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Abstract

Gene regulatory networks underlie every aspect of life; better understanding their assembly would

better our understanding of evolution more generally. For example, evolutionary theory typically assumed

that low-fitness intermediary pathways are not a significant factor in evolution, yet there is substantial

empirical evidence of compensatory mutation. Here we revise theoretical assumptions to explore the

possibility that compensatory mutation may drive rapid evolutionary recovery. Using a well-established

in silico model of gene regulatory networks, we show that assuming only that deleterious mutations are

not fatal, compensatory mutation is surprisingly frequent. Further, we find that it entails biases that drive

the evolution of regulatory pathways. In our simulations, we find compensatory mutation to be common

during periods of relaxed selection, with 8-15% of degraded networks having regulatory function restored

by a single randomly-generated additional mutation. Though this process reduces average robustness,

proportionally higher robustness is found in networks where compensatory mutations occur close to the

deleterious mutation site, or where the compensatory mutation results in a large regulatory effect size.

This location- and size-specific robustness systematically biases which networks are purged by selection

for network stability, producing emergent changes to the population of regulatory networks. We show

that over time, large-effect and co-located mutations accumulate, assuming only that episodes of relaxed

selection occur, even very rarely. This accumulation results in an increase in regulatory complexity. Our

findings help explain a process by which large-effect mutations structure complex regulatory networks,

and may account for the speed and pervasiveness of observed occurrence of compensatory mutation, for

example in the context of antibiotic resistance, which we discuss. If sustained by in vitro experiments,

these results promise a significant breakthrough in the understanding of evolutionary and regulatory

processes.
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1 Introduction1

Gene regulatory networks are the internal tools living organism employ to facilitate resilience to envi-2

ronmental variation. Unfortunately, to date their evolution is not well understood [Wilke and Adami, 2001,3

Wilke et al., 2003, Beerenwinkel et al., 2007, Lehner, 2011, Rokyta et al., 2011, Park and Lehner, 2013].4

Prior theory building based on computational and mathematical models has shown that gene regulatory5

networks (GRNs) can evolve by adaptive responses to direct selection [Ciliberti et al., 2007, Crombach and6

Hogeweg, 2008, Romero and Arnold, 2009, Tsuda and Kawata, 2010, Olson-Manning et al., 2012, Cotterell7

and Sharpe, 2013], and by random genetic drift when sampling biases shift the distribution of networks [cf.8

Wagner and Wright, 2007, Lynch et al., 2016].9

In contrast, the role of compensatory mutation in GRN evolution has been given little consideration. In10

most modelling, regulatory networks rendered unfunctional (unstable) by deleterious mutation have been11

assumed to be immediately purged by direct selection, precluding the possibility of an additional mutation12

which might restore fitness. Yet in nature, phenotypic selection is known to be episodic, with periods of13

strong and weak selection [Siepielski et al., 2009a]. This indicates there may be sufficient time for evolutionary14

rescue. Further, if compensatory mutation happens frequently enough, it could play a major role in GRN15

evolution. Compensatory mutation has been observed to occur surprisingly frequently in some laboratory16

contexts under high selective pressure, particularly with respect to antibiotic resistance [Dunai et al., 2019,17

Moura de Sousa et al., 2017], see Remigi et al. [2019] for a recent review. This indicates that compensatory18

mutation should receive more theoretical attention.19

Compensatory mutation could contribute to GRN evolution as an emergent consequence of biases that20

occur in the processes of mutation and selection. Although originally considered an important source of21

innovation and diversity, mutations are now thought generally to be in the vast majority of cases at least22

mildly deleterious, decreasing individual fitness. However, not all mutations are deleterious or have the same23

detrimental effects on all individuals. There are occasionally beneficial mutations, including compensatory24

mutations that recover fitness after deleterious mutations [Kulathinal et al., 2004, Piskol and Stephan, 2008,25

Covert et al., 2013]. Such mutations could contribute to gene pathway evolution [Kimura, 1985, Moore et al.,26

2000, Levin et al., 2000, Choi et al., 2005, Meer et al., 2010]. However, in contrast to adaptive and neutral27

evolution, little attention has been placed on evolutionary dynamics driven by genes that at least initially28

code lower-than-average reproductive success.29

Compensatory mutation in regulatory networks may be far more frequent than we expect. Outside of the30

context of a regulatory network, theory tells us compensatory mutation is not likely to play an important31

role in evolution [Wright, 1931a,b, Stephan, 1996, Parsch et al., 1997, Whitlock and Otto, 1999, Whitlock32
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et al., 2003, Zhang and Watson, 2009]. This is because the frequency of deleterious mutation is low and33

the frequency at which a new mutation compensates for the previous deleterious mutation is expected to be34

even lower. Furthermore, if the compensatory mutation restores fitness, then its probability of fixation in35

the population might be assumed to be the same as any allele under drift, the inverse of twice the effective36

population size [Wright, 1931a, Charlesworth, 2009]. This analysis may be incorrect though, given the37

coupling to the original deleterious mutation, particularly if the ‘deleterious’ mutation provides a specialist38

ability to an organism despite overall lowering its adaptive value. This is the reported case in antibiotic39

resistance, where initial mutations confer resistance but create other metabolic costs. Some proportion40

of bacteria evolve compensatory mutations rather than reverting to initial genotype [Dunai et al., 2019],41

and some even seem to be conferred with net adaptive advantage after the event of additional mutations42

[Moura de Sousa et al., 2017]. Further, mutations do not only happen in independently-acting genes, but43

also in genetic networks where there are many sites of complex interactions that could be mutated. If a44

deleterious mutation occurs at a locus that is not presently subjected to strong selective pressure, then45

as long as a compensatory mutation occurs before the lineage is driven to extinction, it may restore the46

lineage’s fitness. Thus, understanding the frequency and nature of compensatory mutations is of substantial47

importance to understanding their impact on pathway evolution.48

Logically, we can expect relaxed selection to be critical to the frequency of compensatory mutation.49

Empirical evidence indicates that when selection against deleterious mutation is relaxed, the frequency of50

compensatory mutation in organisms carrying deleterious mutations is surprisingly high [Maisnier-Patin51

et al., 2002, Gifford and MacLean, 2013]. Several recent empirical studies have suggested that various52

sorts of relaxed selection facilitate compensatory mutation [Sloan et al., 2014, Moura de Sousa et al., 2017,53

Dunai et al., 2019]. Compensatory mutations might then be expected to play a key role in the formation54

of GRN. The frequency at which deleterious mutations incapacitate gene regulatory pathways is likely to55

be substantially higher than that for an independently acting gene, because there will inevitably be many56

more possible sites to mutate. We do not know the frequency at which mutations in incapacitated networks57

can compensate for previous deleterious mutations. But because mutation, by definition, occurs in networks58

that were previously functional, it seems logical that there could be a wide range of mutational sites and59

magnitudes that might restore the function of a network. If the frequency of compensatory mutation is60

high and persistent enough over time, then there is a high probability that some compensatory mutations61

will be maintained, even if solely by drift. If there is something special about the sorts of genes likely62

to produce compensation, then we might also expect this process to generate biases, both with respect to63

where mutations occur and any other characteristic that might engender higher robustness. Variation in the64

speed with which poorly functioning genotypes are removed by purifying natural selection could ultimately65
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have substantial impacts on the genetic attributes of the population. Similarly, properties associated with66

compensatory mutations may accumulate over time. The basic logic of this argument is that, facilitated by67

periods of relaxed selection, compensatory mutation not only allows evolution to proceed, but results in it68

proceeding differently. GRN may accumulate specific features as a consequence of compensatory mutation.69

The gene regulatory network paradigm is an excellent system is which to test this question. Most70

importantly, it explicitly incorporates genetic interactions in an evolutionary framework. Simulation allows us71

to generate thousands upon thousands of networks of different sizes and connectivities, which we could not do72

with in vivo approaches, and makes it relatively simple to identify, track and understand the properties of all73

of the compensatory mutations within those networks. Many previous computational studies have focused on74

the evolution of gene regulatory networks under constant selection [Azevedo et al., 2006, Ciliberti et al., 2007,75

Crombach and Hogeweg, 2008, Tsuda and Kawata, 2010, Cotterell and Sharpe, 2013]. However, constant76

selection necessarily constrains pathway evolution because it removes the low-fitness individuals who carry77

incapacitated gene networks. This in turn eliminates the potentially significant mechanism of compensatory78

mutation. Compensatory mutation is impossible under one of the dominant modelling frameworks, where79

unstable networks — networks whose phenotype never reach an equilibrium state — are always labelled as80

‘unviable’ and therefore never subjected to further rounds of mutation [Wagner, 1996, Siegal and Bergman,81

2002, Azevedo et al., 2006, Lohaus et al., 2010]. If we instead allow unstable networks to stay in the82

population when selection for network stability is relaxed, compensatory mutation is possible and able to83

allow lineages access to a greater variety of evolutionary pathways.84

In our experiments, we adapted the experimental paradigm for one of the dominant models of GRN85

evolution, to consider deleterious mutations to only compromise, not destroy, a lineage. This allows us to86

examine the prevalence and impacts of compensatory mutation. We find that compensatory mutations are87

both surprisingly common, and that their frequency is relatively invariant to the scale of the network. We88

also find that compensatory mutations exhibit biases both in effect size, and in location with respect to the89

deleterious mutation. The accumulation of these emergent biases increases regulatory complexity in GRN90

over generations. As we discuss, these observations are all congruent with empirical observations, indicating91

we may have established a useful theoretical advance in the understanding of compensatory mutation and92

of GRN.93
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Results94

A network model for compensatory evolution95

We present a model to study compensatory mutation, using a process well-established in the literature96

(see more details in Methods). As with published precedent on gene regulatory network (GRN) evolution,97

the model generates an initial population of stable regulatory networks and networks made unfunctional98

(unstable) by deleterious mutation [Wagner, 1996, Siegal and Bergman, 2002, Azevedo et al., 2006, Wang99

et al., 2015, Wang, 2019a,b]. Our innovation is that instead of assuming that unfunctional networks are100

removed immediately by persistent selection for network stability, we assume that they are part of a larger101

organism and only marginally reduce that organism’s fitness. In this, we effectively hypothesise that organ-102

isms carry a deleterious mutation (DM) load, analogous to parasite load. We compute the consequences of103

additional rounds of mutation on the stability of the network, during periods labelled as bouts of relaxed104

selection (Fig. 1).105

Though the criteria for network stability we employ is similar to that used in previous models, our106

fitness function—the relationship between genotype and fitness—is different. Specifically, we assume that107

networks are either functional (high fitness, equivalent to fitness 1 in previous models) or unfunctional108

(low fitness, replacing fitness 0 in previous models). We then estimate the rate of compensatory mutation109

by calculating the proportion of regulatory networks which have stability restored by a single additional110

mutation, represented by the blue circle in Fig. 1A. Note that the green circle represents that the network111

has experienced a neutral mutation that does not affect network stability. Thus in Step 1 we generate a112

random population of GRNs. In Step 2 (Fig. 1B), each GRN has been mutated (red edge) and the resulting113

unstable networks have been collected for further testing. In Step 3, the unstable networks have undergone114

a second round of mutation, allowing the collection and analysis of any newly-stable networks. In this case,115

one network’s mutation has been compensatory (blue edge).116

Fig. 1C shows an initially-stable gene network which contains five genes: A–E. Each edge is directed117

and indicates the strength (weight) of the influence on one gene of another. In the Deleterious Mutation118

Phase, a mutation occurs on −→CA (red edge), which leads to the failure of maintaining network stability. In119

the Compensatory Mutation Phase, the compromised network is recovered by another round of mutation,120

with a mutation that proves compensatory (blue edge) occurring on −−→CE. Note that there is no difference in121

the modelling process between generating a compensatory or deleterious mutation. Rather, random changes122

to the network are categorised based on their impact on network stability.123
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Figure 1: Overview across time of the computational model for exploring characteristics of
compensatory mutation. (A) Stability (approximates fitness contribution) of gene regulatory networks
in a population. Note that dashed circles are networks no longer considered for the study. (B) The population
pool of gene regulatory networks. Note that a red edge indicates a deleterious mutation and a blue edge a
compensatory mutation. (C) Detailed view of a single network.

Compensatory mutations are common and relatively scale-invariant124

We first test whether compensatory mutation is common in the context of the synthetic GRNs. We125

find that, unlike deleterious mutation, the frequency of compensatory mutation is almost scale-invariant.126

From Fig. S1A and B, we can see that the stability and robustness in initial networks are quite different127

among varying sizes and levels of connectivity of gene regulatory networks. Which type of network, once128

compromised, more frequently experiences compensatory mutation? Fig. 2 answers this question. As can be129

seen, the patterns of frequency of compensatory mutation depend on network size. For the smaller networks130

N = 5, 10, 15 and 20, the compensatory mutation rates continuously increase as network connectivity131
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Figure 2: The frequency of compensatory mutation is relatively insensitive to network size and
network connectivity in the context of gene regulatory networks. For each network size (N = 5,
10, 15, 20, 30 and 40 genes) for each value of network connectivity (proportion of regulatory relationships)
given from a range of values in continuous intervals ([0.2, 1], step size 0.02), the frequency of experiencing
first deleterious followed by a compensatory mutation on just two rounds of mutation was tested based on
an initial 10, 000 randomly generated stable gene networks. The shaded areas represent 95% confidence
intervals based on 100 independent runs.

increases, but very gradually. In contrast, for the larger networksN = 30 and 40, with the rise in connectivity,132

the compensatory mutation rates decrease slightly. However, overall the results indicate that the frequency133

of individuals that can be fixed by compensatory mutation is more sensitive to network size than to network134

connectivity, and not particularly sensitive to either. The implied probability of compensatory mutation135

from the relative frequencies observed ranges from 8% to 15% of compromised networks recovering, with the136

larger rates associated with larger networks. This marked scale-invariance (see Fig. S1C, which is identical137

to Fig. 2 but re-scaled) stands in contrast to the scale dependencies shown for deleterious mutations in138

Fig. S1A and B.139

Next, we investigate the occurrence of compensatory mutations in populations that have been exposed140

to bouts of generations of relaxed selection and selection for network stability. Again as a slight modification141

of what is standard for this type of model, we assume selection favours network stability. We find that142

compensatory mutation occurs in both evolutionary scenarios. From Fig. S2A, we can see that compensatory143

mutation is able to occur even in highly stable networks that have been subjected to network stability selection144

for many generations. In addition, the compensation probability tends to be constant after many rounds of145

mutation. Furthermore, we find that, across network sizes, all populations still maintain a high diversity in146

the presence of selection for network stability, and for many generations (see Appendix). It is not surprising147

therefore to see that, as shown in Fig. S2B, compensatory mutation can occur in the mixed populations (stable148
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and unstable networks) that result from a relaxed selection regime, although it is less pronounced there and149

declines significantly over rounds of selection. Interestingly, we found that compensatory mutation can still150

fix seriously damaged networks that have suffered many deleterious mutations over generations. Here we151

select for study only the broken networks after each mutation round, as shown in Fig. S2C. Compensatory152

mutations will restore, for example, about 14% of networks for N = 5 that are broken by one round of153

mutation, but the frequency of compensation quickly drops to mutation restoring the stability of only 5%154

broken networks that have had many deleterious mutations for up to 15 generations. This indicates that155

compensatory mutations can still be cure-alls even for even seriously damaged networks, or at least those156

long neglected by selection for network stability.157

Finally, we investigate the impact of relaxed selection on compensatory mutations. We find that, as158

expected, we can observe more compensatory mutations in the presence of relaxed selection for network sta-159

bility. Specifically, we performed simulations to measure the number of compensatory mutations in lineages160

for which relaxed selection occurs in different likelihoods. From Fig. S3, we see that the number of compen-161

satory mutations markedly increases as the consequence of having more generations of relaxed selection. We162

can also see that smaller networks typically have more compensatory mutations compared with larger net-163

works. This is because compromised networks with smaller sizes are more likely to experience compensation164

after lengthy evolution, though larger networks tend to have a higher frequency of compensatory mutation165

at early stages as indicated in Fig. 2.166

Compensatory mutations exhibit bias in location and size167

Given a model capable of generating compensatory mutation, we next characterise their nature. In168

general, there is little difference between a compensatory mutation and a deleterious mutation — in fact, the169

exact same mutation could be deleterious in one network and compensatory in another. However, compared170

to a completely random baseline, we find evidence that compensatory mutations tend to be biased with171

respect to the location in the network and the magnitude of gene regulatory effects.172

We first look at where compensatory mutations happened in compromised networks. We find that they173

are more likely to occur at or close to the site of the original, deleterious mutation. In a typical small174

network with size N = 5 genes (see Fig. S4A), we found a 95.8% chance that a mutation that occurs on175

the exact site of a deleterious mutation compensates for it. The frequency of compensatory mutation is176

also high on most of the edges close to the original mutation site. Mutations on edges far away from the177

deleterious mutation site are much less likely to experience compensation. The same basic pattern is also178

seen in a larger network with size N = 20 genes (see Fig. S4B), where the frequency of mutations being179
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compensatory, if they occur on the original deleterious site, is 85%. The percentages beside each edge in180

these figures indicate the proportion of mutations that occur on that edge that are compensatory, out of the181

1, 000 simulated second rounds of mutation we ran on each edge for each network after it had previously182

suffered a single deleterious mutation. In general, as these representative figures indicate, the compensatory183

effect could happen in many positions in a broken network, but it is more likely to be observed at sites that184

are close to a deleterious mutation’s site.185

Fig. 3A (solid line) demonstrates the generality of the result indicated in Fig. S4. It illustrates the186

frequency among 10, 000 initially-stable gene networks of compensatory mutation against different spatial187

distances from the single deleterious mutation suffered by each network. As can be seen, compensatory188

mutations generally occur in edges between genes close to the deleterious mutation site. We restrict the189

analysis to these five categories because there is only a narrow range of distribution distances for randomly190

sampled mutations (see Appendix for more details). We further conducted similar experiments for networks191

with neutral mutations to investigate whether compensatory mutations have any special property in terms of192

location. We found that, compared with the results of compensatory mutations, neutral mutations are more193

evenly distributed. Specifically, instead of measuring the frequency of a second, compensatory mutation (that194

restores network stability for a compromised network with a single deleterious mutation), we measure the195

frequency of a second, neutral mutation with different distance effects that retains the stability for a network196

that has already had one neutral mutation. From Fig. 3A (dashed line) we can see that the distance effect197

has a much less profound role in networks with two consecutive neutral mutations than in networks with198

one deleterious mutation and one compensatory mutation. In fact, neutral mutations tend to be enriched if199

they are far apart in larger networks (see Appendix).200

The point of compensation is of course to recover the network’s fitness, or here, stability. We therefore201

next investigate whether there is an impact on the robustness of networks after deleterious followed by com-202

pensatory mutation varies by the location of the compensatory mutation, and contrast this with differences203

in robustness after two neutral mutations. We again find that patterns are very dependent on location.204

Specifically, we compare robustness of stable networks following one round of deleterious and compensatory205

mutation with that of stable networks with two consecutive neutral mutations, as shown in Fig. 3C. In gen-206

eral, robustness is far higher when compensatory mutation occurs closer to the original deleterious mutation207

site (see the solid line in Fig. 3C), whereas after two neutral mutations, closer distances are not better asso-208

ciated with higher robustness (see the dashed line in Fig. 3C)1. Even though networks with compensatory209

mutations occurring near to the site of the deleterious mutation exhibit profoundly more robustness than210

1Note that robustness is higher overall for networks having experienced two neutral mutations—this is unlikely to be caused
by the mutations, and more likely to be a characteristic of the network likely to contain neutral mutations.
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Figure 3: Both frequency and robustness of networks with compensatory mutations exhibit
biases in location and mutation size. For N = 5 and c = 0.4, we first collected a pool of compromised
networks with deleterious mutations after a single mutation round. We then forced second mutations,
classifying these as being 0 (on the same site), 1, 2, 3 and 4 steps away from the original deleterious mutations
(A) or adding a weight from [−5,+5] (step size 0.5) to the original regulatory impact (B). For each of these
distance or weight categories, we measured the probability that the mutation was compensatory (that it
returned the network to stability, see solid lines in (A) and (B)), based on 10, 000 sample networks collected
for each category. The sample networks for control groups (see dashed lines in (A) and (B)) were collected in
a similar way, except that the networks were subjected to two consecutive neutral mutations. Similarly, for
N = 5 and c = 0.4, we collected 10, 000 sample stable networks that were subjected one deleterious mutation
and then restored by one subsequent compensatory mutation that was 0, 1, 2 and 3 steps away from the
previous deleterious mutation (C) or with different shifts in gene regulation from [−5,+5] (step size 1 and
with four additional regulation shifts: −0.5, −0.1, 0.1 and 0.5) (D). Then, we assessed the robustness of the
sample networks at each category (see solid lines in (C) and (D)). The sample networks for control groups
(see dashed lines in (C) and (D)) were collected in a similar way, except that the networks were subjected to
two consecutive neutral mutations. Error bars represent 95% confidence intervals based on 100 independent
runs.

those at other locations, their actual robustness is much lower than that of networks with neutral mutations211

(see Fig. 3C and Appendix). Nevertheless, these theoretical results indicate that these co-localised compen-212

satory mutations are more likely to be accumulated, whereas compensatory mutations that are far apart213

from the previous deleterious mutations are more likely to be lost during subsequent selection for network214
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stability.215

Independent of location, we also investigated how different mutation size influences the probability of com-216

pensation in compromised networks. We found that compensation is more likely to be driven by large-effect217

mutations. Fig. 3B (solid line) presents the frequency of compensatory mutation against various intensities218

of up or down regulation among 10, 000 randomly-generated stable gene networks that had experienced a219

single deleterious mutation. For a randomly-chosen site in each network, we experimented with mutations220

across a range of regulatory strengths. As can be seen, larger regulation changes, both positive and negative,221

are up to a point associated with an increased frequency of compensatory mutation. However, the shape222

of the curve for compensatory mutations across all edges is not a symmetrical ‘V’. Rather, compensatory223

mutations occur more by positive changes to gene regulation than by negative changes. The explanation for224

this phenomenon is rooted in the fact that there are two edge types that can be affected by compensatory225

mutation: inter-gene regulation connecting two different genes and self-regulating edges. In the simulations,226

almost no compensatory mutations are both negative and self-regulating (see Appendix). The ‘V’ shape227

for only inter-gene regulation is almost symmetrical (see Appendix), suggesting that for these, negative and228

positive regulations are equally likely to be useful. It is true for both the negative and positive cases that229

compensatory mutation is increasingly likely with greater regulatory strength up to a certain extent.230

Although we found that compensatory mutation tends to positive, this is not a property special only231

to compensatory mutations. From Fig. S5A, we can see that there is more positive regulation in both232

initially-stable networks and networks with compensatory mutations, whereas deleterious mutations in com-233

promised networks tend to be more negative. By separating self- and non-self-regulatory edges, we find that234

compensatory mutations have a larger effect (in terms of shifting gene regulation) on self-regulatory edges235

than non-self-regulatory edges (see Fig. S5B and C). We then conduct similar experiments for networks with236

neutral mutations to investigate whether compensatory mutations have any special property in terms of237

mutation size. We find that, compared with the results of compensatory mutations, small-size mutations are238

more likely to be observed in networks with neutral mutations. Specifically, similar to the location experi-239

ments, we measured the frequency of a second mutation (neutral mutation) with different mutation effects240

that can retain the stability for a network that has already had one neutral mutation. From Fig. 3B (dashed241

line) we can see that that neutral mutations are more likely to be of small magnitude than large, and where242

they are large they are more likely to be positive than negative. Compensatory mutations are more likely to243

be of large magnitude than small, but are also more likely to be positive than negative.244

As with location, we also investigated the robustness of networks subject to mutations of different sizes.245

We found that patterns of shifting regulation-generating robustness are also quite different. Specifically,246

we compared robustness of stable networks having one deleterious mutation and compensatory mutation247
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with that of stable networks having two consecutive neutral mutations, as shown in Fig. 3D. In general, the248

robustness is significantly higher when compensatory mutation has a larger shift in gene regulation (see the249

solid line in Fig. 3D). Although networks with neutral mutations tend to have a similar pattern (see the250

dashed line in Fig. 3D), by measuring the percentage change in robustness (see Appendix), we can clearly251

see that size has a greater impact on robustness in compensatory mutations. Here again, it should also252

be noted that although networks with compensatory mutations exhibit a more profound biased change in253

robustness with respect to mutation size, their actual robustness is lower than that of networks with neutral254

mutations (see Fig. 3D). These theoretical results indicate that these large-effect compensatory mutations255

are more likely to be accumulated, whereas small-effect compensatory mutations are more likely to be lost256

by subsequent selection for network stability.257

Note that similar patterns to those described here are also observed in networks with different sizes and258

connectivity. See more supporting figures in the Appendix.259

Compensatory mutation generates regulatory complexity260

We now explore the long-term evolutionary consequences of compensatory mutations. Given the biases261

identified in the previous section concerning location and magnitude, we might predict that the effects262

of these two fundamental network properties would facilitate an altered neutral evolution, at least during263

periods of relaxed selection. Recall that we assume such relaxed periods will be interspersed between bouts264

of selection for network stability, and also that selection in our model favours network stability. We in fact do265

observe in our simulations an increase in the complexity of gene regulatory networks, but only in a context266

where they have been withdrawn from the selection for network stability for at least some proportion of267

generations. Specifically, we first generate a pool of 10, 000 stable networks (N = 10) with a simple ‘Star’268

topology (see Fig. 4A), then evolve the population under different evolutionary scenarios. Fig. 4B shows four269

evolutionary scenarios where the population is exposed to selection for network stability in every generation270

such that there is no opportunity for compensatory mutation. From the typical results (networks with a271

median connectivity), we find that:272

1. the median connectivity is the same as the initial population’s if it is evolved without mutation or273

recombination (only by drift),274

2. the median connectivity decreases if evolved under either a mutation but no recombination regime or275

a recombination but no mutation regime (although the network structures are greatly altered when276

invoking only recombination), and277
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Figure 4: Compensatory mutation generates regulatory complexity in stable networks without
an initial variation in network structure. The initial population pool was composed of 10, 000 sample
stable networks with N = 10 genes. These networks had a similar “Star” topology (one hub node and nine
non-hub nodes), varying network connectivity in [0.10, 0.26]. The detailed description of generating initial
population can be found in Appendix. A representative network from the initial population is shown in (A).
The initial population was evolved for 5000 generations with the selection for network stability (fRS= 0)
under no mutation and no recombination regime, mutation but no recombination regime, recombination but
no mutation regime, mutation and recombination regime (B). The initial population was also evolved for 5000
generations under relaxed selection regime (unstable networks will not be eliminated in generations under
relaxed selection) with frequency fRS = 1/10, 1/25, 1/50 (C). Note that compensatory mutation cannot
happen when the population is subject to selection for network stability, since no deleterious mutations
survive to be compensated. The representative networks were selected randomly with a median connectivity
in the evolved populations.

3. the median connectivity increases to an intermediate level if evolved under a regime allowing both278

mutation and recombination.279

Fig. 4C shows three evolutionary scenarios where the population is evolved with periods of relaxed280

selection, invoking mutation (including compensatory mutation) and recombination. From these typical and281

individual results (networks with a median connectivity), we can see that the median connectivity greatly282
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increases and is higher than in the case when the population is subjected exclusively to the selection for283

network stability so that no compensatory mutation can occur.284

We would like to quantify the impact of relaxed selection on regulatory complexity. In another experiment,285

we collect 10, 000 stable networks and then evolve them for 5, 000 generations, allowing both mutation and286

recombination. From Fig. S6, we can see that if there is no relaxed selection at all, the mean connectivity287

of the population is highly preserved during evolution, whereas the network connectivity increases if we288

allow compensatory mutations to occur in periods of relaxed selection. It should be noted that in the first289

experiment, as shown in Fig. 4, we fix the network structure but vary the network connectivity in the290

initial population, whereas we fix the network connectivity but vary the network structure in this second291

experiment. These results demonstrate that selection for network stability where it impedes deleterious and292

compensatory mutations constricts complexity, whereas compensatory mutations contribute to regulatory293

complexity as a part of neutral process.294

2 Discussion295

Compensatory mutations have long been considered the primary means by which low-fitness lineages296

might be able to be restored to high fitness [Levin et al., 2000, Crawford et al., 2007, Meer et al., 2010].297

More recently, Dunai et al. [2019] suggest compensatory mutation may account for robust adoption of costly298

traits that are of critical importance to an organism in certain circumstances, such as antibiotic resistance.299

Given that most mutations are believed to be deleterious at least initially, some such process would be300

essential for mutation to contribute to genetic innovation and evolution more generally. However, the extent301

of the role of compensatory mutations has often been considered to be negligible because they were considered302

to be highly improbable and therefore rare. As such, they have not been studied extensively, and many of303

their general properties have been unknown.304

If the results presented here in simulation hold for in vivo regulatory networks, then compensation305

may be far more probable and frequent than had previously been anticipated. Our results indicate that gene306

networks may by their nature be surprisingly robust, such that a wide variety of alterations to a compromised307

network may effect its recovery. Significantly, we find that the frequency of compensatory mutation — unlike308

deleterious mutations — is relatively invariant to the size of the network. This may mean that iterations309

of deleterious and compensatory mutation play a far larger role in evolution than previously thought. Our310

results provide a new account for why compensation can be so rapid, and also show a significant impact of311

effect size, both of which have been observed in the laboratory [Moura de Sousa et al., 2017, Dunai et al.,312

2019]. In fact, there is some indication that quasi-deleterious mutations such as initially-costly mutations313
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that promote antibiotic resistance, may produce a context wherein ‘compensatory’ mutations may find new314

adaptive fitness peaks, doing more therefore than mere compensation [Moura de Sousa et al., 2017].315

Taylor et al. [2015] have shown that a regulatory network can be rapidly rewired through de novo316

compensatory mutation. In our simulations, we also observed that the compensatory mutation can facilitate317

regulatory complexity in terms of increasing network complexity (Fig. 4 and Fig. S6). Key in our simulations318

were periods where networks evolved under neutral processes driven by biases in compensatory mutation,319

since the regulatory complexity was not directly adaptively selected. Therefore, we believe compensatory320

mutations may be expected to play an essential role in driving regulatory complexity through neutral or321

non-adaptive processes.322

Bouts of deleterious and compensatory mutations might well facilitate the transition of the regulatory323

network to new fitness peaks [Weinreich and Chao, 2005]. Compensatory mutations have been observed324

empirically to have a positive correlation with drug resistance mutations, where low-fitness lineages can create325

intrinsic selection pressure to mitigate their deleterious effects through compensatory mutations [Comas et al.,326

2012, Brandis et al., 2012, de Vos et al., 2013, Brandis and Hughes, 2013, Song et al., 2014, Dunai et al.,327

2019]. There is other supporting evidence that compensatory mutation can help the transition of lineages328

towards new fitness peaks [Martinez et al., 2014, Ivankov et al., 2014, Szamecz et al., 2014, Filteau et al.,329

2015]. Moreover, some studies also show that compensatory mutations can help increase plasmid stability,330

and thus facilitate adaptation [San Millan et al., 2014, Porter et al., 2015, Harrison et al., 2015]. Yet despite331

suggestions in the literature that peak shifts must occur through low-fitness genotypes [Wagner and Wright,332

2007, Romero and Arnold, 2009, Olson-Manning et al., 2012, Osada and Akashi, 2012, Barreto and Burton,333

2013], few theoretical studies have focused on how the formation of regulatory networks could be influenced334

by this process. We hope with our paper we have begun to redress this.335

Historically, interactions in mutations in vivo have been considered hard to measure and the results336

usually have weak statistical significance [West et al., 1998, 1999], though see Moura de Sousa et al. [2017].337

Where measurement is difficult, exploration of theoretical possibilities through simulation offers an ideal338

means to identify and test for logically-coherent scientific hypotheses and to discover unanticipated conse-339

quences of these. These unanticipated consequences are predictions arising logically from the hypotheses the340

model expresses — predictions that can then inform our search for evidence in vivo [Bryson et al., 2007].341

The ability to observe and manipulate thousands of modelled individuals in a matter of hours allows for a342

systematic exploration of largely unknown theoretical territory. In this paper, the extension of the previous343

simulation approaches, while primarily conceptual, is potentially of great theoretical importance. Unlike344

the previous research seminal to our own [Wagner, 1996, Siegal and Bergman, 2002, Azevedo et al., 2006],345

we have been able to assess the probability and impact of compensatory mutations, providing important346

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2020. ; https://doi.org/10.1101/2019.12.18.881276doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.881276
http://creativecommons.org/licenses/by/4.0/


theoretical underpinnings to explain known laboratory outcomes.347

The use of binary fitness outcomes (0/1 for unstable/stable networks) that are only periodically tested348

by selection for network stability (selection for network stability) is operationally quite useful. This allows349

us to avoid making unrealistic assumptions about the selection coefficient distribution, and to proceed on350

the assumption that moderately deleterious mutations may persist long enough to allow the accumulation351

of subsequent mutations, some of which may prove to be compensatory or even advantageous. Periodic352

assessment of the functional operation of networks, i.e., periods of selection for network stability, is still a353

necessary practical consideration. The fluctuating selection regime (periods of selection for network stability)354

modelled in this paper is certainly biologically realistic. For example, Siepielski et al. [2009b] conclude that355

selection is usually fluctuating following their study of the temporal dynamics of selection in a database356

which contains 5, 519 estimates of selection of wild populations. Similar arguments using empirical evidence357

can be found in Brachi et al. [2013], Gompert et al. [2014], Seppälä [2015] and Bijleveld et al. [2015].358

Previous work has been taken to indicate that compensatory mutation is not likely to play an impor-359

tant role in the evolution of independently acting genes. The frequency of deleterious mutation is low; the360

frequency at which a new mutation compensates for the previous deleterious mutation had been expected361

to be even lower. However, mutations do not just happen in independently-acting genes. There is substan-362

tial molecular evidence for mutations in genes which exhibit complex interactions with other genes [Wilke363

and Adami, 2001, Wilke et al., 2003, Beerenwinkel et al., 2007, Lehner, 2011, Rokyta et al., 2011, Park and364

Lehner, 2013, Connelly et al., 2014]. In fact, gene regulatory networks are more likely to be able to accommo-365

date deleterious mutations and therefore be available for compensatory mutations. The mutations simulated366

in models such as those presented here refer to mutations that occur in the binding sites of proteins at an367

enhancer, but not mutations in protein coding sequences. As such, their regulatory effects could be buffered368

by epigenetic neutrality, and evolve phenotypically neutral [Wagner, 1996, Espinosa-Soto et al., 2011]. The369

plasticity that evolves from such a system consequently increases the opportunity for compensatory mu-370

tations. The frequency at which deleterious mutations compromise gene regulatory pathways is likely to371

be substantially higher than that for an independently acting gene because there will inevitably be more372

possible sites to mutate. In this paper, we have demonstrated support for this possibility, that compensatory373

mutation could potentially be frequent (Fig. 2) and occur to some extent regardless of patterns of selection374

that the networks have been through (Fig. S2A and B). We have also shown that compensatory mutation375

can still occur even among seriously damaged networks (Fig. S2C). This is consistent with the findings of376

empirical studies, such as that by Sloan et al. [2014], who found that two Silene species with fast-evolving377

plastid and mitochondrial DNA exhibited increased amino acid sequence divergence in organelle genomes378

but not in cytosolic ribosomes. Given that the authors found no evidence that the observed pattern was379
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driven by positive selection, they concluded that the rapid organelle genome evolution had selected for com-380

pensatory mutations in nuclear-encoded proteins. More recently, both Moura de Sousa et al. [2017] and381

Dunai et al. [2019] find that compensatory mutation rather than reversion are actually fairly outcomes for382

bacteria developing resistance to multiple antibiotics at once. In our present paper, we have demonstrated383

theoretical support and explanation for these empirical findings, by showing that compensatory mutations384

can be greatly increased if the population evolves during a phase of relaxed selection regime (Fig. S2). Here,385

‘relaxed’ is more obviously a relative term. Organisms challenged by antibiotics are already stressed, and386

trade-off the costs of initial mutations with the benefits in surviving the antibiotic assault. In this climate,387

‘compensatory’ mutations are mutations selected because they mitigate these additional costs, reducing the388

chance that the mutations leading to antibiotic resistance are swept through reversion from the population.389

Although antibiotic resistance is obviously a problem in human contexts, more generally this sort of dynamic390

illustrates a context in which ‘relaxed’ selection might come into play — when a mutation produces both391

costs and benefits, or these vary with the ecological context of the organism.392

Many studies have shown that conventional de novo mutations are widely distributed throughout the393

genome and have a wide distribution of phenotypic effects, from complete lethality to weak benefit with394

respect to fitness [Sanjuán et al., 2004, Eyre-Walker and Keightley, 2007, Keightley and Eyre-Walker, 2007,395

Mezmouk and Ross-Ibarra, 2014]. Although there have been no predictive tests of the location of compen-396

satory mutations, empirical studies show that compensatory mutations are often found in proteins that are397

in or interact with proteins that exhibit a deleterious mutation [Poon et al., 2005, Poon and Chao, 2005,398

Davis et al., 2009, Comas et al., 2012, Bhattacherjee et al., 2015]. Our findings concur with this. In this399

paper, we have showed that there is a bias with respect to where compensatory mutations happen such400

that compensatory mutations tend to generate regulatory circuits that closely interact with each other (solid401

line, Fig. 3A), whereas neutral mutations tend to accumulate more evenly distributed and therefore further402

apart from each other (dashed line, Fig. 3A). We also found a bias with respect to the size compensatory403

mutations have in terms of shifting gene regulation, such that compensatory mutations generate regulatory404

circuits that have larger interactive impacts (solid line, Fig. 3B), compared to neutral mutations (dashed405

line, Fig. 3B).406

Previous work has indicated that the origin of mutational robustness may come from the non-adaptive407

results of biophysical principles or non-adaptive evolutionary forces [Ruths and Nakhleh, 2013, Payne and408

Wagner, 2015]. During periods of relaxed selection, regulatory networks with otherwise-lethal mutations409

have the potential to be compensated by additional mutations. If compensatory mutation occurs frequently410

enough and generates different patterns of gene regulation than networks with neutral mutations, then the411

processes observed here could alter which types of network are lost when selection for network stability412
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does occur. Systematic biases in the loss of particular network configurations could allow network features413

associated with compensatory mutation to accumulate in the population, even when the features do not414

at least initially confer differential reproductive success. In addition—as we have shown—the combination415

of recombination, deleterious mutation and compensatory mutation under moderately effective population416

sizes could then permit the evolution of increased regulatory complexity. In this paper, we have shown417

that stable networks with compensatory mutations generating a profound change in robustness compared418

to the impact on stable networks of neutral mutations (Fig. 3C and D). These results indicate that over419

time, compensatory mutations that occur during generations of relaxed selection could be biased such that420

regulatory circuits that closely interact and have larger interactive impacts are more likely to be maintained.421

We have also shown that, at least in our system, over time these can have profound impact on the complexity422

of the networks.423

Taken together, we believe these findings demonstrate that the nature of compensatory mutation has424

been misunderstood theoretically. Periods of relaxed selection (as per our model) or indeed of increased425

differential selection (as per ecological challenges e.g. of antibiotics) produce a context in which natural426

innovations may be tolerated long enough to be combined. Combining mutations allows for a larger range of427

genomic innovation. Both our models and the empirical data of others show a surprising level of resilience in428

complex biological systems. Our models indicate that resilience may scales well with increasing complexity.429

Overall, the biases that emerge in this process as innovations accumulate may be an important new factor430

in understanding the evolution of gene regulatory networks, and evolution more broadly.431

Methods432

We employed a well-established synthetic model of gene regulatory networks to simulate compensatory433

mutation; see Appendix for further in-depth description of our simulations. Here we only provide a more434

detailed explanation of the computational model used in this paper.435

For each individual in a finite population of size M , we consider an N ×N matrix W as a gene network436

that contains the regulatory interactions amongN genes. Each element wi,j (i, j = 1, 2, . . . , N) represents the437

regulatory effect on the expression of gene i of the product of gene j. The network connectivity parameter c438

determines the proportion of non-zero elements in the networkW . A zero entry means there is no interaction439

between two genes. Through gene interactions, the regulatory effect acts on each gene expression pattern.440

This can be denoted by a state vector S(t) = (s1(t), s2(t), . . . , si(t), . . . , sN (t)), where si(t) represents the441

expression level of gene (or concentrations of proteins) i at time t. Each value of expression state si(t) is442

within the interval [−1,+1] that expresses complete repression (−1) and complete activation (+1). For a443
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given gene regulatory networkW , the dynamics of S for each gene i is modelled by a set of coupled difference444

equations:445

si(t+ 1) = f

 N∑
j=1

wi,jsj(t) + εi

 , (1)

where f(·) is a sigmoidal function, and εi is a constant which reflects either a basal transcription rate of gene446

i or influences of upstream gene(s) on gene i. For reasons of computational convenience, we set εi = 0, and447

follow Siegal and Bergman [2002] and Azevedo et al. [2006] to define f(x) = 2/(1 + e−ax)− 1, where a is the448

activation constant determining the rate of change from complete repression to complete activation.449

In all the simulations here, we define network developmental stability as the progression from an arbitrary450

initial expression state, S(0), to an equilibrium expression state (reaching a fixed phenotypic pattern), SEQ,451

by iterating Equation (1) a fixed number of times, devT . If a given networkW can achieve stability over this452

developmental time period, it is termed ‘stable’; otherwise, it is labelled ‘unstable’. Note that this selection453

for network stability is also referred to as selection for network stability in which unstable networks will be454

eliminated. The equilibrium expression state can be reached when the following equation is met:455

1

τ

devT∑
θ=devT−τ

D
(
S(θ),S

)
≤ ξ, (2)

where ξ is a small positive integer and set to be 10−4 in all simulations, and D(S,S) =
∑N
i=1 (si − s′i)2

/
4N456

measures the difference between gene expression patterns S and S which is the average of the gene expression457

level over the time interval [devT − τ, devT − τ + 1, . . . , devT ], where τ is a time-constant characteristic for458

the developmental process under consideration, and depends on biochemical parameters, such as the rate459

of transcription or the time necessary to export mRNA into the cytoplasm for translation [Wagner, 1994].460

Unless otherwise specified, we used a = 100, devT = 100 and τ = 10 in all simulations, following previous461

studies [Wagner, 1996, Siegal and Bergman, 2002, Azevedo et al., 2006].462

Initialisation463

Each individual network in the population was generated with a gene regulatory matrix W associated464

with an expression state vector S(0). Specifically, the matrix was generated by randomly filling W with465

c×N2 non-zero elements wi,j that was drawn from a standard normal distribution N(0, 1). The associated466

initial expression state S(0) was also set by randomly choosing each si(0) = +1 or −1.467
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Mutation468

In the mutation operation, exactly one element wi,j picked at random in each regulatory matrixW would469

be replaced by w′i,j ∼ N(0, 1). Note that the mutation only occurs among non-zero elements. In other words,470

the mutation process will not change the topology of the original network W in terms of forming new edges471

or deleting existing edges between two genes.472

Recombination473

In some simulations presented in this paper, we allowed individual networks to recombine with each474

other. A recombinant was produced by picking two individuals and selecting rows of the W matrices from475

each parent with an equal probability. This process is similar to free recombination between units formed476

by each gene and its cis-regulatory elements, but with no recombination within regulatory regions.477

Strong and relaxed selection for network stability478

In the selection for network stability regime, only individuals which were able to attain developmental479

stability after the mutation process were selected. In contrast, all individuals can survive regardless of they480

were capable or incapable of reaching equilibrium when the selection for network stability was relaxed.481

Evolution482

The evolutionary simulations were performed under the reproduction-mutation-selection life cycle. The483

population size M was fixed in every generation throughout the evolution in all simulations. In typical484

asexual evolution, an individual was chosen at random to reproduce asexually by cloning itself and was485

then subjected to a single mutation. Similarly, in typical sexual evolution, two individuals were chosen at486

random to reproduce sexually by recombining two parent networks and then subjected to a single mutation.487

Depending on different patterns of selection, unstable networks were excluded (under the selection for network488

stability regime) or allowed to stay in the population (under the relaxed selection regime). This process was489

repeated until M number of networks were produced.490

Data Availability491

Simulation code for the simulations is available at https://bit.ly/2ExLhYd.492
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Supplementary Figures

Figure S1: The influence of the size and connectivity of a gene regulatory network on its initial
stability, robustness and frequency of compensatory mutation. For each network size (N = 5, 10,
15, 20, 30 and 40) with each connectivity given from a range of values in continuous intervals ([0.2, 1], step
size 0.02), we tested the proportion of gene networks that are stable based on an initial 10, 000 randomly
generated networks (A), the robustness of stable networks after exposure to a single round of mutation based
on an initial 10, 000 randomly generated stable networks (B), and the frequency of compensatory mutation
based on an initial 10, 000 randomly generated stable networks (C) (rescaled from Fig. 2). The shaded areas
represent 95% confidence intervals based on 100 independent runs.
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Figure S2: Compensatory mutations can occur in networks regardless of different patterns of
selection. For each network size (N = 5, 10, 15, 20, 30 and 40) with network connectivity c = 0.76, we
collected 10, 000 only stable, both stable and unstable, and only unstable networks with one to fifteen rounds
of mutation. For each round of mutation, each network was subjected to one single mutation (for unstable
networks) or two single mutations (for stable networks). Then, we measured the frequency of compensatory
mutation in networks that have been subjected to bouts of selection for network stability (A), networks that
have been subjected to bouts of relaxed selection (B), and networks with cumulative deleterious mutations
(C). The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S3: Relaxed selection stimulates compensation in gene regulatory networks. For each
network size (N = 5, 15, 10, 20, 30 and 40) with connectivity c = 0.76, we measured the number of
compensatory mutations occurring after the previous relaxed selection, which happened in every 2, 5, 10,
25, 50, 100, 200 and 500 generations. The reported results are the total number of compensatory mutations
(of 10, 000 networks) (A) and frequency of compensatory mutation (per network per relaxed selection cycle)
occurring over a total of 1, 000 generations for populations with different sizes (B). Error bars or shaded
areas represent 95% confidence intervals based on 100 independent runs.
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Figure S4: Examples of the spatial probability of compensatory mutation occurring on gene
networks. In both examples, N = 5 (A) and 20 (B), for a particular compromised network that was stable
initially, we executed one additional mutation round 1, 000 times on each edge. Then, the percentage of
each mutation on that edge that restored GRN stability after mutation was measured. Unmarked edges
had a CM 0% of the time. Note the solid line with width also indicates the probability an edge’s mutation
was compensatory, and the dashed line to represent the edges for which mutation never compensated this
particular deleterious mutation. The original deleterious mutation occurred on the edge marked in red.
Note: The directed edge represents the interaction between two connected genes. But we do not distinguish
negative or positive regulation in the provided examples.
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Figure S5: The distribution of regulation in initially-stable, compromised and restored networks.
For randomly generated stable networks with N = 5 and c = 0.4, we collected 10, 000 sample regulations. We
also collected 10, 000 sample regulation weights from deleterious mutations that compromised initially-stable
networks as well as from compensatory mutations that restored the stability of previously-broken networks.
We then measured the distributions in all regulatory edges (A), in self-regulatory edges (B) and ignoring
self-regulatory edges (C). Given that the regulations are continuous values, we grouped them into 19 bins
from [−4.5,+4.5] (step size 0.5). The error bars represent 95% confidence intervals based on 100 independent
runs.
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Figure S6: Compensatory mutation generates regulatory complexity in stable networks without
an initial variation in connectivity. For the network size N = 40 and the connectivity c = 0.15, we
collected 10, 000 stable networks, then evolved them for 5000 generations, allowing recombination at each
generation. In every 200 generations, we measured the network connectivity of the population (stable) in
which the relaxed selection occurs in every 2, 10, 25 50 and 200 generations. We also measured the network
connectivity of the population when there was no relaxed selection as a control group. Shaded areas represent
95% confidence intervals based on 10 independent runs.
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Supplementary Text

Estimating the relative frequency of compensatory mutation

To gain an impression of the properties of the initial gene regulatory networks, we first tested the prob-

ability of network stability in randomly-generated networks. As illustrated in Fig. S1A, smaller networks

are more likely to be stable. Moreover, the relative frequency of stability in networks with low levels of

connectivity is higher than that of networks with high levels of connectivity. This is in general accordance

with previous work, typically done at connectivity c = 0.75, e.g. Azevedo et al. [2006], which indicates that

larger networks with complex topology tend to be unstable.

In the second experiment, we explored the robustness of initially-stable networks; that is, we investigated

the probability that stable networks remain stable after a single round of mutation. Here, a single mutation

means exactly one non-zero entry in an individual’s genotype would be mutated. Given that the initially-

stable networks were collected from the original randomly-generated ones, it would seem reasonable to predict

that the small stable networks are more likely to break after one mutation round, since they contain fewer

pathways and a single mutation, therefore, has a greater proportional effect. However, the results in Fig. S1B

show the opposite effect: the stability of the small networks is still high. The mutation operation is effectively

an alternative way of generating new networks; thus, the mutated networks have the same properties as the

initial ones.

In our third experiment, we measured the compensatory mutation frequency in previously-stable net-

works. Specifically, we started from a population pool where each stable network was randomly generated.

Then, we exposed these initially-stable networks to a single round of mutation. We focused on those unstable

networks where each network contained a single deleterious mutation. Next, we exposed these compromised

networks to an additional round of mutation. Finally, we tested the stability of the resulting networks. The

stable networks at this point had experienced compensatory mutation. We then measured the frequency of

individuals that experienced compensatory mutation. As shown in Fig. S1C (also see Fig. 2, main text),

the frequency of compensatory mutation is largely scale invariant both to the network size and the network

connectivity.

Exploring strong and relaxed selection for network stability on compensatory

mutation frequency

In this set of experiments, we investigated the frequency of compensatory mutation after many generations

of both strong and relaxed selection for network stability to test whether compensatory mutation continues
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to occur even after lengthy evolution (see Fig. S2A and Fig. S2B). Specifically, under the selection for

network stability regime, we collected 10, 000 stable networks at each generation where each network in

the population was subjected to one single mutation. Then, we performed another round of mutation,

focusing on the unstable networks that resulted from the previous round, and measured the probability of

a second mutation that can restore the network stability of those compromised networks. Similarly, under

the relaxed selection regime, we collected 10, 000 networks at each generation where each network in the

population was subjected to one single mutation. However, for each relaxed selection generation, there were

both stable and unstable networks after the population was subjected to the single mutation, since we did

not perform selection restricting networks to being stable. The overall frequency of compensatory mutation

for the population during each relaxed selection generation was averaged over the results of stable networks

and unstable networks that were calculated separately.

In addition, we also measured the frequency of compensatory mutation among unstable networks during

each relaxed selection event to further confirm that compensatory mutation can occur even in seriously

damaged networks (see Fig. S2C). Specifically, we collected 10, 000 unstable networks at each generation

where each network in the population was subjected to one single mutation, so really in this case we had

selected against network stability. Then, we performed another round of mutations and measured the

probability of a second mutation that could restore network stability. Note that this set of experiments

is similar to those experiments described above, but here we only focus on unstable networks, whereas we

consider both stable and unstable networks in the relaxed selection regime.

Exploring the frequency of relaxed selection in simulating compensatory muta-

tions

In this set of experiments, we tested whether frequent relaxed selection can generate more compensatory

mutations (see Fig. S3A). Specifically, we collected a population pool of 10, 000 stable networks that were gen-

erated randomly. The initial population was then evolved under a relaxed selection regime with a frequency

of 1/2, 1/5, 1/10, 1/25, 1/100, 1/200 and 1/500 for a total of 1, 000 generations. Note that during relaxed

selection event, both stable and unstable networks can survive when the population is subjected to one single

round of mutation. The number of compensatory mutations was recorded immediately after each relaxed

selection event when the population was subjected to another single round of mutation. The reported results

are the total number of compensatory mutations (see Fig. S3A) and frequency of compensatory mutation

(per network per relaxed selection event, see Fig. S3B) arising over 1, 000 generations.
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Exploring population diversity for highly stable networks

In this set of experiments, we investigated how the population diversity is impacted in networks that

have been exposed to many generations of strong selection for network stability (see Fig. S7). Specifically, we

tested whether the increased compensatory mutation frequency shown in Fig. S2A was due to the property

of particular networks that had been selected for, or whether it was the property of a diverse population.

Following the measurement used in Azevedo et al. [2006], the genetic diversity is defined as:

H = 1−
n∑
i=1

p2i , (3)

where n is the total number of alleles, i.e., the unique values contained in the same site crossing all individual

networks, and pi is the frequency of allele i. The genetic variation in a population is calculated as the mean

gene diversity over non-zero sites of the interaction matrix for a given genotype W .

Figure S7: Population diversity of highly stable networks. For each network size (N = 5, 10, 15, 20, 30 and
40) with network connectivity c = 0.76, we tested population diversity for 10, 000 networks that had been
exposed to selection for network stability following up to fifteen rounds of mutation as described in Fig. S2A.
The error bars represent 95% confidence intervals based on 100 independent runs.

From Fig. S7, we can see that networks that have been though many generations of selection for network

stability can still maintain a high network diversity.
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Location of compensatory mutations

In this set of experiments, we first sought to visualise locations at which the compensatory mutations are

more likely to occur (see Fig. S4). To this end, in a set of compromised networks (those stable networks that

proved fragile to a single round of mutation), we marked the site of the deleterious mutation, then measured

the relative frequency of compensatory mutation that occurred at each possible site, including the site of the

deleterious mutation, within this compromised network. For each possible site, we measured the outcomes

over 1, 000 simulated mutations on that site (so that only the extent of regulation was mutated randomly,

not the location).

To quantify the distance between deleterious and (potentially) compensatory mutation, we first define

‘distance’ as used in this paper. Suppose a given gene regulatory network, denoted as W , has two marked

edges denoted as −−→AB (deleterious mutation) and −−→CD (compensatory mutation), where A, B, C and D

represent different genes in W and −→· marks the edge direction. The distance between −−→AB and −−→CD can be

calculated as

DIS
(−−→
AB,

−−→
CD

)
=



0 if A = C and B = D

1 if A = D and B = C

dis(A,C) + 1 if B and D /∈ path(A,C)

dis(A,C) if B or D ∈ path(A,C)

dis(A,C)− 1 if B and D ∈ path(A,C)

(4)

where dis(A,C) is the fewest edges possible from A to C and path(A,C) includes the vertices on the shortest

path between A and C in network W .

An example process of compensatory mutation in a gene regulatory network can be seen in Fig. S8. This

stable network can be compromised by a single deleterious mutation (marked in red) and compensated by

an additional mutation (marked in blue). According to Equation (4), the distance from deleterious mutation

site −→CA to compensatory mutation site −−→CE can be calculated as: DIS(
−→
CA,
−−→
CE) = 1.

Next, we compared the relative frequencies of compensatory mutation among gene networks whose marked

edges (caused by additional mutation) were 0, 1, 2, 3, and 4 steps away from the deleterious mutation (see

Fig. 3, main text, and also see Fig. S9). We also performed similar experiments for medium (N = 20) and

large networks (N = 40), as shown in Fig. S10 and Fig. S11.
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Figure S8: An example process of compensatory mutation in a gene regulatory network. The initially
stable gene network contains five genes: A, B, C, D and E. In the initial network (on the left side),
each directional edge represents the strength (weight) of interaction between the linked two genes. The
initial gene expression pattern is s(0) = (−1,−1,+1,+1,+1). In the compromised network (in the middle),
a mutation occurs on −→CA (indicated in red), which leads to the failure of stabilising the gene expression
patterns (marked by dashed circles). In the compensated network (on the right side), the compromised
network is fixed by an additional mutation that occurs on −−→CE (indicated in blue), reaching an equilibrium
expression sEQ = (−1,−1,+1,+1,+1).

Figure S9: The compensatory mutation location and distance distribution of all mutations relative to the
original deleterious mutation sites (Small Networks). For initially stable networks with size N = 5 and
connectivity c = 0.4, we first collected a pool of compromised networks with deleterious mutations after a
single mutation round. We then forced second mutations, classifying these as being 0 (on the same site),
1, 2, 3 and 4 steps away from the original deleterious mutations. For each of these mutation-site-distance
categories, we measured the probability that the mutation was compensatory (that it returned the network
to stability), based on 10, 000 sample networks collected for each distance category as shown in the solid line.
We also recorded the spatial distribution of second mutations (10, 000 sample networks) occurring randomly
in those compromised networks with respect to their original deleterious mutation sites, shown in the dashed
line. The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S10: The compensatory mutation location and distance distribution of all mutations relative to the
original deleterious mutation sites (Medium Networks). For initially stable networks with size N = 20 and
connectivity c = 0.2, we first collected a pool of compromised networks with deleterious mutations after a
single mutation round. We then forced second mutations, classifying these as being 0 (on the same site), 1,
2, 3, 4 and 5 steps away from the original deleterious mutations. For each of these mutation-site-distance
categories, we measured the probability that the mutation was compensatory (that it returned the network
to stability), based on 10, 000 sample networks collected for each distance category as shown in the solid line.
We also recorded the spatial distribution of second mutations (10, 000 sample networks) occurring randomly
in those compromised networks with respect to their original deleterious mutation sites, shown in the dashed
line. The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S11: The compensatory mutation location and distance distribution of all mutations relative to the
original deleterious mutation sites (Large Networks). For initially stable networks with size N = 40 and
connectivity c = 0.15, we first collected a pool of compromised networks with deleterious mutations after a
single mutation round. We then forced second mutations, classifying these as being 0 (on the same site), 1,
2, 3, 4 and 5 steps away from the original deleterious mutations. For each of these mutation-site-distance
categories, we measured the probability that the mutation was compensatory (that it returned the network
to stability), based on 10, 000 sample networks collected for each distance category as shown in the solid line.
We also recorded the spatial distribution of second mutations (10, 000 sample networks) occurring randomly
in those compromised networks with respect to their original deleterious mutation sites, shown in the dashed
line. The error bars represent 95% confidence intervals based on 100 independent runs.
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Exploring the size of gene regulation on compensatory mutation frequency

In this set of experiments, we investigated effective changes in gene regulation associated with these

mutations (see Fig. 3, main text, and also see Fig. S12). Specifically, we conducted experiments to measure

the frequency of compensatory mutation when the second mutation had an additional weight added to it.

We studied a range of weight changes from (w = [−5, 5]) with a step size of 0.05. For each step size, we

first performed one mutation round as usual on the initial population of stable networks, creating a sub-

population of 10, 000 compromised networks. Then, for these mutated networks we performed a second

mutation round; however, this time instead of replacing one entry in the interaction matrix with N(0, 1),

we added a fixed value w drawn from [−5, 5] to the original value of the randomly picked site. Then, we

measured the frequency of second mutations restoring the network stability. We also performed similar

experiments for medium (N = 20) and large networks (N = 40), as shown in Fig. S13 and Fig. S14.
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Figure S12: The influence of different intensities of gene regulations on the frequency of compensatory
mutation (Small Networks). We first collected 10, 000 sample networks that had been made unstable by a
single mutation from a pool of initially stable networks with N = 5 and c = 0.4. Then, we experimented with
how a new mutation of varying intensities of gene regulation altered the chances of restoring gene stability.
Specifically, we performed new mutations to those compromised networks with deleterious mutations by
adding a weight from [−5,+5] (step size 0.5) to the original regulatory impact, then assessed the resulting
patterns in all regulatory edges (A), in self-regulatory edges (B) and ignoring self-regulatory edges (C). The
shaded areas represent 95% confidence intervals based on 100 independent runs.
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Figure S13: The influence of different intensities of gene regulation on frequency of compensatory mutation
(Medium Networks). We first collected 10, 000 sample networks that had been made unstable by a single
mutation from a pool of initially stable networks with N = 20 and c = 0.2. Then, we experimented with
how a new mutation of varying intensities of gene regulation altered the chances of restoring gene stability.
Specifically, we performed new mutations to those compromised networks with deleterious mutations by
adding a weight from [−5,+5] (step size 0.5) to the original regulatory impact, then assessed the resulting
patterns in all regulatory edges (A), in self-regulatory edges (B) and ignoring self-regulatory edges (C). The
shaded areas represent 95% confidence intervals based on 100 independent runs.
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Figure S14: The influence of different intensities of gene regulation on frequency of compensatory mutation
(Large Networks). We first collected 10, 000 sample networks that had been made unstable by a single
mutation from a pool of initially stable networks with N = 40 and c = 0.15. Then, we experimented with
how a new mutation of varying intensities of gene regulation altered the chances of restoring gene stability.
Specifically, we performed new mutations to those compromised networks with deleterious mutations by
adding a weight from [−5,+5] (step size 0.5) to the original regulatory impact, then assessed the resulting
patterns in all regulatory edges (A), in self-regulatory edges (B) and ignoring self-regulatory edges (C). The
shaded areas represent 95% confidence intervals based on 100 independent runs.
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Exploring the distribution of regulation in initially-stable, compromised and re-

stored networks

In this set of experiments, we investigated the distribution of regulation in initially stable, compromised

and restored networks (see Fig. S5). Specifically, we collected 10, 000 sample regulatory values each from

edges of randomly generated stable networks, edges where deleterious mutations occurred (compromising

network stability), and edges where compensatory mutations occurred (restoring previously compromised

networks). We then measured their corresponding distributions, discriminating between self- and non-self-

regulatory edges. We also performed similar experiments for medium (N = 20) and large networks (N = 40),

as shown in Fig. S15 and Fig. S16.

Figure S15: The distribution of regulation in initially stable, compromised and restored networks (Medium
Networks). For randomly generated stable networks with N = 20 and c = 0.2, we collected 10, 000 sample
regulations. We also collected 10, 000 sample regulation weights from deleterious mutations that compromised
initially stable networks as well as from compensatory mutations that restored the stability of previously
broken networks. We then measured the distributions in all regulatory edges (A), in self-regulatory edges
(B) and ignoring self-regulatory edges (C). Given that the regulations are continuous values, we grouped
them into 19 bins from [−4.5,+4.5] (step size 0.5). The error bars represent 95% confidence intervals based
on 100 independent runs.
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Figure S16: The distribution of regulation in initially stable, compromised and restored networks (Large
Networks). For randomly generated stable networks with N = 40 and c = 0.15, we collected 10, 000 sample
regulations. We also collected 10, 000 sample regulation weights from deleterious mutations that compromised
initially stable networks as well as from compensatory mutations that restored the stability of previously
broken networks. We then measured the distributions in all regulatory edges (A), in self-regulatory edges
(B) and ignoring self-regulatory edges (C). Given that the regulations are continuous values, we grouped
them into 19 bins from [−4.5,+4.5] (step size 0.5). The error bars represent 95% confidence intervals based
on 100 independent runs.
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Exploring properties of location and size effects in neutral mutations

In this set of experiments, we investigated properties of location and size effects in neutral mutations

which served as control groups for solid lines in Fig. 3A and B, main text, Specifically, to test the location

effect, we collected a population pool of stable networks that had been subjected to one round of mutation

(neutral). Then, we measured the probability of stable networks after performing a second mutation that

was 0, 1, 2, 3, and 4 steps away from the previous neutral mutation site based on 10, 000 sample networks for

each distance category (see dashed line in Fig. 3A). Similarly, to test the mutation size effect, we collected

a population pool of stable networks that had been subjected to one round of mutation (neutral). Then,

we measured the probability of stable networks after performing a second mutation that had a particular

shift in gene regulation from [−5,+5] based on 10, 000 sample networks for each shifted-weight category (see

dashed line in Fig. 3B). In both tests for location and size effects, we also performed similar experiments for

medium (N = 20) and large networks (N = 40), as shown in Fig. S17 and Fig. S18.

Figure S17: Location effect in networks with neutral mutations (Medium and Large Networks).
For medium networks (N = 20, c = 0.2) and large networks (N = 40, c = 0.15), we first collected a pool of
stable networks with neutral mutations after a single mutation round. We then forced second mutations,
classifying these as being 0 (on the same site), 1, 2, 3 and 4 steps away from the previous neutral mutations.
For each of these mutation-site-distance categories, we measured the probability that the mutation was
neutral (did not impair network stability) based on 10, 000 sample networks collected for each distance
category. The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S18: Mutation size effect in networks with neutral mutations (Medium and Large Net-
works). We first collected 10, 000 stable networks with neutral mutations after a single mutation round from
a pool of initially stable medium networks (N = 20, c = 0.2) and large networks (N = 40, c = 0.15). Then,
we experimented with how new mutations of varying intensities of gene regulation altered the chance of
retaining network stability. Specifically, we performed new mutations to those networks with neutral muta-
tions by adding a weight from [−5,+5] (step size 1 and with four additional regulation shifts: −0.5,−0.1, 0.1
and 0.5) to the original regulatory impact, then assessed the resulting patterns. The error bars represent
95% confidence intervals based on 100 independent runs.
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Exploring the impact of distance and size effects on network robustness

In this set of experiments, we explored the effects of location and mutation size on robustness in networks

with one deleterious mutation and one compensatory mutation and in networks with two consecutive neu-

tral mutations to investigate whether networks with compensatory mutations have a different evolutionary

consequence compare with networks with neutral mutations (see Fig. 3C and D and also see Fig. S19 and

Fig. S22).

Specifically, to test the distance effect, we collected 10, 000 sample networks at each distance (between

deleterious mutation and compensatory mutation). Then, for each category of distance, we measured the

proportion of stable networks after one additional round of single mutation. The reported results are both

actual robustness (see the solid line in Fig. S19A) and percentage change in robustness (see the solid line

in Fig. S19B). Similarly, for the control group, instead of collecting networks that were subjected to one

deleterious mutation and one subsequent compensatory mutation, we collected 10, 000 sample networks that

were subjected to two consecutive neutral mutations at each distance (between two neutral mutations), and

then assessed the actual robustness (see the dashed line in Fig. S19A) as well as the percentage of robustness

change (see the dashed line in Fig. S19B). We also performed similar experiments for medium (N = 20) and

large networks (N = 40), as shown in Fig. S20 and Fig. S21.

Likewise, to test size effect, we collected 10, 000 sample networks that were compensated by mutations

with different shifts in gene regulation. Then, for each category of mutation size, we measured the proportion

of stable networks after one additional round of single mutation. The reported results are both actual

robustness (see the solid line in Fig. S22A) and percentage change in robustness (see the solid line in

Fig. S22B). Similarly, for the control group, instead of collecting networks that were subjected to one normal

deleterious mutation and one subsequent compensatory mutation with different shifts in gene regulation,

we collected 10, 000 sample networks that were subjected to two consecutive neutral mutations, one normal

neutral mutation and the other neutral mutation with different shifts in gene regulation, and then assessed

the actual robustness (see the dashed line in Fig. S22A) as well as the percentage of robustness change

(see the dashed line in Fig. S22B). We also performed similar experiments for medium (N = 20) and large

networks (N = 40), as shown in Fig. S23 and Fig. S24.
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Figure S19: The impact of distance effect on network robustness (Small Networks). For small
networks (N = 5, c = 0.4), we collected 10, 000 sample stable networks that were subjected one deleterious
mutation and then restored by one subsequent compensatory mutation that was 0, 1, 2 and 3 steps away
from the previous deleterious mutation. The sample networks for control group were collected in a similar
way, except that the networks were subjected to two consecutive neutral mutations. Then, we assessed
robustness of sample networks at each distance step. The reported results are actual robustness (A), and
change in robustness (B) (the actual robustness was normalised by subtracting the minimal value among all
categories, and then divided by the minimal value). The error bars represent 95% confidence intervals based
on 100 independent runs.
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Figure S20: The impact of distance effect on network robustness (Medium Networks). For
medium networks (N = 20, c = 0.2), we collected 10, 000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation that was 0, 1, 2, 3 and
4 steps away from the previous deleterious mutation. The sample networks for the control group were
collected in a similar way, except that the networks were subjected to two consecutive neutral mutations.
Then, we assessed the robustness of the sample networks at each distance step. The reported results are
actual robustness (A), and change in robustness (B) (the actual robustness was normalised by subtracting
the minimal value among all categories, and then dividing by the minimal value). The error bars represent
95% confidence intervals based on 100 independent runs.
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Figure S21: The impact of distance effect on network robustness (Large Networks). For large
networks (N = 40, c = 0.15), we collected 10, 000 sample stable networks that were subjected one deleterious
mutation and then restored by one subsequent compensatory mutation that was 0, 1, 2, 3 and 4 steps away
from the previous deleterious mutation. The sample networks for the control group were collected in a similar
way, except that the networks were subjected to two consecutive neutral mutations. Then, we assessed the
robustness of the sample networks at each distance step. The reported results are actual robustness (A), and
change in robustness (B) (the actual robustness was normalised by subtracting the minimal value among
all categories, and then dividing by the minimal value). The error bars represent 95% confidence intervals
based on 100 independent runs.
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Figure S22: The impact of mutation size effect on network robustness (Small Networks). For
small networks (N = 5, c = 0.4), we collected 10, 000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation with different shifts in
gene regulation from [−5,+5] (step size 1 and with four additional regulation shifts: −0.5, −0.1, 0.1 and
0.5). The sample networks for control group were collected in a similar way, except that the networks were
subjected to two consecutive neutral mutations. Note that the second neutral mutation has different shifts
in gene regulation as the compensatory mutation. Then, we assessed robustness of sample networks at
each category. The reported results are actual robustness (A), and change in robustness (B) (the actual
robustness was normalised by subtracting the minimal value among all categories, and then divided by the
minimal value). The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S23: The impact of mutation size effect on network robustness (Medium Networks). For
medium networks (N = 20, c = 0.2), we collected 10, 000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation with different shifts in
gene regulation from [−5,+5] (step size 1 and with four additional regulation shifts: −0.5, −0.1, 0.1 and 0.5).
The sample networks for the control group were collected in a similar way, except that the networks were
subjected to two consecutive neutral mutations. Note that the second neutral mutation has different shifts
in gene regulation to the compensatory mutation. Then, we assessed the robustness of the sample networks
at each category. The reported results are actual robustness (A), and change in robustness (B) (the actual
robustness was normalised by subtracting the minimal value among all categories, and then dividing by the
minimal value). The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S24: The impact of mutation size effect on network robustness (Large Networks). For
large networks (N = 40, c = 0.15), we collected 10, 000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation with different shifts in
gene regulation from [−5,+5] (step size 1 and with four additional regulation shifts: −0.5, −0.1, 0.1 and 0.5).
The sample networks for the control group were collected in a similar way, except that the networks were
subjected to two consecutive neutral mutations. Note that the second neutral mutation has different shifts
in gene regulation to the compensatory mutation. Then, we assessed the robustness of the sample networks
at each category. The reported results are actual robustness (A), and change in robustness (B) (the actual
robustness was normalised by subtracting the minimal value among all categories, and then dividing by the
minimal value). The error bars represent 95% confidence intervals based on 100 independent runs.

57

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2020. ; https://doi.org/10.1101/2019.12.18.881276doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.881276
http://creativecommons.org/licenses/by/4.0/


Exploring how network connectivity evolves under a relaxed selection regime

In this set of experiments, we investigated whether regulatory complexity (increased network connectivity)

could arise under a relaxed selection regime where compensatory mutations could occur and accumulate (see

Fig. 4 and Fig. S6).

In the first set of experiments, we tested whether we could observe greater complexity arising using a

population pool of 10, 000 stable networks of N = 10 genes with a simple ‘Star’ topology (see fig 4, main

text). Specifically, the initial population pool was generated using the following rules:

• Randomly select a gene to be the hub node.

• There is at least one edge between the hub node and non-hub nodes (either inward or outward); there

is a possibility (0.5) of having both inward and outward edges.

• Each node has a possibility (0.5) of having a self-regulatory edge (including the hub node).

• The value (interaction strength) of each edge is drawn from the standard normal distribution N(0, 1).

In theory, for network size N = 10, the minimum connectivity is cmin = 0.09 (9 edges) and the maximum

connectivity is cmax = 0.28 (28 edges). In the randomly generated initial population pool used in this paper,

the minimum connectivity was cmin = 0.10 (10 edges), the maximum connectivity was cmax = 0.26 (26

edges), the median connectivity was c̃ = 0.17 (17 edges) and the average connectivity was c̄ ≈ 0.17. Then,

the initial population was evolved for 5, 000 generations under strong and relaxed selection regimes: In four

scenarios with selection for network stability, the initial population was evolved under: a no mutation and no

recombination regime, a mutation but no recombination regime, a recombination but no mutation regime,

a mutation and recombination; in three other scenarios, the initial population was evolved under a relaxed

selection regime with a frequency of 1/10, 1/25, and 1/50. The statistical details for connectivity in initial

and evolved populations can be found in Table S1. Note that compensatory mutation could only occur

during periods of relaxed selection.

In order to further test the hypothesis that relaxed selection can facilitate regulatory complexity, in

the second set of experiments, we further investigated how network connectivity evolves under a relaxed

selection regime using randomly generated networks (see Fig. S6). Specifically, for a network size N = 40

with connectivity c = 0.15, we collected 10, 000 stable networks, each of which had the same initial gene

expression pattern, all activation, i.e., s(0) = (+1,+1, . . . ,+1). This population was then evolved for 5, 000

generations, in this case allowing for recombination with other individuals from the same generation. Note

that in the previously-described experiments in this paper, a mutation could not change the topology of

an individual network; that is, it could not change zero elements into non-zero or vice versa. In contrast,
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Table S1: Basic statistics of evolved networks with a ‘Star’ topology

Medium Mean SD (E − 2)

Init. 0.17 0.17 2.17

No Mut. & No Rec. 0.17 0.17 3.94

Mut. & No Rec. 0.11 0.11 4.14E − 13

Rec. & No Mut. 0.11 0.11 2.19

Mut. & Rec. 0.21 0.20 4.42

Mut. & Rec. (fRS = 1/10) 0.30 0.30 0.43

Mut. & Rec. (fRS = 1/25) 0.34 0.34 0.47

Mut. & Rec. (fRS = 1/50) 0.31 0.31 0.51

SD: Standard Deviation

recombination can alter the topology if the non-zero sites are different in individual networks. The reported

results are the mean network connectivity of all individuals in the population in every 200 generations under

different frequencies of relaxed selection. Note that network connectivity was measured in the next generation

of network stability selection immediately after the previous relaxed selection; therefore, we only report the

results in stable networks.
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