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ABSTRACT

Closed-loop Neuroscience is based on the experimental approach where the ongoing brain activity is3

recorded, processed, and passed back to the brain as sensory feedback or direct stimulation of neural4

circuits. The artificial closed loops constructed with this approach expand the traditional stimulus-5

response experimentation. As such, closed-loop Neuroscience provides insights on the function of6

loops existing in the brain and the ways the flow of neural information could be modified to treat7

neurological conditions.8

Neural oscillations, or brain rhythms, are a class of neural activities that have been extensively9

studied and also utilized in brain rhythm-contingent (BRC) paradigms that incorporate closed loops.10

In these implementations, instantaneous power and phase of neural oscillations form the signal that11

is fed back to the brain.12

Here we addressed the problem of feedback delay in BRC paradigms. In many BRC systems, it13

is critical to keep the delay short. Long delays could render the intended modification of neural14

activity impossible because the stimulus is delivered after the targeted neural pattern has already15

completed. Yet, the processing time needed to extract oscillatory components from the broad-band16

neural signals can significantly exceed the period of oscillations, which puts a demand for algorithms17

that could minimize the delay.18

We used EEG data collected in human subjects to systematically investigate the performance of a19

range of signal processing methods in the context of minimizing delay in BRC systems. We proposed20

a family of techniques based on the least-squares filter design – a transparent and simple approach,21

as it required a single parameter to adjust the accuracy versus latency trade-off. Our algorithm22

performed on par or better than the state-of the art techniques currently used for the estimation of23

rhythm envelope and phase in closed-loop EEG paradigms.24
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1 Introduction25

Investigations of neural oscillations have a long history and continue to be an area of intensive research, particularly26

when such neuroimaging techniques are used as noninvasive electroencephalography (EEG) and magnetoencephalog-27

raphy (MEG), and invasive electrocorticography (ECoG) and stereo EEG (sEEG).28

A plethora of experimental paradigms and relevant analysis methods have been developed for dealing with specific29

types of neuronal oscillations, including the methods for their induction and suppression [1, 2]. These paradigms fall30

in one of two categories. In the first category of studies, changes in neural oscillations are investigated that are induced31

by a variety of stimuli; the stimuli are presented without a consideration of the ongoing brain activity. In the second32

category [3], a closed-loop design is implemented where the stimuli are selected based on the characteristics of the33

ongoing brain activity.34

Below, we describe the studies from the second category where the closed loop is formed from neural oscillatory35

activity. We refer to this experimental approach as brain rhythm contingent (BRC) paradigm.36

1.1 Brain rhythm contingent paradigms37

As shown in Figure 1A, the BRC paradigm operates through three steps: data acquisition, data processing, and stimulus38

generation. During the data acquisition step, brain activity is measured, usually with multiple spatially distributed39

electromagnetic sensors, and streamed to a computer. During the data processing step, a computer routine handles40

the multichannel data in real-time to extract the parameters of oscillatory activity, typically amplitude and phase.41

Lastly, during the stimulus generation step, these parameters are converted into a feedback delivered to the brain either42

directly, using stimulation applied to the nervous tissue (also called neuromodulation), or through natural senses:43

vision, hearing or touch. The feedback could act in a subtle way by modulating the parameters of an already ongoing44

stimulation (direct or through natural senses) or by contributing to the algorithm that selects a stimulus from a set of45

discrete possibilities.46

Figure 1: Schematics of the BRC paradigm. A. A diagram depicting signal flow in a closed-loop system. B. Signal
processing pipeline. C. The sources of delays mounting to the total latency of the BRC system. Technical and
fundamental sources of the delay are marked in blue and red, respectively.
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Many implementations of BRC paradigm have been developed, which allow implementation of a variety of goal-47

directed behaviors dependent on a closed-loop design [3]. The most distinct paradigms are: neurofeedback (NFB),48

brain computer interface (BCI), closed-loop brain stimulation, and brain state-contingent stimulus delivery.49

The NFB is a form of biofeedback that enables subjects with the capacity to monitor and control their own brain50

activity [4]. With NFB, subjects gain access to the neural signals of different brain structures, and learn to modulate51

them in specific ways [5], [6], [4], [7]. NFB approach is used as a therapy for neurological disorders [8], [9] and as52

cognitive enhancement therapy [10]. Steps of NFB operation include extraction of neural features of interest, their53

transformation using case-specific algorithms, and generation of sensory feedback delivered to the subject.54

BCIs operate very much like NFB, with neural activity being recorded, processed, and directed to an external device55

that provides some sort of feedback to the subject. Yet, the emphasis here is not on the feedback per se but on the56

brain control of the device, which serves some useful purpose, for example a computer cursor or a prosthetic limb57

[11]. Clinically relevant BCIs are intended for functional restoration and rehabilitation of patients with neurological58

disabilities. For example, an EEG-based, motor-imagery BCI that controls a hand exoskeleton aids in rehabilitation of59

stroke patients [12], [13] by facilitating Hebbian plasticity that occurs owing to synchronization of cortical modulations60

with proprioceptive feedback caused by exoskeleton movements [14].61

In BRC paradigms with closed-loop brain stimulation, parameters of neural oscillations, most often instantaneous62

amplitude and phase, affect the characteristics of stimulation directly applied to the brain [15]. Electromagnetic63

devices are commonly used to deliver the stimulation, which can be invasive, such as deep brain stimulation (DBS)64

[16], or noninvasive, such as transcranial brain stimulation (TBS) [17]. Thus, EEG oscillatory patterns have been65

used to control such types of TBS as transcranial magnetic stimulation (TMS) [18] and transcranial alternating current66

stimulation (tACS)[19]. BRC paradigms with stimulation through normal senses can be considered a type of closed-67

loop brain stimulation, as well, for example, stimulation with continuously flashing visual stimuli[20].68

BRC paradigms have gained popularity, where cognitive processes are investigated under experimental conditions with69

brain rhythm-contingent stimulus delivery. This is because the brain handles cognitive tasks differently depending on70

the brain oscillatory patterns taking place just before the task onset [21, 22, 23, 24, 25, 26, 27]. Accordingly, it is of71

interest to create an experimental paradigm, where the task starts only after a particular oscillatory pattern is detected.72

Such brain rhythm-contingent stimulus delivery can drastically reduce experimental time and minimize participants’73

fatigue, particularly when the neural patterns of interest are represented by short-lived bursts of activity [28] or desired74

brain states[29].75

1.2 Signal processing and latency in BRC paradigms76

Despite the conceptual differences between the four applications of the BRC paradigm described above, their signal77

processing pipelines are quite similar and can be summarized as shown in Figure 1B.78

In this paper, we consider the BRC paradigms based on EEG and MEG recordings. The major advantage of these79

imaging techniques over those that employ metabolic (e.g., positron-emission tomography) or blood oxygenation80

level-dependent (e.g., functional magnetic resonance imaging) measurements is their unsurpassed millisecond-scale81

temporal resolution. This fine temporal resolution allows exploring fine rhythmic structure of brain activity and, in82

principle, enables nearly instantaneous interaction with the brain circuits. Yet, as explained in detail below, time-lags83

of both technical and fundamental nature occur during the online extraction of oscillatory parameters from the ongoing84

brain activity. These lags vary from one implementation to another and can be significantly reduced with the use of85

appropriate signal processing methods.86

For a BRC paradigm to be efficient, it needs to be temporally specific, that is feedback should be issued when it87

can affect the targeted neuronal activity. Temporal specificity of a BRC system is characterized by an overall delay88

between the onset of the neural event of interest and the time when the participant receives the stimulus corresponding89

to this event (Figure 1C. This delay, called the overall BRC system latency, incorporates time-lags related to different90

factors, some of them technical (i.e, software and hardware delays) and some fundamental (i.e. required to collect a91

sufficient amount of neural data).92

The technical time-lags typically do not exceed 100 ms; this time is needed for hardware communication and low-level93

software processing. This delay can be reduced by specific hardware and software solutions. Based on our experience,94

it is feasible to reduce the technical delay to 20-30 ms.95

The fundamental lag cannot reduced that easily because it is composed of the time needed to collect a snapshot of96

neural oscillatory data that could be then quantified with an appropriate algorithm like band-pass filtering followed97

by the extraction of information about the instantaneous power or phase of the narrow-band process. If suboptimal98
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approaches are used for extracting power and/or phase of rhythmic neural components, the fundamental delay amounts99

to approximately 0.5 s, causing undesirable effects in BRC implementations.100

The adverse effect of feedback delays has been reported in many NFB and the BCI studies, where participants learned101

to properly modulate their own brain activity, with or without a strategy recommended by the experimenter [30]. A102

similar problem with long feedback delays has been known from the studies on evidence-based learning. Thus, back103

in 1948, Grice showed that learning to discriminate complex visual patterns drastically depended on the feedback104

signal latency [31]. Impaired performance with delayed has been also demonstrated in the studies on motor learning105

e.g for the prism adaptation task [32]. According to Rahmandad et al. [27], behavioral learning is impaired when106

feedback delay is unknown. Moreover, elongated feedback delay decreases the sense of agency during BCI control107

[33], the finding also corroborated by a simulation study [34] showing that feedback delay and temporal blur adversely108

influence the automatic (strategy free) learning.109

Temporal specificity is also an an important consideration for the experimental settings with closed-loop brain stim-110

ulation and brain state triggered stimulus delivery. Indeed, the key requirement for these methods are the accurate111

estimation of instantaneous oscillatory features and the timely delivery of the stimuli to efficiently interfere with the112

oscillatory neural patterns.113

1.3 Low-latency method for envelope and phase detection114

In the present study, we explore several approaches aimed at reducing the delay between neuronal events and the cor-115

responding feedback in the BRC paradigm. We propose a simple method to directly control the delay. Our algorithm is116

based on the adaptive optimization of the complex-valued finite impulse response (FIR) filter weights to yield the de-117

sired reduction of delay. The proposed approach is capable of extracting the instantaneous power and phase of neural118

oscillations with the shorter latency and higher accuracy as compared to other relevant techniques. With this approach,119

the user can explicitly specify the desired delay and assess the corresponding accuracy of envelope estimation. These120

features of the algorithm allow for flexible control of the latency-accuracy trade-off in BRC applications. Strikingly,121

our approach can work even with negative delays, paving way for achieving predictive feedback.122

2 Methods123

Our basic assumption is that the measured neural activity x[n] is a sum of the narrow-band signal s[n] (targeted neural124

activity of a BRC paradigm) and background colored broad-band noise η[n].125

x[n] = s[n] + η[n] (1)

The targeted neural activity s[n] can be represented as the real part of analytic signal y[n] [35] :126

y[n] = s[n] + jsh[n] = a[n]ejφ[n] (2)

where sh[n] is the imaginary part of the analytic signal, often called “second quadrature” of the original signal s[n],127

a[n] is the envelope, reflecting the instantaneous power of the narrow band process at time stamp n, and φ[n] is its128

instantaneous phase at the time stamp n. Importantly, once the estimate of the complex valued analytic signal y[n] is129

available that corresponds to signal s[n], the envelope a[n] and the phase φ[n] of s[n] can be computed as130

a[n] =
√
<{y[n]}2 + ={y[n]}2, φ[n] = atan

(
={y[n]}
<{y[n]}

)
(3)

Figure 2A shows that, with these expressions, extraction of the ground-truth signal is not restricted to causal operations.131

This is because the discrete Fourier transform (DFT) and narrow-band Hilbert transform in the frequency domain can132

be applied to the entire batch of data, followed by the conversion of the real and imaginary components of the analytic133

signal into the ground-truth values of the instantaneous envelope a[n] and phase φ[n].134

In addition to the non-causal approach illustrated in Figure 2, the other panels of Figure 2 show a graphical summary135

of the available causal techniques that can be applied in real time to compute the envelope and instantaneous phase of136

a narrow-band component extracted from a broad-band signal.137

2.1 Existing methods138

For didactic purposes, we start with the most basic approaches.139
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Figure 2: Methods for narrow-band signal envelope estimation. A. Ideal non-causal system for ground truth signal
extraction. B. Envelope detector based on rectification of the band-filtered signal. C. Sliding window narrow-band
Hilbert transform-based method. D. cFIR family filters that perform finite impulse response causal filter approximation
of ideal non-causal systems. D’. Filter design for cFIR family filters.

Rectification and smoothing of the band-filtered signal (rect) is the conceptually most straightforward way to140

estimate the envelope a[n]. In this method, low-pass filtering is performed applied to the rectified narrow-band filtered141

signal. This approach can be mathematically expressed as:142

ar[n] = hlp[n] ∗
∣∣∣hbp[n] ∗ x[n]

∣∣∣ (4)

where ∗ is the convolution operator, hbp is the impulse response of the band-pass filter, | · | denotes the absolute143

value (i.e., the rectification step), and hlp is the impulse response of the low-pass filter that performs smoothing of the144

rectified signal. Without loss of generality, we can assume that both hbp and hlp are linear phase FIRs designed by a145

Hanning window method with the number of taps Nbp and Nlp , correspondingly. The cutoff frequency for the low-146

pass filter fc is set to correspond to one-half the expected bandwidth of the narrow-band process, i.e. fc = (f2−f1)/2.147

FIR filters have a linear phase and therefore the total delay D and the number of taps in the individual filters Nbp and148

Nlp have the following interrelationship:149

5
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D =
Nlp − 1

2
+
Nbp − 1

2
(5)

In order to ensure that the maximum performance is achieved for a given group delay value D, we used grid search150

over variables Nbp and D in our comparative analysis. The parameter Nlp was determined from the formula 5. Since151

Nbp and Nlp are positive, this method can estimate the envelope values only with a positive delay, which corresponds152

to the count of signal samples taken from the past.153

Sliding window narrow-band Hilbert transform (hilb) is the second most commonly used method that is based154

on the use of the analytic signal y[n] computed using Hilbert transform [35]. There are various implementations of155

this approach. In the current work we resorted to the use of the windowed DFT. DFT is calculated on each window156

of length Nt which is zero-padded to the length of Nf samples. Next, the coefficients corresponding to the negative157

frequency values and those in the positive frequency semi-axis that fall outside the band of interest are zeroed out.158

The DFT coefficients within the band of interest are doubled. Then, the inverse DFT is performed and Nt − D-th159

element of the resultant complex valued sequence is used as an estimate of the analytic signal with delay D. This way,160

two operations are performed simultaneously: band-pass filtering and extracting the analytic signal that is then used161

to estimate the envelope. This algorithm is illustrated in Figure 2.162

In matrix representation and using temporal embedding to form vector, x[n] this can be written as:163

yh[n] =
2

Nf
·w∗Nt−DW∆fx[n], (6)

where vector x[n] contains the last Nt samples of x[n], i.e. x[n] = [x[n], x[n − 1], . . . x[n − Nt + 1], W∆f is the164

Nf -by-Nt modified DFT matrix with zeros on the k-th row for k outside of [f1Nf/fs, f2Nf/fs] range corresponding165

to the physical band of interest ∆f = [f1, f2] and wNh−D is the (Nh −D)-th row of the DFT matrix.166

The parameters to be optimized for this method are window length Nt and zero-padded length of the signal Nf which167

is used to perform the DFT. The overall delay of this method is explicitly determined by parameter D.168

Sliding window Hilbert transform with AR prediction of the narrow-band filtered signal (ffiltar) was proposed169

by Chen et al. [36] and applied practically [18]. In this method, the sliding window vector x[n] containing Na last170

samples is forward-backward band-pass filtered. Then, flanker Ne samples are truncated to eliminate edge artifacts,171

and 2Nb samples are forward predicted by using an AR model fitted to Na − Ne samples. Finally, Hilbert transfor-172

mation of prediction is used to estimate the analytic signal value in the middle of the predicted range. In the original173

work, this value was used to determine the current phase and time for stimulation. Here we used this technique as a174

benchmark for our and other methods being compared but only at the processing latency D = 0, that is the latency175

this approach was originally designed for.176

Using matrix notation, we can formalize this method as follows.177

yp[n] =
2

Nf
·w∗NaW+PAR(p)

{
x̃[n]

}
(7)

where x̃[n] contains forward-backward filtered last Na samples of the x[n], PAR(p) denotes AR model based pre-178

diction operation and adds 2Ne predicted samples by using a p-th order AR model, W+ is the Nf -by-(Na + Ne)179

modified DFT matrix with zeros on the rows corresponding to the negative frequencies and wNa is the (Na)-th row180

of the DFT matrix. As the narrow-band filter for the forward-backward filtering part, we use Butterworth filter of the181

order k as suggested in [36].182

One of the disadvantages of this approach is that it has multiple parameters that need to be tuned to achieve the183

optimal performance. To attain the best performance in this study, we searched over the parameter grid composed of184

the following variables: AR order p, number of edge samples Ne , and Butterworth filter of the order k.185

2.2 Proposed method186

In order to build the analytic signal y[n] that corresponds to the narrow-band signal s[n] extracted from the noisy broad-187

band measurements x[n], one can apply the ideal narrow-band Hilbert transform filter [37, 38]. The complex-valued188

frequency response of this combined filter can be defined as:189

HD(ejw) =

{
2e−jwD, w ∈ [wc − δw,wc + δw] ⊆ [0, π]
0, otherwise

(8)

6
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where δw = 2πδf is half of the pass band width, and D is the group delay measured in samples. Strictly speaking,190

for any finite delay D this filter is non-causal and cannot be applied in real time. To reconstruct the analytic signal191

causally, one can find a causal complex-valued finite impulse response (cFIR) filter b = {b[n]} of length Nt that192

approximates the ideal complex valued frequency response HD(ejw) [39]. This filter can be then applied in real-time193

as yc[n] = x[n] ∗ b[n] , the procedure that incurs a fixed processing delay of D samples.194

Causal complex valued FIR b[n] can be found by solving the least squares optimization problem. Various definitions195

of the cost functions lead to different filters.196

Frequency domain least squares (cFIR) is the first and most straightforward approach (denoted F-cFIR). The least197

squares filter design strategy consists in finding the complex valued vector of the cFIR filter weights b of lengthNt that198

minimizes the L2 norm between the cFIR filter frequency response obtained by the DFT and the discrete appropriately199

sampled version hD of an ideal response HD in the frequency domain. To increase the frequency resolution, we200

use truncated Nf -samples DFT-matrix W with dimension Nf × Nt (Nf ≥ Nt). The use of transform matrix-based201

formulation of the DFT in this case is equivalent to the DFT of Nt samples long vector zero-padded to length Nf .202

Taking in account the fact that due to orthogonality WHW = NfI the solution bF of the normal equation for the203

optimization problem (2.2) can be found by a simple inverse DFT (9) of the desired complex valued characteristics of204

the narrow-band Hilbert transformer.205

bcFIR = argmin
b
||Wb− hD||L2

bcFIR =
1

Nf
WHhD (9)

The last formula 9 is equivalent to expression 6 but can be used with negative delays, D ≤ 0. This simple method,206

however, does not take into account the second order frequency domain statistics of the target signal and could be207

further improved. Note that the cFIR approach with parameters Nt, Nf and D ≥ 0 matches the sliding window208

narrow-band Hilbert transform approach with the same parameters Nt, Nf and D.209

Frequency domain weighted least squares (wcFIR) is the method that follows optimal filter design ideas, where210

power spectral density of the input signal x[n] are used as weights. We thus formulate the weighted frequency domain211

least squares design technique (denoted wcFIR) via optimization problem (2.2) whose solution can be found by solving212

the normal equations (10):213

bwcFIR = argmin
b
||X(Wb− hD)||L2

214

bwcFIR =
(
WHXTXW

)−1
WHXTXhD (10)

where X is the diagonal matrix formed from the square roots of the power spectral density magnitudes of x[n]. The215

temporal dimension of W is set according to the specified delay D by cropping W from the full-blown twiddle-factor216

matrix. Therefore only WHW = NfI holds true while WWH 6= NfI. This way, at the optimum ||Wb−hD|| 6= 0217

and therefore b is just an approximation of the ideal filter and can be computed even for negative D.218

Panels D and D' of Figure 2 illustrate these two approaches. The delay D corresponds to the slope of the phase219

response within the pass-band and theoretically can be set to an arbitrary value. Then, the optimization procedure220

aims at finding such complex vector of cFIR filter coefficients b that both ideal phase response and an ideal amplitude221

response are approximated sufficiently and accurately. We do so in the frequency domain by analytically solving the222

least squares or the weighted least squares problems.223

Conceptually, having in mind the two tasks of optimal envelope and instantaneous phase estimation we could have224

formulated the two separate optimization problems and used two different sets of weights implementing two different225

band-pass complex-valued filters delivering optimal accuracy in estimation of envelope and phase approximation with226

the specified delay. In this case, however, due to non-linearity of the target functional, we would have to perform an227

iterative optimization in order to find the optimal FIR filter weights vector b.228

Time domain least squares is the last approach from this family (denoted tcFIR) that is based on minimization of229

the squared distance in the time domain between the complex delayed ground truth signal y[n − D] and the filtered230

signal x[n] ∗ b[n]:231

btcFIR = argmin
b
||x[n] ∗ b[n]− y[n−D]||L2 (11)

7
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In this case, the ground truth signal y[n−D] is obtained non-causally from the training samples via an ideal zero-phase232

Hilbert transformer (8). According to Parseval’s theorem, this approach is equivalent to the wcFIR approach. However233

in contrast to the frequency domain formulation, it allows for implementation of recursive schemes for solving (11)234

and therefore may potentially account for non-stationarity in the data. One of the most straightforward approaches is235

to use recursive least squares (RLS) [40], to update filter coefficients on the fly.236

2.3 Methods comparison237

Data and preprocessing We compared the described methods using resting state EEG data recorded from 10 sub-238

jects during NFB training sessions. EEG recordings were performed using 32 AgCl electrodes placed according to239

a 10-20-system with the ground electrode at AFz position and reference electrodes on both ears. The impedance for240

all electrodes was kept below 10 KOhm. The signal was sampled at 500 Hz using the NVX-136 amplifier (Medical241

Computer Systems Ltd.) and bandpass-filtered in 0.5-70 Hz band. These preprocessing filters incurred overall delay242

of no more than 10 milliseconds in the bandwidth of interest (8-12Hz).243

For each subject, we used 2 minutes of resting state recordings. The first minute of the data – for training or the244

parametric grid search and the second minute is used for testing the performance. To eliminate eye artifacts we245

performed independent component analysis (ICA) on the training data, identified eye-movement related components246

by means of the mutual information spectrum [41] and removed from the data several components exhibiting the247

highest mutual information with either of the two frontal channels Fp1 and Fp2.248

For the following analysis only parietal P4 channel of the cleaned data is used as feedback signal x[n] in (1).249

Individual alpha band We determine individual alpha range by the following procedure: estimate power spectrum250

using Welch method with 2 second 50%-overlap boxcar window, find the frequency f0 with maximal SNR in the251

8-12Hz range, define individual band as [f1, f2] interval, where f1 = f0 − 2 Hz and f2 = f0 + 2 Hz.252

Ground truth signal As the ground truth signal s[n] in (1), we used non-causally computed analytic signal obtained253

by zeroing out the DFT coefficients corresponding to the frequencies of the individual alpha band [f1, f2] followed254

by the Hilbert transform. Once we have the analytic signal, we can estimate both envelope and instantaneous phase255

without any additional delay.256

Performance metrics To measure the accuracy of the envelope and instantaneous phase estimates obtained with257

the described techniques as a function of the group delay D we used the following metrics. All metrics are based on258

the ground truth envelope and instantaneous phase information extracted from the ground truth signal s[n] extracted259

non-causally from the real EEG data as described above and then shifted to match the specific delay value D of260

causal processing. We will denote the shifted ground truth envelope and phase sequences as a[n −D] and φ[n −D]261

correspondingly.262

For performance assessment of envelope estimation methods, we calculated the Pearson correlation coefficient be-263

tween estimated envelope â[n] obtained causally by each of the methods and the appropriately shifted ground truth264

envelope sequence a[n−D]:265

ra =

∑
n∈Na

(a[n−D]−ma)(â[n]−mâ)√ ∑
n∈Na

(a[n−D]−ma)2
√ ∑
n∈Na

(â[n]−mâ)2
(12)

whereNa = D..N − 1 is the set of time indices with N = 30000, ma and mâ are sample means averages of a[n] and266

â[n] over set Na267

To asses performance of instantaneous phase estimation we used bias bφ, absolute bias |bφ| and the standard deviation268

σφ of the delayed ground truth phase φ[n − D] at the time moments when predicted φ̂[n] phase crosses 0. These269

metrics reflect the bias, absolute bias, and the variance in determining zero-crossing moments (negative-to-positive270

direction) of the delayed signal s[n−D].271

bφ =
1

|Nφ|
∑
n∈Nφ

φ[n−D] (13)
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Method Param. Grid
rect Nbp 0, 5,.., 100

cfir/hilb Nt 250, 500, 1000

wcfir Nt 250, 500, 1000

acfir Nt 250, 500, 1000
Nu 25, 50
µ 0.7, 0.8, 0.9

ffiltar p 10, 25, 50
Ne 10, 25, 50

Table 1: Grid search space for each method.

σφ =

√√√√ 1

|Nφ| − 1

∑
n∈Nφ

(φ[n−D]− bφ)2 (14)

where Nφ = {n : n ∈ Na, sign(φ̂[n]) > sign(φ̂[n− 1])} is the set of time moments when φ̂[n] crosses 0.272

Grid search procedure To ensure that the compared methods operate optimally, for each of them, we defined grid273

search space as described in table 1 and, as described below, looked for the combination of parameters that ensured the274

best performance for each of the techniques. Here we use the following short method names: rect for envelope detector275

based on rectification of the band-filtered signal, cfir for the frequency domain least squares designed cFIR, wcfir for276

the frequency domain weighted least squares designed cFIR and acfir for RLS based cFIR filter update scheme. Note277

that sliding window narrow-band Hilbert transform approach (hilb) exactly matches the cfir on the range pf positive278

delays.279

For each combination of parameters and fixed delay D, we computed the metrics defined above on the training set280

separately for each subject. Note that for rect and hilb no negative delay D is possible and for ffiltar we used281

only zero delay (D = 0) as this technique was formulated and used in the closed-loop experiments in this specific282

condition. Frequency band and weights for the wcfir approach were computed based on the same training data. We283

then used optimal values of parameters for each method corresponding to the maximum of ra, minimum for |bφ| and284

minimum of σφ values observed on the training set, and estimated the same performance metrics ra, bφ, |bφ| and σφ285

on the test data.286

3 Results287

Figure 3 shows the performance comparison results averaged over the data for ten subjects for the methods explored288

in this study. To ensure the best performance for each of the techniques, we used training data segments to tune each289

method’s parameters using the grid search procedure described in the Methods section. For each method in panels A,290

B, C and D, we show the performance metrics ra, σφ, bφ, |bφ| reflecting envelope correlation accuracy (panel A), phase291

estimate variance (panel B), phase estimate bias (panel C) and phase estimate absolute bias (panel D) and described292

by equations 12,14 and 13 as observed on the test segments of the data with the optimal set of parameters identified293

over the independent training segments. For each such metric, the curves display their mean values averaged over 10294

subjects as a function of the incurred delay. The error bars indicate the 95% confidence intervals obtained with 1,000295

bootstrap iterations.296

As expected and according to Figure 3.A, the envelope estimation accuracy quantified by the correlation coefficient297

ra deteriorates as the processing lag D decreases. The smaller the processing lag, the weaker is the correlation298

between the non-causally obtained ground-truth envelope and the envelope estimated in real-time by each of the meth-299

ods. Noticeably, for all positive delays rect approach (gray line) has the worst performance that makes it practically300

unusable for latency values below 150 ms. Methods cfir (blue line), wcfir (red line) and acfir (light blue line)301

exhibit comparable accuracy. The approach described in [36] (ffiltar, black dot) that entails AR modelling of data and302

forward-backward filtering of the extended data chunk yields at zero latency the accuracy comparable to that delivered303

by the proposed cfir family of methods but requires specification of parameters describing AR model order, filter and304

extension window length and is significantly more intense computationally.305

Panels B, C and D of Figure 3 show the results for real-time estimation of instantaneous phase as a function of306

time-lag D. For the positive delay values, the bias bφ remains practically negligible and does not exceed 5◦ for all307
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considered methods. Noteworthy, the ffiltar approach has been formulated for zero-latency and its phase estimation308

bias corresponding to D = 0 hovers around zero. However, as panel D demonstrates, the absolute bias of the phase309

estimate obtained by this technique is comparable to that delivered by the cfir family of methods and therefore close310

to zero values of the bias reflects symmetric around zero distribution of the bias observed in the 10 datasets explored.311

The methods from the cfir family exhibit a significant growth of phase estimation standard deviation (SD) as lag D312

decreases. Yet, at zero lag, the variance of the estimate delivered by the proposed here family of techniques appears to313

be significantly below that of the state of the art method introduced earlier in [36] and successfully used in the number314

of closed-loop stimulation studies. Here we reported the averaged observations made on the basis of the data recorded315

from 10 subjects as described in Section 2.3. The comparative performance of the explored methods may line-up316

differently for each of the datasets depending on the individual alpha-range SNR and other unaccounted factors.317

This issue is clarified in Figure 4 that illustrates for individual subjects the same three performance measures as shown318

in Figure 3 but only for D = 0. Separate consideration for each subject allowed us to explore the performance as a319

function of SNR, which varied across individuals.320

Figure 3: Four performance metrics vs incurred processing delay. A - dependence of the correlation coefficient ra
on delay D for the cfir family, for rectification based technique and AR-based extrapolation approach(ffiltar). B
- phase estimation bias bφ as a function of processing delay D. C - phase estimation variance σφ as a function of
processing delay. D - phase estimation absolute bias |bφ| vs. D
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Figure 4 shows how the performance of the explored methods for D = 0 as a function of the SNR observed in each of321

the individual subjects. Metrics of the performance are the same as in Figure 3. For all methods envelope correlation322

ra grows with SNR, panel A. Phase estimate standard deviation improves with SNR and appears to be consistently323

lower for the cfir family of methods. Phase estimate bias bφ shows positive skew for the low SNR value. The absolute324

bias for ffiltar technique appears to be independent of the SNR. For high SNR values starting with 1.0 the absolute325

bias value obtained by all methods from the cfir family appears to be consistently lower than that of the ffiltar.326

Figure 4: Four performance metrics vs. alpha rhythm SNR. A - envelope correlation coefficient ra, B - phase estima-
tion standard deviation (SD) σφ and C,D - phase estimation bias bφ and absolute bias |bφ|. Each dot corresponds to a
dataset and is positioned on the x-axis according to the P4 alpha-rhythm SNR.

In some versions of the closed-loop paradigms e.g. [24], a full-blown envelope reconstruction is not required. Instead,327

of interest is the discrete detection of time moments with high instantaneous band power. The transition into the zone328

of high instantaneous band power values may serve as a feedback or a trigger for either stimulus presentation or direct329

brain stimulation act. Suppose we want to perform detection of the time when the instantaneous rhythm power exceeds330

the 95% threshold. As shown in the left panel of Figure 5.A for the binary classification case the moments when the331

envelope falls into the top area above the dashed line are labeled as High and the rest of the moments are labeled as332

Low. The graph on the right panel of Figure 5.A shows balanced accuracy score (class recall average) for such binary333

detection task as a function of allowed processing delay parameterD. The analysis is done for one subject with median334

SNR selected from the pull of 10 subjects. We can observe that the best performance in the binary classification task is335
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achieved by the weighted cfir method with zero processing latency (D = 0). Similar results for ternary classification336

of the three-state problem are shown in Figure 5.B. Just like in the binary case, the moments when the envelope falls337

into the top area corresponding to the 5% of the largest envelope values are labeled as High and additionally, label338

Low is assigned to the time instances when the envelope takes on values from the lowest 5%. The rest of the time339

moments are labeled as Medium. Interestingly, the cfir family of methods delivers the best performance for zero340

processing delay D = 0. In the binary classification scenario, we can achieve about 75% of balanced accuracy. The341

rectification-based approach at best provides just above 60% accuracy and that peaks in 100-150 ms processing lag342

range. The results are qualitatively the same for the ternary classification case.343

Figure 5: Discrete paradigm accuracy for one subject with median SNR. A) - binray classification task. The goal is to
detect the time instances when alpha envelope is in the upper 5% quantile of its values. B) - ternary classification task
to distinguish lower and upper 5% quantiles of the envelope values from the mid-range values falling into 5%-85%
range.

Finally, to explore the morphology of the alpha-burst events in the High/Other classification task described above in344

Figure 6, we averaged the ground truth envelope around moments when the decoder crossed its own threshold. This345

computation was performed for rect and wcfir approaches for predefined delay parameters from [300, 100, 0,−100] ms346

set (for rect only positive values were used). Also, we computed averaged envelope across a set of randomly picked347
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time moments (denoted as rand) and across moments when the ground truth envelope crossed the High threshold348

(denoted as ideal), which can not be done causally, see Figure 6.d349

Figure 6: Average envelope computed using real-time detected markers of High events for different pre-specified
processing delay values.

4 Discussion350

The standard techniques for estimating instantaneous power of EEG rhythms, such as the methods based on the351

rectification of narrow-band filtered signal and the STFT based algorithms, incur significant delays, hindering the352

performance of BRC systems. Such delays, combined with the lags of acquisition hardware and the time required353

for stimulus presentation, result in significant lags between the actual brain activity and the signal used to control354

the experimental flow in BRC paradigms and/or utilized as a feedback to the subject. In the closed-loop stimulation355

paradigms, this would mean that the timing of the stimulating pulse can not be accurately aligned to the desired356

feature of the oscillatory brain activity. In NFB setting or settings requiring an explicit feedback signal that reflects357

subject’s performance, these standard approaches close the loop more than 300 ms past the targeted neural event [42].358

Such delays may be especially harmful when the targeted brain rhythm patterns can be described as discrete events359

of a limited duration [7], [43],[44], where the feedback can arrive after the event has completed. Such low temporal360

specificity of the feedback signal hinders learning, especially in the automatic learning scenarios [30].361

Here we systematically explored a series of methods for minimizing latency in RBC systems. We distinguished362

a family of best-performing techniques that are based on the least-squares filter design. These methods allow for363

a simpler and more transparent control over the accuracy–versus–latency trade-off compared to the other existing364

approaches.365

Our results confirm that the proposed methodology based on least-squares filter design noticeably reduces latency of366

EEG envelope and phase estimation. This procedure is simple; yet its performance pars or exceeds that of the more367

complex approaches, such as the one based on the use of the AR-model [36], the most ubiquitous method for closed-368

loop studies [45], [18],[46],[47] . With our method, users can specify the desired delay and achieve the best possible369

envelope estimation accuracy possible with a linear method. As evident from Figure 3, the spectral density weighted370

cFIR technique allowed us to generate zero-latency feedback that accurately tracked the instantaneous power profile371

of the EEG-rhythm. The performance of our method on a typical segment of data can be appreciated from Figure 7372

that shows true values and estimates of the envelope and phase obtained with cFIR method for various user specified373

lags.374

We see this work as a systematic effort aimed at building a zero- or even negative-latency feedback systems that will375

allow transferring the predictive control methodology successfully exercised in technical systems to the tasks where376

the brain is the controlled object [48]. As shown in 5, wcFIR approach allows for correct forward prediction 100 ms377

ahead of rhythmic activity bursts, with AUC exceeding 70%. This illustration of the successful predictive behavior378

suggests that the proposed family of simple approaches together with the necessary hardware optimization will open379
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Figure 7: Envelope and phase estimates obtained by cFIR method (blue line) for different delay values D, each row
corresponds to delays from -50ms to 200ms. Red line denotes ground-truth signal calculated by the ideal non-causal
filter, gray dashed line denotes the same ground-truth signal but shifted by the corresponding delay D to facilitate
comparison

up a way for the implementation of predictive control that enables a more efficient interaction with the functioning380

brain.381

While our method reduces feedback latency, this reduction comes at a cost of less accurate envelope estimation.382

Deterioration of performance is especially sizeable in when the SNR is low and therefore, for the latency-reduction383

algorithm to be efficient, care should be taken to improve the SNR with such methods as spatial filtering of multi-384

electrode recordings.385

The optimal latency-accuracy trade-off is the issue that needs to be addressed for each particular application and each386

particular subject. As shown in Figure 3, the methods outlined in this work allow the users to smoothly control this387

trade-off and choose the optimal operational point for each specific application.388

As mentioned above, to achieve the true predictive scenario, though, the improvements need to be made not only of389

the signal processing algorithms but also of the hardware employed for signal acquisition, as well as the low-level390

software that handles EEG data transfer from the acquisition device to the computer memory buffer. To this end,391

it is worth considering specialized systems based on the FPGA programmable devices that eliminate the uncertain392

processing delays present in computer operating systems not designed to operate in real-time.393

In the context of neurofeedback, additional consideration should be given to the physiological aspects of the sensory394

modality used to deliver the feedback signal. For instance, it is known that visual inputs, although very informa-395

tive [33], are processed slower compared to tactile inputs and therefore tactile feedback could be a better option for396

predictive control.397

The signal processing approaches presented here could be advanced by employing more sophisticated decision rules398

capable of extracting the hidden structure from the data. Thus, convolutional neural networks [49],[50] and novel399

recursive architectures hold a significant promise to further improve the accuracy of real-time zero-lag envelope and400

phase estimation.401
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