. We generated two different 
random numbers which are equally distributed inside ( )1 2, 0,1r r ∈ . The reaction times were 

sampled from the exponential distribution ( ) ( )exp Qp fτ τ∝ − . This can be achieved via 

transforming r1 using the rule ( )1ln Qr fτ = − . We used r2 to decide on which reaction transition 

takes place at this time point. In these iteration steps, we set r rλ λ±→ depending on the current 
state of the transcription channel. 
 
a) When ( )2 r Qr fλ≤ then the microscopic elongation transition ( )1n n→ + will take place.  

b) When ( ) ( )( )2r Q r Qf r fλ λ α< ≤ + , then the transition from the on-state to the off-state will 

take place. Upon such transition we set the microscopic elongation transition rate as r rλ λ−→ .  
c) When ( )( ) 2r Qf rλ α+ < , then the transition from the off-state to the on-state will take place. 

Upon such transition we set the microscopic elongation transition rate as r rλ λ+→ .  
 
When n = L, then the iteration was stopped and the first passage time (FPT) was noted. Several 
such trajectories were generated and the obtained FPTs were used to compute the MFPT and other 
statistical properties of FPTs such as variance, coefficient of variation and the Fano factor. This 
analysis was repeated at various of values of the flipping rates. 
 
RESULTS AND DISCUSSION 
Transcription bursting seems to emerge as a consequence of the interplay between the on-off 
flipping rates (α, β), microscopic transcription elongation rates ( rλ

+ , rλ
− ), resultant transcription 

rates ( rk + , rk − ), and the recycling rate of mRNAs γr. When the on-off flipping rates and the 
transcription elongation rates are comparable to each other, then a continuous type transcription 
with monomodal type distribution of the mRNA populations will be observed as in Fig. 3A. In 
this case, the transcription will be always in the on-state by definition. Transcription bursting 
emerges when one sets α β>  and the condition r rk k− +

 is satisfied which is clearly demonstrated 
in Figs. 3B-D. Here β is the rate of flipping from the off-state to the on-state of transcription and 
α is the rate of flipping from the on-state to the off-state. In most of the natural scenarios one finds 
that 0rk −

 . Therefore, the inequality conditionα β>  along with the decay rate constant γr decides 
the emergence of the bursting in transcription and also the burst size that is defined as rkσ α= . 
The mRNA number fluctuations in the two-stage or continuous transcription and decay follows a 
typical Poisson density function with Fano factor = 1. When the transcription undergoes on-off 
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flipping dynamics, then the mRNA number fluctuations follow a typical super Poisson type density 
function with a Fano factor more than one. Earlier studies suggested that such systems are closely 
follow a negative binomial distribution function [15]. The entire transcription scheme can be 
fragmented into several sub-processes viz.  
 
(a) The flipping dynamics across the on-off channels of the transcription. This is characterized by 

the flipping rates (α, β). Here the on-state describes the fully functional transcription machinery 
and the off-state describes a scenario where the RNAP is stalled due to the presence huge 
positive supercoil barrier ahead or other chromosomal barriers. 

(b) Microscopic transcription elongation events representing the growth of individual mRNAs 
starting from n = 0 number of bases toward n = L bp. This is characterized by the microscopic 
transcription elongation rates ( rλ

+ , rλ
− ) corresponding to the on and off channels respectively. 

(c) Mesoscopic transcription dynamics. This is characterized by the mesoscopic transcription rates 
( rk + , rk − ) corresponding to the on and off state channels which are the cumulative effects of (a) 
and (b). When the transcription follows pure on or off state channels so that there is no flipping 
across them i.e., α = β = 0, then one finds that r rk Lλ± ±

 .When the transcription follows a 
random trajectory via flipping across on and off states, then the resultant transcription rate ξ 
will be a random variable. Clearly, ξ varies across different mRNA transcripts. The overall 
average transcription rate can be defined as rk ξ= . When α ≠ β, then one finds the probable 

range of the resultant transcription rate r rk kξ− +≤ ≤  and r r rk k k− +≤ ≤ .  
(d) Recycling dynamics of mRNAs which is characterized by the decay rate γr. Independently it 

is a first order decay which follows a Poisson type density function. 
 
Individually, the population of states in the on-off channels associated with the uncoupled sub-
process (a) follows a binomial density function for which the Fano factor is less than one. This is 
similar to the tossing of a coin. On the other hand, the population of various states in the sub-
processes (b), (c) and (d) individually follow typical Poisson density function with a Fano factor 
of one (see Appendix B for a simplified derivation). When the sub-process (a) is dynamically 
coupled with (b) and (c), then the resultant or effective transcription rate ξ randomly fluctuates 
among the population of transcription events across ( rk − , rk + ). The probability density function 
associated with the fluctuations in the resultant transcription rate ξ will be dependent on the on-off 
flipping rates, microscopic elongation rates ( rλ

− , rλ
+ ) and the length of the mRNA transcript L.  

 
Figs. 4 and 5 demonstrate how the statistical properties of the mRNA number fluctuations varies 
with time and flipping rate parameters. When α = β = χ and γr = 0, then one finds from Figs. 4B 
and D that the variance and the Fano factor associated with the mRNA numbers attain maxima at 
the optimum flipping rates ,C vχ  and ,C κχ respectively. These optimum flipping rates seems to be 
decrease with time towards zero in line with the theoretical predictions of Eqs. 29 and 32. These 
results are shown in Figs. 5.  Clearly, the system will follow a Poisson type density function (Fano 
factor of mRNA number fluctuations equals to one) when the flipping rates become 0χ →  as well 
as χ →∞ . This reasonable since when 0χ →  then the on-off channels will be uncoupled and all 
the transcription events will be via the on-state channel. When χ →∞  then the system of strongly 
coupled and both the transcription channels will be equally utilized. When γr ≠ 0, then the optimum 
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flipping rates ,C vχ  and ,C κχ first converge to the steady state limits and then move slowly towards 
zero which is evident from Figs. 4E, G, Figs. 5B and E. Figs. 6 demonstrate how the statistical 
properties of the mRNA number fluctuations vary with time when α ≠ β. Remarkably, Eqs. 63 
suggested that there exists steady state optimum points αC and βC at which the Fano factor attains 
the maximum. These optimum points are connected via ( )C C C rα β β γ= +  as shown in Eqs. 63 
and Figs. 7. When we fix α and iterate β, then one finds the optimum value of α at which the Fano 
factor attains maximum as ( )C rα β β γ= + . Particularly for a fixed β = 1, one finds for γr = 1 that 

2Cα = as shown in Fig. 6D. In the same way, when we fix β and then iterate α, then one finds 

the optimum β at which the Fano factor attains a maximum as 2 2 4 2C r rβ α γ γ= + −  and so on.  
Particularly for a fixed α = 1, one finds for γr = 1 that 0.618Cβ = as shown in Fig. 6H. 
 
Generation of an individual mRNA transcript can be characterized by sequential microscopic 
transcription elongation rates ( rλ

+ , rλ
− ) as shown in Figs. 2. We define the time that is required to 

generate a complete mRNA transcript of size L bp starting from zero number of bases as the first 
passage time (FPT). Inverse of this FPT is the transcription rate ξ associated with the respective 
mRNA transcript. Since FPT is a random variable across the population of transcription events, 
the resultant transcription rate will be a time dependent random variable in view of the mesoscopic 
transcription dynamics [39]. The average of FPTs is defined as the mean first passage time 
(MFPT). When there is a flipping across the on-off states, then the overall average transcription 
rate kr will be an inverse of the mean first passage time (T0, MFPT) as [ ]01rk T= . When there is 

no flipping across the on-off states then one finds that r rk k ±= where r rk Lλ± ±= depending upon 
the transcription channel used to generate the mRNA transcript. 
 
Figs. 8 demonstrate how the statistical properties of FPTs such as mean, variance, Fano factor and 
coefficient of variation associated with the generation of a complete transcript varies with the on-
off flipping rates. When we set α = β = χ and 0rλ

− ≠ , then there exists an optimum flipping rate 
χC,T at which the variance and the Fano factor associated with the distribution of FPTs attain the 
maxima. Further, the Fano factor associated with the FPTs seems to be less than one throughout 
the iteration range of χ. This indicates the sub-Poisson type density function of FPTs. These results 
are demonstrated in Figs. 8A-D. When α ≠ β and 0rλ

− → , then the distribution of FPTs varies 
depending on the ratio (α / β) of the flipping rates. When (α / β) = 1, then the distribution of FPTs 
approximately follow a Poisson type density function with a Fano factor = 1. When (α / β) > 1, 
then the distribution of FPTs follow a super Poisson (over dispersed with a Fano factor > 1). When 
(α / β) < 1, then the distribution of FPTs follow a sub Poisson (under dispersed with a Fano factor 
< 1). These results are demonstrated in Figs. 8E and F. It is also interesting to note the limit 

( )00
lim

r
rT L

λ
α β βλ−

+
→

+ as we have shown in Appendix A. Various other limiting values of 

the MFPT(corresponding to the case 0rλ
− → ) associated with the generation of a complete mRNA 

transcript are shown in Figs. 9 (for the situation where α = β = χ) and Figs. 10 (for the situation 
where α ≠ β). Figs. 10 provides the computational proof for the various limiting values of the 
MFPT required to generate a full mRNA transcript as described in Eqs. A5 of Appendix A. 
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Emergence of steady state bimodal type distribution of mRNA populations is demonstrated in 
Figs. 11 along with a fitting to the experimental data digitized from Ref. [14].  
 
One can broadly classify the models on transcription bursting into two state and multi state models 
[40]. In two state models, the promoter is assumed to flip across on and off states. Two state models 
generally produce a bimodal type density of the mRNA numbers. In the multistate models [19], 
there are several states across which the transcription process fluctuates. Multistate models 
generally result in the multimodal type density functions associated with the mRNA number 
fluctuations [41]. In all these models, the transcription rate kr will be assumed to be a constant. 
This assumption will work only when the timescale associated with the flipping across various 
states is much higher than the timescale associated with the generation of a complete mRNA 
transcript. It is generally assumed that the transcription machinery generates several mRNA 
transcripts (following the Poisson density function) in the on-state before flipping to the off-state 
e.g. the interrupted Poisson model developed in Ref. [42]. However close look at the underlying 
transcription mechanism reveals that the RNAP or RNA pol II performs several rounds of stall-
continue type dynamics before generating a complete transcript. Therefore, the time that is 
required to generate a given transcript will be a random variable. This means that the resultant 
transcription rate ξ (which is the inverse of the first passage time required to generate a complete 
mRNA transcript) will be a random variable.  
 
The overall average transcription rate will be defined as ( )rk p dξ ξ ξ ξ= =∫ where ( )p ξ is the 
probability density function associated with the distribution of transcription rates. Depending on 
the timescale of on-off state flipping one can consider two different scenarios viz. (a) when the 
timescale of on-off flipping is much longer than the timescale associated with the generation of a 
complete mRNA transcript, then the transcription rate will be homogenous within a given on-state 
period but varies from burst to burst. This can be approximately described as a static disorder in 
the transcription rates. (b) When the timescale of flipping is much shorter than the timescale 
associated with the mRNA synthesis, then the transcription rate varies from mRNA to mRNA. 
This can be described as a dynamical disorder in the transcription rates [39, 43, 44].  Our mean 
first passage time calculations suggested that when the rate of off-state transcription channel is 
zero i.e. 0rλ

− → , then the overall average transcription rate will be transformed as r rk h k+ +
∞ where 

r rk Lλ+ +
 and ( )h β α β+

∞ = +    is the stationary state probability of finding the transcription 
machinery in the on-state (Eqs. A5, Appendix A and Eqs. B8 of Appendix B or sufficiently large 
mRNA length L) in the presence of flipping across the on-off states. This means that the 
transcription “rate constant” will be a function the on-off flipping rates. Comparison of this 
quantity with the steady state and time dependent solutions of Eqs. 1 clearly suggested that Eqs. 
1 is accurate enough (this can be inferred from the expression of ,m tη  in Eqs. 11 and ,mη ∞  of Eqs. 
58) to capture the inhomogeneity of the resultant transcription rate ξ at sufficiently large mRNA 
lengths. However, Eqs. 1 cannot explain the origin of over-dispersion in the mRNA numbers. Our 
detailed study reveals that such over-dispersion mainly originates from the non-Poisson type 
distribution of FPTs associated with the elongation of individual mRNA transcripts especially 
when the flipping rates are such that (α / β) > 1. 
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CONCLUSION 
Transcription bursting is essential to generate variation among the individuals of a given 
population. The mechanism of bursting comprises of at least three sub-processes with different 
timescale regimes viz. flipping dynamics across the on-off state transcription elongation channels, 
microscopic transcription elongation events and the mesoscopic transcription dynamics along with 
the mRNA recycling. Flipping dynamics across the on-off states is similar to the tossing of a coin.  
When the flipping dynamics is combined with the microscopic elongation events, then the 
distribution of resultant transcription rates will be over-dispersed. This in turn reflects as the over-
dispersed non-Poisson type distribution of mRNA numbers. 

Our detailed calculations show that there exist optimum flipping rates (αC, βC) at which the 
stationary state Fano factor and variance associated with the mRNA numbers attain maxima. These 
optimum points are connected via ( )C C C rα β β γ= + . Here α is the rate of flipping from the on-
state to the off-state and β is the rate of flipping from the off-state to the on-state of transcription 
and γr is the decay rate of mRNA. When α = β = χ, then there exist optimum flipping rates at which 
the non-stationary Fano factor and variance attain maxima. Here ( ), 3 2 1C v r rk k tχ + ++  (where rk +

is the rate of transcription through the on-state channel) is the optimum flipping rate at which the 
variance of mRNA numbers attains a maximum and , 1.72C tκχ  is the optimum flipping rate at 
which the Fano factor attains a maximum. These optimum points reduce to zero when t →∞ . 

Close look at the transcription mechanism reveals that the RNA polymerase enzyme complex 
performs several rounds of stall-continue type dynamics before generating a complete mRNA 
transcript. Based on this observation we model the transcription event as the stochastic trajectory 
taken by the transcription machinery across these on-off state elongation channels. Each transcript 
follows different trajectory. The total time taken by a given trajectory is the first passage time 
(FPT). Inverse of this FPT is the resultant transcription rate ξ associated with the particular mRNA. 
Therefore, the time that is required to generate a given mRNA transcript will be a random variable. 
This means that the resultant transcription rate ξ will be a random variable. The overall average 
transcription rate will be the ensemble average rk ξ=  which is equal to the inverse of the mean 
first passage time required to generate a complete mRNA. For a stall-continue type dynamics of 
RNA polymerase, the overall average transcription rate can be expressed as r rk h k+ +

∞ where 

r rk Lλ+ +
 , rλ

+ is the microscopic transcription elongation rate on the on-state channel and L is the 
length of complete mRNA and ( )h β α β+

∞ = +    is the stationary state probability of finding the 
transcription machinery in the on-state. 
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APPENDIX A  
Consider the following backward type coupled differential Chapman-Kolmogorov equations 
(Fokker-Planck equations with jumps) [32, 34]. 
 

( )
( )

2

2

2 1
02

r n r n n

nr n r n

d d T
Td d

λ λ α β

α λ λ β

+ + +

−− −

 + −      = −    + −    
                                               (A1) 

Whenα β≠  then the system of Eqs. A1 can be split into the following set of uncoupled ordinary 
differential equations. 

( ) ( )( )
( )

4 3 2

2

4 2 4 2 4

2 2 2

r r n n r r n n r r r n n r r n n

n r n n r n n n

d T d T d T d T

T d T d T T

λ λ λ λ α λ λ βλ α βλ αλ

λ λ β α

+ − − + − − + − + − + − −

+ − − − − −

 = − + − + + + + 

= − − +
       (A2) 

Here the boundary conditions follow from Eqs. 35 of main text as
0

0;  0n n nn n L
d T T± ±

= =
   = =    . 

The overall MFPT can be calculated as the sum n n nT T T+ −= + . When the initial number of bases in 
the mRNA transcript is zero, then the required MFPT to generate a complete transcript will be 

0 0 0T T T+ −= +  from which one finds the overall transcription rate as [ ]01rk T= . The system of 
coupled ordinary differential equations Eqs. A1 is exactly solvable as follows. 

( ) ( ) ( )2 2
0 4 expr r rT W A W U W L Bα β αλ λ λ− + − = + + − − −                                          (A3) 

Various terms in Eq. A3 are defined as follows. 

( )
( ) ( )( )

( )( )

( ) ( ) ( ) ( )

2 2

2 1 2 2 1 2

2 2 2 1

exp exp

r r r r r

r r

r r

r r r

r r r r r r r r
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V L L
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A V L

B U L U U L U

λ λ λ α λ βλ

αλ α λ β

αλ βλ

αλ λ β β α λ

λ λ λ λ λ λ λ λ

− + + − +

− +

− +

− − +

+ − + − + − + −

 = + + 

= − − + −

= +

 = + + + − 

= + − − −

                             (A4) 

From Eq. A3 one can derive the following limits. 

( )
( )

( ) ( ) ( )

0 0 0

0

00

lim lim 2 1 exp 2 2

lim 2 1 exp 2 2

lim 2 1 exp 2 2
r

r r

r r

r r

T T L L L

T L L L

T L L L

α β

α

λ

λ λ

λ λ

β α βλ β α βλ−

+ +
→ →∞

− −
→∞

+ +
→

= = − + −  
= − + −  
= + − + − +  







                                      (A5) 

Eqs. A5 clearly suggest that when the microscopic transcription elongation rate of the off-state 
channel is close to zero i.e. 0rλ

− →  then the overall average transcription rate scales with the 
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flipping rates as [ ] ( )01r rk T k β α β+= +   where r rk Lλ+ += is the overall transcription rate of 

the pure on-state channel and rλ
+ is the on-state elongation rate. 

APPENDIX B 
Let us consider the uncoupled on-off state transcription elongation channels. When there is no 
flipping across the on and off state channels, then Eqs. 1 will be uncoupled as follows. 
 

( ) ( ) ( ), 1, 1, , ,01 ;  t m t r m t r m t r r m t mu k u m u k m u u mγ γ δ± ± ± ± ± ± ±
− +∂ = + + − + =                                            (B1) 

 
Here ,m tu± is the probability of finding m number of mRNAs at time t in the respective independent 

transcription channels. Upon defining the generating functions as , ,0
m

s t m tm
G s u∞± ±

=
=∑ one can 

transform Eqs. B1 into the following partial differential equations. 
 

( ) ( ), , , ,01 1 ;   1t s t r s t r s s t sG k s G s G Gγ± ± ± ± ±∂ = − + − ∂ =                                                                     (B2) 
 
Upon solving Eqs. B2 for the for the appropriate boundary conditions one finds the expression 
for the generating functions as follows. 
 

( ) ( )( )( ), exp 1 1 exps t r r rG k s tγ γ± ±= − − −                                                                                (B3) 

 
Using this generating function one can derive various statistical properties of the mRNA number 
fluctuations corresponding to on-off channels as follows. 
 

( )( )
( )( )

( )( )( )

, 1 ,

2 2
, 1 , , ,

1

, ,

lim 1 exp

lim 1 exp

1;  1 exp

m t s s s t r r r

m t s s s t m t m t r r r

m t m t r r r

G k t

v G k t

k t

η γ γ

η η γ γ

κ µ γ γ

± ± ±
→

± ± ±
→

−± ± ±

= ∂ = − −

= ∂ + − = − −

= = − −

                                                        (B4) 

 
Upon expanding the generating function in to a Macularin series with respect to variable s and 
then setting s = 1, one finally obtains the probability density functions as follows. 
 

( ) ( )( ) ( ) ( )( ), 1 exp exp 1 exp !
m

m t r r r r r ru k t k t mγ γ γ γ± ± ±= − − − − −                                        (B5) 

 
Using Eqs. B5 one can directly obtain the steady state probability density functions as follows. 

( ) ( ), exp !
m

m r r r ru k k mγ γ± ± ±
∞ = −                                                                                         (B6) 

When the on-off state flipping is uncoupled from the transcription elongation, then the flipping 
dynamics can be described by the following set of coupled differential equations. 
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0

0

1
;  

0
t t

t
t t

h h h
h h h

α β
α β

+ + +

− − −

  −       
∂ = =        −        

                                                                                (B7) 

Here we have the normalization condition 1t th h+ −+ = . Upon solving Eqs. B7 with the appropriate 
initial conditions, one obtains the expression for the time dependent probability th± of finding the 
transcription state in the respective on-off channels as follows. 

( ) ( ) ( )( )
( ) ( )( )( )

( )
( )

exp
;  

1 exp
t

t

th h
h ht

β α β α α β α β β α β
α α βα α β α β

+ +
∞

− −
∞

 + − + − +    +        = =      + + − − +        
                     (B8) 

Upon combining Eqs. B5 with Eqs. B8, one can derive , ,m t m t tp u h± ± ±
 , which is the probability of 

finding m number of mRNAs in the respective on-off state channels. Explicitly one can write the 
following expression. 

( ) ( ) ( ) ( ), , , exp ! exp !
m m

m t m t t m t t t t t t t tp u h u h h m h mϕ ϕ ϕ ϕ+ + − − + + + − − ++ = − + −                              (B9) 

In this equation, we have defined the function ( ) ( )1 expt r r rk tϕ γ γ± ±= − −   . When the timescale 
associated with the on-off state flipping dynamics is much lower than the timescale associated 
with the mRNA synthesis and decay dynamics so that ( ) rα β γ+  , then Eq. B9 reduces to

, , ,m t m t m tp u h u h+ + − −
∞ ∞+ . Under complete steady state conditions , , ,m m mp u h u h+ + − −

∞ ∞ ∞ ∞ ∞+  and one 
obtains the following bimodal Poisson type expression. 

( ) ( ) ( ) ( ) ( ), exp exp !
m m

m r r r r r r r rp k k k k mγ β γ γ α γ α β+ + − −
∞

 − + − +  
                         (B10) 

When the transcription rate associated with the off-state channel tends toward zero, then one 
recovers the Poisson density function with zero spike [14] as follows. 

( ) ( ) ( ),0
lim exp !

r

m

m r r r rk
p k k mγ β γ α α β−

+ +
∞→

 − + +  
                                                  (B11) 
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FIGURE 1. Stochastic transcription rate and transcription bursting. In this generalized model, the 
mRNA transcript of size L bp can be generated via either pure on or off state channels with rates 

rk + and rk −  respectively. The microscopic transition rates rλ
±  characterize the addition of individual 

nucleotides at the end of growing mRNA in the process of transcription elongation. The resultant 
transcription rate will be the inverse of the first passage time required to generate a complete 
mRNA. When there is a flipping across these on-off states then the resultant transcription rate ξ 
fluctuate across rk + and rk −  in a random manner where r rk k− +

  in general. The ensemble average 
of ξ across several trajectories of mRNA synthesis will be the average transcription rate rk ξ= . 
Here (+) denote the on-state and (-) denotes the off-state of transcription and γr is the decay rate 
constant of mRNAs. The rate of flipping from the on-state to the off state is α and the rate of 
flipping from the off-state to the on-state in β.  The mesoscopic transcription rates rk ±  are connected 
to the microscopic ones rλ

± via the relationship r rk Lλ± ±=  . As a result, flipping across on-off states, 

the overall effective transcription rate kr will be somewhere in between ( ),r rk k− + . Here the dotted 
line is a stochastic transcription trajectory which varies from transcript to transcript. This means 
that the effective transcription rate ξ (it is not a constant anymore) varies from transcript to 
transcript and it is a stochastic quantity.  
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FIGURE 2. Stochasticity in the transcription rate. A. In this model the total length of the full 
transcript is L = 10 bp. Green color denotes the on-state and red color denotes the off-state 
channels. At time t = 0, the system was in the on-state. Green to green transition is characterized 
by the microscopic transcription elongation rate rλ

+ and red to red transition is characterized by the 
elongation rate rλ

− . Here rλ
±  are measured in bp/s. B. When the entire transcription process follows 

the pure off-state channel (B1), then the overall transcription rate scales as r r rk k Lλ− −= =  that is 
measured in s-1. When there is a flipping across the on- and off-state channels (B2), then the 
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transcription rate of a given mRNA trajectory will be somewhere inside as r rk kξ− +< < . For a stall-
continue type elongation of RNA polymerase, it approaches the limit ( )0

lim
r

r rk L
λ

α β λ β−
+

→
+  

as shown in Appendix A where rk ξ= . When the entire transcription process follows the pure 

on-state channel (B3), then the overall transcription rate can be expressed as r r rk k Lλ+ += = . 

 

 
FIGURE 3. Emergence of the transcription bursting phenomenon. These are all single stochastic 
trajectories. A. Continuous transcription process. Here the parameters settings are α = β = 10-6 s-1, 

rk + = 3 s-1, γr = 0.1 s-1, and rk − = 10-5 s-1. In these settings, one finds that r rk k +
  and therefore the 

steady state mRNA numbers will be s r rm k γ+
 ~ 30. Initially the system was set into the on-state 

of transcription. B. Transcription bursting emerges when one sets high value for α and low value 
for β apart from the mandatory condition that r rk k− +

 . Here α = 3, β = 1 and rest of the parameters 
are set as in in the panel A. In C. β = 0.1 and in D. β = 0.05 and rest of the other parameters are set 
as in the panel A. 
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FIGURE 4. Simulation results on various time dependent statistical properties of mRNA number 
fluctuations in the pre-steady state regime of the transcription event. Here we have set α = β = χ 
for simplification, ηm,t denotes the mean, κm,t denotes the Fano factor, μm,t denotes the coefficient 
of variation, and vm,t denotes the variance. In the panels A-D the parameter settings are 10rk + = ,
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0rk − =  and 0rγ = . In line with the predictions of Eqs. 29 and 32 one observes maxima in the Fano 
factor and the variance with respect to the flipping rate χ which is also a time dependent quantity. 
As predicted by these equations, the optimum flipping rate shifts towards zero as time tends 
towards infinity. In the panels E-H the parameter settings are 10rk + = , 0rk − =  and 1rγ = . Statistical 
properties were computed over 106 number of trajectories. 
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FIGURE 5. Variation of the optimum flipping rate χ that maximizes the variance and the Fano 
factor of mRNA numbers. In panels A-C the settings are 10rk + = , 0rk − =  and 0rγ = . In panels D-
F the settings are 10rk + = , 0rk − =  and 1rγ = . Panels A and D represent the flipping dynamics 
across the on and off states. Panels B and E represent the variation of the optimum flipping rate 
with respect to time which maximize the Fano factor associated with the mRNA number 
fluctuations. Panels C and F represents the variation of the optimum flipping rate with respect to 
time which maximizes the variance associated with the mRNA number fluctuations. Here the solid 
red lines are the predictions by Eqs. 29 and 32 which are valid when α = β = χ, 0rk − =  and 0rγ =
. In panels C and F, the precision in numerically computing the maximum points is lost when t < 
0.1 since the surface is almost flat. Statistical properties were computed over 106 number of 
trajectories. 
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FIGURE 6. Various time dependent statistical properties of mRNA fluctuations in the pre-steady 
state regime of the transcription event. Here we have set α ≠ β, ηm,t denotes the mean, κm,t denotes 
the Fano factor, μm,t denotes the coefficient of variation, and vm,t denotes the variance of the mRNA 
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number fluctuations. In the panels A-D the settings are , 1rk − = , 1rγ =  and β = 1. In the 

panels E-H the settings are , 1rk − = , 1rγ =  and α = 1. In line with the predictions of Eqs. 
29 and 32 one observes maxima in the Fano factor and the variance even when α ≠ β. Statistical 
properties were computed over 106 number of trajectories. 

 

 

 

10rk + =

10rk + =
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FIGURE 7. Variation of the steady state Fano factor ,mκ ∞ associated with the mRNA number 
fluctuations with respect to changes in the flipping rates α and β in the limit ,0

lim
r

mk
κ− ∞→

 as given 

in Eqs. 63. Here the settings in panels A and B are 1rk + = , 0rk − =  and 0.1rγ = . Panel B is the 
contour plot of panel A. The optimum values of α at which ,mκ ∞  attains a maximum can be 

expressed as ( )C rα β β γ= + . This can be obtained by solving , 0mκ α∞ ∂ ∂ =   for α. Red solid 
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line in panel A is the maximum value of the steady state Fano factor which can be obtained by 
substituting α = αC in the expression of ,mκ ∞  as in Eqs. 63.  

 

 
FIGURE 8. Dependence of the overall average transcription time on the on-off flipping rates. 
Here T0 is the mean first passage time associated with the formation of a complete mRNA 
transcript with size n = L bp starting from n = 0 bp where n is denotes dynamic number of 
transcribed bases. By definition kr = [1/T0] is the transcription rate. T0 was calculated using Eqs. 
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39. Hollow blue and red circles are the stochastic simulation results. In panels A and B the settings 
are 10rλ

+ =  bp/s, 5rλ
− =  bp/s, α β χ= = and L = 100 bp with initial conditions ( ),0nq nδ+ =  and 

,0 0nq− =  Here ,n tq±  is the probability of finding n number transcribed bases in the respective on (+) 

and off (-) state channels. In panels C-D the settings are 10rλ
+ = , α β χ= = , 5rλ

− =  and L = 100 
with hypothetical initial conditions ( ),0 ,0;  0n nq n qδ− += = . When the flipping rate becomes 

sufficiently large, then one finds the limiting value as ( )0lim 2 r rT Lχ λ λ+ −
→∞ + . Panels B and D 

demonstrate the variation of the mean, variance, coefficient of variation and Fano factor of the first 
passage times associated with the generation of a complete mRNA transcript with respect to the 
flipping rate parameter χ. Clearly there exists an optimum flipping rate χC,T  at which the variance, 
Fano factor and coefficient of variation of the first passage times attain a maximum. Panels E and 
F demonstrate behavior of the overall MFPT when  α β≠  and 0rλ

− → . In this situation, we find 

( )00
lim

r
rT L

λ
α β βλ−

+
→

+ as shown in Appendix A. Settings in E and F are 10rλ
+ = , 410rλ

− −=  

and L = 100.  In panel E, β = 1 and in panel F, α = 1 with initial conditions ( ),0 ,0;  0n nq n qδ+ −= = .  
Statistical properties of FPTs were computed over 106 number of trajectories. 
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FIGURE 9. Various limiting values of the mean first passage time (MFPT, T0) associated with 
the generation of a complete mRNA transcript of size L bp. MFPT was computed using Eqs. 39. 
Here the settings in panel A are 10rλ

+ =  bp/s and L = 100 bp. When 0rλ
− →  and 0χ → , then one 

finds that 0 rT L λ+→  = 10 s (I). When 0rλ
− → with finite χ, then one finds that 0 2 rT L λ+→ = 20 

s (III). Hypothetically, when r rλ λ− +≥ and χ →∞ , then one finds that ( )0 2 r rT L λ λ+ −→ +  (II). 
Panel B is the contour plot of panel A. 
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FIGURE 10. Statistical properties of the first passage times (FPTs) associated with the generation 
of a complete mRNA transcript of size n = L bp starting from n = 0. Settings are, 10rλ

+ =  bp/s is 
the elongation rate in the on channel and L = 100 bp and 410rλ

− −= is the elongation rate of the off 
channel. As shown in Eqs. A5 of Appendix A one finds the limiting value of the mean of FPTs 
(MFPT, T0) as ( )00

lim
r

rT L
λ

β α βλ−
+

→
+ . When α = 102 and β = 10-2, then one finds the limiting 

value as 00
lim ln 11.5

r
T

λ−→
 . For α = 10-2 and β = 102, one finds that 00

lim ln 2.3
r

T
λ−→

  and so on. 

A. mean of FPTs. B. Variance of FPTs. C. Fano factor of FPTs. D. coefficient of variation of FPTs. 
Statistical properties of FPTs were computed over 106 number of trajectories. 
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FIGURE 11. Emergence of the bimodal distribution functions associated with the mRNA number 
fluctuations. In panel A the settings are α = 3, β = 1 and γr = 1. In panel B the settings are α = 3, 
and β = 1. This represents the Poisson density function with zero spike as derived in Eq. 78. Hollow 
red circles are the digitized data points from Ref. [14]. 
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Table 1. List of symbols and variables used in the main text 
Parameter  Definition Remarks 

MFPT Mean first passage time. It is the average time required to 
generate a full mRNA transcript with a given elongation 
speed of RNA polymerase.  

s 

FPT First passage time. It is the time required to generate a given 
mRNA transcript. Clearly this quantity will vary from 
transcript to transcript. 

s 

m Concentration of the mRNA molecules or the number of 
mRNA molecules. 

M, or number 

RNAP RNA polymerase complex  
Fano Factor = variance / mean. In the units of 

mean. 
CV Coefficient of variation = standard deviation / mean. dimensionless 
kr Overall average or effective transcription rate. M/s or 1/s 

rk +  Transcription rate in the on-state channel of transcription. M/s or 1/s 

rk −  Transcription rate in the off-state channel of transcription. M/s or 1/s 
L Length of the complete mRNA transcript. bp 
rλ
+  Microscopic transcription elongation rate constant associated 

with the addition of single bp with already emerging mRNA 
in the on-state channel. r rk Lλ+ += . 

bp/s 

rλ
−  Microscopic transcription elongation rate constant associated 

with the addition of single bp with already emerging mRNA 
in the off-state channel. r rk Lλ− −= . 

bp/s 

γr Decay rate constant associated with the mRNA molecules. By 
definition 1/γr is the lifetime of mRNA. 

1/s 

α Rate of flipping from the on-state to off-state channel of the 
transcription. 

1/s 

β Rate of flipping from the off-state to the on-state channel of 
the transcription. 

1/s 

χ When α = β then α = β = χ is the rate of flipping across on-off 
states of transcription. 

1/s 

χC,v Optimum on-off flipping rate at which the variance associated 
with the mRNA number fluctuations attains a maximum. 
When 0rk − =  and γr =0, then one finds that

( ), 3 2 1C v r rk k tχ + ++ .  

1/s 

χC,κ Optimum on-off flipping rate at which the Fano factor 
associated with the mRNA number fluctuations attains a 
maximum. When 0rk − =  and γr =0, then one finds that

, 1.72C tκχ  . 

1/s 

σ = kr / α, is the transcription efficiency or the burst size. Molecules  
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σC r Ck α= , is the optimum transcription efficiency or the burst 
size at which the steady state Fano factor attains a maximum. 

Molecules or 
dimensionless 
number 

ηm, t Mean value associated with the mRNA number fluctuations at 
time t. 

M or number 

μm, t Coefficient of variation (= variance / square of mean) 
associated with the mRNA number fluctuations at time t. 

2
, , ,m t m t m tvµ η= . 

dimensionless 

κm, t Fano factor (= variance / mean) associated with the mRNA 
number fluctuations at time t. , , ,m t m t m tvκ η= . 

M or number 

vm, t Variance associated with the mRNA fluctuations at time t. M2 or number 
ηm, ∞ Mean associated with the mRNA number fluctuations at the 

steady state. 
M or number 

μm, ∞ Coefficient of variation associated with the mRNA number 
fluctuations at the steady state. 2

, , ,m m mvµ η∞ ∞ ∞= . 
dimensionless 

κm, ∞ Fano factor associated with the mRNA number fluctuations at 
the steady state. , , ,m m mvκ η∞ ∞ ∞= . 

M or number 

vm, ∞ Steady state variance associated with the mRNA numbers. M2 or number 
αC When β is fixed, then the optimum value of α at which the 

stationary state Fano factor attains a maximum. This can be 
obtained by solving , 0mκ α∞ ∂ ∂ =   for α. Explicitly, when 

rk − = 0 then one finds that ( )C rα β β γ= + . 

1/s 

βC When α is fixed, then iteration over β shows an optimum 
point βC at which the steady state Fano factor associated with 
the mRNA number fluctuations attain a maximum.  
Explicitly one finds that 2 2 4 2C r rβ α γ γ= + − . Both these 
optimum flipping rates αC, βC are connected via

( )C C C rα β β γ= + . 

1/s 

,m tp±  Probability of finding m number of mRNAs at time t in the 
respective on (+) and off (-) channels of transcription. 

dimensionless 

,mp±
∞  Probability of finding m number of mRNAs in the respective 

on (+) and off (-) channels of transcription at the steady state. 
dimensionless 

pm, t , ,m t m tp p+ −= + , Total probability of finding m number of mRNA 
molecules at time t. 

dimensionless 

pm, ∞ 
, ,m mp p+ −
∞ ∞= + , Total stationary state probability of finding m 

number of mRNA molecules at time t. 

dimensionless 

T0 Mean first passage time associated with the generation of a 
complete mRNA transcript starting from n = 0 number of 
bases to n = L bp. By definition the overall transcription rate 
is kr = 1 / T0. 

s 
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ξ Transcription rate associated with an individual mRNA 
synthesis. It is the inverse of the FPT required to generate a 
complete mRNA transcript for a given elongation speed of 
RNA polymerase. Its ensemble average rk ξ=  is the overall 
average transcription rate. 

M/s or 1/s 

χC,T On-off flipping rate at which the Fano factor of FPTs 
associated with the generation of a complete mRNA transcript 
attains the maximum point.   

1/s 

,n tq±  Probability of finding n number of bases in the elongating 
mRNA at time t in the respective on (+) or off (-) channel of 
transcription. 

dimensionless 

,s tG±  
,0

m
m tm

s p∞ ±
=

=∑ , is the generating function associated with the 

probability density ,m tp± .  

dimensionless 
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