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ABSTRACT 11 

Single-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal 12 

dynamics of RNA biogenesis and decay. Here we present single-cell nascent transcript tagging 13 

sequencing (scNT-Seq), a method for massively parallel analysis of nascent and pre-existing RNAs from 14 

the same cell. This droplet microfluidics-based method enables high-throughput chemical conversion on 15 

barcoded beads, efficiently marking metabolically labeled nascent transcripts with T-to-C substitutions. By 16 

simultaneously measuring nascent and pre-existing transcriptomes, scNT-Seq reveals neuronal subtype-17 

specific gene regulatory networks and time-resolved RNA trajectories in response to brief (minutes) 18 

versus sustained (hours) neuronal activation. Integrating scNT-Seq with genetic perturbation reveals that 19 

DNA methylcytosine dioxygenases may inhibit stepwise transition from pluripotent embryonic stem cell 20 

state to intermediate and totipotent two-cell-embryo-like (2C-like) states by promoting global nascent 21 

transcription. Furthermore, pulse-chase scNT-Seq enables transcriptome-wide measurements of RNA 22 

stability in rare 2C-like cells. Time-resolved single-cell transcriptomic analysis thus opens new lines of 23 

inquiry regarding cell-type-specific RNA regulatory mechanisms.  24 
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INTRODUCTION 25 

Dynamic changes in RNA levels are regulated by the interplay of RNA transcription, processing, and 26 

degradation1, 2. Understanding the mechanisms by which the transcriptome is regulated in functionally 27 

diverse cell-types within multi-cellular organisms thus requires cell-type-specific measurements of the 28 

kinetics of RNA biogenesis and decay. Recent advances in single-cell RNA sequencing (scRNA-Seq) 29 

technologies are leading to a more complete understanding of heterogeneity in cell types and states3. 30 

However, standard scRNA-Seq methods capture a mixture of newly synthesized and pre-existing RNAs 31 

without being able to directly reveal nascent RNA dynamics. 32 

Accurately capturing changes in the nascent transcriptome over time at single-cell resolution is of 33 

particular interest because measuring nascent RNAs can reveal immediate regulatory changes in 34 

response to developmental, environmental, metabolic, and pathological signals4. Commonly used 35 

approaches for distinguishing nascent from pre-existing RNAs of the same population of transcripts rely 36 

on metabolic labeling that employs thiol-labeled nucleoside analogs such as 4-thiouridine (4sU) and 37 

subsequent biochemical enrichment of metabolically labeled RNAs2. Although these methods have 38 

yielded unprecedented insights into the regulation of RNA dynamics, they require ample starting material 39 

and present challenges for enrichment normalization. Several approaches have recently been developed 40 

to chemically convert 4sU into cytidine analogs, yielding uracil-to-cytosine (U-to-C) substitutions that label 41 

nascent RNAs after reverse transcription5-7. These chemical nucleotide conversion methods allow for 42 

direct measurement of temporal information about cellular RNAs in a sequencing experiment without 43 

biochemical enrichment. Recent studies integrated standard plate-based single-cell RNA-Seq method 44 

with one of these chemical methods (i.e. thiol(SH)-linked alkylation for the metabolic sequencing of RNA 45 

(SLAM)-Seq)8, 9, demonstrating the feasibility of studying nascent transcriptomes at single-cell levels. 46 

However, these plate-based single-cell SLAM-Seq methods suffer from several limitations. First, they are 47 

costly, and the associated library preparation steps are time-consuming, prohibiting it for large-scale 48 

single-cell analysis of highly heterogeneous cell populations. Second, these methods lack unique 49 

molecular identifiers (UMIs), preventing accurate quantification of the nascent transcript levels. 50 

To overcome these constraints, we developed single-cell nascent transcript tagging sequencing (scNT-51 

Seq), a high-throughput and UMI-based nascent scRNA-Seq approach. In scNT-Seq, integration of 52 

metabolic RNA labeling, droplet microfluidics, and chemically induced recoding of 4sU to cytosine analog 53 

permits highly scalable and time-resolved single-cell analysis of cellular RNA dynamics. We demonstrate 54 

that the method is easy to set up and substantially improves the time and cost associated with 55 

simultaneous single-cell analysis of nascent and pre-existing transcriptomes. We show scNT-Seq enables 56 

more detailed characterization of gene regulatory networks and temporal RNA trajectories than single-cell 57 

whole-transcriptome measurements alone. 58 

 59 
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RESULTS 60 

Development and validation of scNT-Seq. To enable nascent and pre-existing transcripts from the 61 

same cell to be analyzed in a scalable manner, we focused on the Drop-Seq platform because its unique 62 

barcoded bead design affords both immobilization of RNAs for efficient chemical conversion reactions 63 

and UMI-based high-throughput scRNA-Seq analysis, and this droplet microfluidics platform has been 64 

widely adopted10-14. The scNT-Seq consists of the following key steps (Fig. 1a): (1) metabolically labeling 65 

of cells with 4sU for a temporally defined time period; (2-3) co-encapsulating each individual cell with a 66 

barcoded oligo-dT primer coated bead in a nanoliter-scale droplet which captures both nascent and pre-67 

existing RNAs; (4) performing 4sU chemical conversion on pooled barcoded beads in one reaction after 68 

droplet breakage; (5-8) reverse transcription, cDNA amplification, tagmentation, indexing PCR, and 69 

sequencing; and (9) using a UMI-based statistical model to analyze T-to-C substitutions within transcripts 70 

and infer the nascent transcript fraction at single-cell level.  71 

To identify the optimal reaction conditions on barcoded beads, we first explored two independent 72 

chemical conversion methods (TimeLapse-Seq: 2,2,2-trifluoroethylamine (TFEA)/sodium periodate 73 

(NaIO4)-based 4sU conversion; SLAM-Seq: iodoacetamide (IAA)-based conversion) and validated their 74 

performance with species-mixing experiments using cultured mouse embryonic stem cells (mESCs) and 75 

human K562 cells. This analysis indicates that TFEA/NaIO4-based scNT-Seq substantially outperforms 76 

the IAA-based assay in terms of mRNA recovery rates (Fig. 1b). Furthermore, the collision rate is 77 

comparable between TFEA/NaIO4-based scNT-Seq and standard Drop-Seq (Fig. 1b), demonstrating the 78 

specificity of scNT-Seq in analyzing single-cell transcriptomes. Shallow sequencing of mESCs under 79 

different treatment conditions showed that TFEA/NaIO4-based scNT-Seq identified a similar number of 80 

genes or UMIs per cell compared to standard Drop-Seq (Supplementary Fig. 1a). Aggregated single-cell 81 

nascent or pre-existing transcriptomes were highly correlated between replicates (Supplementary Fig. 82 

1b). Further analysis of K562 cells revealed that only 4sU labeling and TFEA/NaIO4 treatment resulted in 83 

a substantial increase in T-to-C substitution (Fig. 1c) and in UMIs that contained one or more such 84 

substitutions (Fig. 1d, e). Notably, TFEA/NaIO4 chemical treatment works efficiently with both freshly 85 

isolated and cryo-preserved (methanol-fixed) cells (Supplementary Fig. 1c), demonstrating the versatility 86 

of scNT-Seq. Collectively, these data indicate that TFEA/NaIO4-based scNT-Seq is capable of efficiently 87 

detecting nascent transcripts at single-cell resolution. 88 

 89 

Application of scNT-Seq to study neuronal activity-dependent nascent transcription and 90 
regulatory networks. 91 

Neuronal activity induces expression of hundreds of activity-regulated genes (ARGs) in the vertebrate 92 

brain, leading to new protein synthesis and epigenetic changes necessary for short- and long-term 93 

memories of experiences. Thus, the coupling of synaptic activity to nascent transcription in the nucleus 94 

allows neurons to both respond dynamically to their immediate environment, and to store information 95 
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stably15. Recent studies suggest that different patterns of neuronal activity could induce a distinct set of 96 

ARGs16. To investigate cell-type-specific nascent transcription in response to distinct activity-duration 97 

patterns (brief versus sustained stimulation), we applied scNT-Seq to primary cortical neuronal cultures, 98 

derived from mouse cortex (embryonic day 16 (E16)), which contains heterogeneous populations of 99 

neuronal subtypes and undifferentiated neural progenitor cells. 100 

To detect activity-regulated nascent transcriptional responses, we metabolically labeled primary mouse 101 

cortical cultures (200 μM 4sU) for two hours and stimulated the cells with different durations of neuronal 102 

activity (0, 15, 30, 60 and 120 min of potassium chloride (KCl)-mediated membrane depolarization) (Fig. 103 

2a). After filtering low-quality cells and potential doublets, we retained 20,547 single-cell transcriptomes 104 

from five time-points (Fig. 2b and Supplementary Table 1). After sample integration, principal 105 

component analysis (PCA), graph-based clustering, and visualization by Uniform Manifold Approximation 106 

and Projection (UMAP), we identified nine major cell-types based on known marker genes: Neurod6+ 107 

cortical excitatory neurons (Ex, 68.5%), four Gad1+ inhibitory neuronal subtypes (Inh1-4, 13.9% in total), 108 

Dlx1/Dlx2+ inhibitory neuronal precursors (Inh-NP: 1.7%), two sub-populations of Nes/Sox2+ excitatory 109 

neuronal precursors (Ex-NP1/2: 10.4% in total), and Nes/Aldh1l1+ radial glia (RG: 5.5%) (Fig. 2b and 110 

Supplementary Fig. 2b, c). 111 

We next sought to distinguish nascent from pre-existing RNAs by counting and statistically modeling T-to-112 

C substitutions in transcripts (UMIs), an approach that overcomes the problem of incomplete 4sU labeling 113 

of nascent transcripts (up to 50% of all reads originated from new RNAs may not contain T-to-C 114 

substitutions)17. The quantification accuracy is further improved by UMI-based analysis, which 115 

substantially increases the number of uridines or T-to-C substitutions covered in each transcript 116 

compared to the analysis of individual sequencing reads (Supplementary Fig. 3a, b). After statistical 117 

correction, we obtained reliable measurements of nascent RNA faction for both activity-induced genes 118 

(e.g., Fos, ~90% nascent/total) and slow turnover house-keeping genes (e.g., Mapt, <5% nascent/total) in 119 

excitatory neurons (Supplementary Fig. 3c, d).  120 

Furthermore, sub-clustering of nascent (upper) or pre-existing (lower) transcriptomes derived from 121 

randomly sampled excitatory neurons could readily separate nascent, but not pre-existing single-cell 122 

transcriptomes in an activity-pattern dependent manner (right panels in Fig. 2b). In contrast, nascent 123 

transcriptomes of undifferentiated excitatory neural precursors (Ex-NP/RG) did not exhibit similar 124 

distributions (Supplementary Fig. 4a). Next, we directly examined how nascent transcription of classic 125 

ARGs are induced in different cell-types in response to distinct activity-patterns. While some ARGs, such 126 

as Jun and Btg2, were specifically induced in Ex neurons upon activation, other ARGs (e.g., Egr1, Fos, 127 

and Npas4), were broadly induced in many cell-types including non-neuronal cells, albeit with different 128 

magnitudes and response curves (Fig. 2c, Supplementary Fig. 4b). There was little to no change at pre-129 

existing levels upon activation of Ex neurons (Fig. 2c). Together, these results suggest single-cell 130 
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nascent transcriptome analysis by scNT-Seq can accurately detect cell-type-specific, activity-induced 131 

changes in nascent transcription within the timescale of minutes to hours. 132 

Recent advances in computational analysis enable identification of specific gene regulatory networks 133 

(GRNs, also known as regulon of a transcription factor (TF)) underlying stable cell states by linking cis-134 

regulatory sequences to single-cell gene expression. Since the regulon is scored as a whole, instead of 135 

using the expression of individual genes, this approach is more robust against experimental dropouts or 136 

stochastic variation of gene expression due to transcriptional bursting. We reasoned that applying such 137 

an approach to nascent transcriptomes derived from scNT-Seq may allow for analysis of regulons 138 

underlying dynamic cell states induced by external stimuli such as neuronal activity.  By applying single-139 

cell regulatory network inference and clustering (SCENIC)18 to statistically-corrected nascent and pre-140 

existing single-cell transcriptomes, we identified 79 regulons with significant cis-regulatory motif 141 

enrichment showing significant changes in response to at least one activity-pattern (Fig. 2d, 142 

Supplementary Fig. 5).  Many early-response ARGs encode TFs that regulate a subsequent wave of 143 

late-response gene expression. SCENIC analysis of nascent transcriptomes revealed neuronal activity-144 

dependent increase in TF regulon activity of well-established IEG TFs (e.g., Fos, Jun, and Egr family of 145 

TFs) as well as constitutively expressed TFs such as Srf and Mef2, both of which are activated by 146 

multiple calcium-dependent signaling pathways and undergo post-translational modifications (e.g., 147 

phosphorylation) in response to neuronal activity (Fig. 2d). Thus, these TFs represent a group of TFs that 148 

are the main mediator of activity-dependent nascent transcription. This group also included several TFs 149 

that have not been previously implicated in neuronal activation, including Maff and Hspa5, both of which 150 

exhibited higher expression and regulon activity upon activation (Fig. 2d). In addition, both Rfx3, a 151 

ciliogenic TF19, and the neural cell fate regulator Pou3f120 were identified as potential novel regulators 152 

induced by neuronal activity. Furthermore, we observed regulon activity of cell-type-specific TFs 153 

(Neurod1/2 for Ex, Sox2/3 for Ex-NP and Dlx1/2 for Inh), which are associated with stable cell-type 154 

identities and detected in both nascent and pre-existing transcriptomes (Fig. 2d). Collectively, these data 155 

suggest that scNT-Seq allows for the analysis of cell-type-specific TF regulons that underly the dynamic 156 

cellular responses of both nascent and pre-existing transcriptomes to acute and sustained stimuli. 157 

 158 

scNT-Seq enables nascent transcription-based RNA velocity analysis  159 

A fundamental question in gene regulation is how transcriptional states in single cells change over time in 160 

response to both acute (minutes) and sustained (hours to days) external stimuli. Recent work showed 161 

that the time derivative of the gene expression state, termed “RNA velocity,” can be estimated by 162 

distinguishing between unspliced (“new” intronic reads) and spliced (“old” exonic reads) mRNAs in 163 

scRNA-Seq datasets21. The RNA velocity measurement can predict the future state of individual cells on 164 

a timescale of hours. Because ultra-short metabolic labeling (5 minutes of 4sU pulse) can be used to 165 

identify transient RNAs22 and scNT-Seq enables direct measurements of nascent and pre-existing 166 
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transcripts from the same cell, we next sought to augment the RNA velocity model to predict rapid cell 167 

state changes by replacing unspliced/spliced read levels with UMI-based nascent and total RNA levels. 168 

We focused on the excitatory neurons as this population of neurons robustly responds to neuronal 169 

activation. To compare unspliced/spliced ratio-based RNA velocity (termed “splicing RNA velocity”) and 170 

nascent RNA fraction-based velocity (termed “nascent RNA velocity”) directly, we projected and aligned 171 

both velocity fields onto the same UMAP plot (Fig. 3a). While splicing RNA velocity showed a steady 172 

directional flow (arrows) from 60 to 120 min (left in Fig. 3a), nascent RNA velocity revealed two distinct 173 

phases of velocity flows (early phase: 15 to 30 min; late phase: 60 to 120 min) (right in Fig. 3a). Thus, our 174 

analyses are consistent with recent reports that these two types of velocity measurements convey 175 

different but complementary information on the future state of a cell8, 21.  176 

Nascent RNA velocity is grounded in direct measurements of metabolically labeled nascent transcription, 177 

and this approach promises to improve quantitative analysis of the dynamics of cell states, particularly for 178 

the analysis of transient and dynamic responses to rapid external stimulation. Indeed, nascent RNA 179 

velocity (area under the receiver operating characteristic curve (AUC) value = 82.5%) outperformed 180 

splicing RNA velocity (AUC=51.5%) analysis in predicting the activity-induced primary response genes 181 

(PRGs, 137 genes) that were identified in targeted bulk RNA-seq analysis of primary cortical neurons16 182 

(Fig. 3b). These results show that nascent RNA velocity is more reliable in revealing the rapid 183 

transcriptional changes following acute neuronal activation.  184 

To further explore the molecular basis underlying the two distinct phases of nascent RNA velocity flows, 185 

we identified the TF regulons that are significantly associated with early- (n=24; induced at 15 or 30 min) 186 

or late-response (n=73; induced at 60 or 120 min) genes (Fig. 3c, Supplementary Fig. 4c). We further 187 

projected aggregated nascent RNA levels of early- and late-response genes onto respective RNA velocity 188 

fields to visualize the relationship between distinct activity-patterns and ARG induction (Fig. 3d).  Next, 189 

we projected TF regulon activity onto nascent RNA velocity field, revealing distinct activity patterns of TFs 190 

primarily associated with either early- (Jun) or late- (Mef2d) response genes in dynamic cell state 191 

changes (Fig. 3e). Together, these results indicate that integrative analysis of nascent RNA velocity and 192 

TF regulon activity can be a powerful approach to reveal molecular insights into dynamic cellular 193 

processes. 194 

 195 

scNT-Seq captures changes in nascent transcription during the pluripotent-to-totipotent stem cell 196 
state transition. 197 

Determining temporal RNA dynamics such as nascent transcriptional events within rare, transient cell 198 

populations is critical to understanding cell state transition but has remained a significant challenge for 199 

stem cell research. Recent advances in multiplex single-molecule imaging using sequential fluorescence 200 

in situ hybridization (seqFISH) and intron probes allows for the detection of nascent transcription sites at 201 

the single-cell level23; however, such imaging approaches are currently time-consuming and have not 202 
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been used to study rare stem cell populations at scale.  Using mESC cultures as a model, we sought to 203 

determine whether scNT-Seq could be used to directly investigate changes in nascent transcription and 204 

cell state transition within rare stem cell populations. 205 

Cultured mESCs are derived from the inner cell mass of pre-implantation blastocysts and exhibit a high 206 

level of transcriptional heterogeneity24. Interestingly, cells resembling 2-cell-stage embryos (2C-like cells), 207 

which are in a totipotent state and can differentiate into both embryonic and extraembryonic tissues, arise 208 

spontaneously in mESC cultures25. Nearly all mESCs reversibly cycle between pluripotent and totipotent 209 

2C-like state in culture. However, the 2C-like cells are rare in mESC cultures (<1% in standard culture 210 

conditions)25, making it challenging to study these totipotent cells with traditional methods. Recent studies 211 

using scRNA-Seq revealed changes in total RNAs during the transition to rare 2C-like state26, 27 and 212 

identified an intermediate state during this low-frequency transition process, supporting a stepwise model 213 

of transcriptional reprogramming of the pluripotent to 2C-like state transition26, 27. However, these studies 214 

cannot distinguish nascent from pre-existing RNAs at each state. Thus, a more detailed understanding of 215 

direct gene regulatory changes in response to state transition is lacking. 216 

To capture nascent transcriptomes and characterize GRNs in different states, mESCs were metabolically 217 

labeled with 4sU for 4 hours and were subjected to scNT-Seq analysis (Fig. 4a). After quality filtering, we 218 

obtained 4,633 single-cell transcriptomes from two biological replicates (Supplementary Fig. 6a, b). 219 

Unbiased clustering not only readily separated contaminating mouse feeder cells (Col1a2/Thbs1+) from 220 

mESCs, but also identified three principal states within mESCs (Supplementary Fig. 6a-c).  The majority 221 

of mESCs (98.3%) belong to the pluripotent state as they are positive for pluripotency-genes such as 222 

Sox2 and Zfp42 (also known as Rex1) but are negative for 2C-embryo-specific transcripts such as the 223 

Zscan4 gene family (Fig. 4b). Approximately 0.7% of cells express high levels of 2C-like state markers, 224 

including Zscan4 genes, Zfp352 and Usp17lc, but low levels of Sox2, suggesting that this rare population 225 

contains predominantly totipotent 2C-like cells. These results are consistent with previous FACS analysis 226 

of 2C-reporter lines25, 28, indicating that scNT-Seq accurately captures this rare cell state. Interestingly, we 227 

also identified an intermediate state (~1.0%) which expresses low levels of Zscan4 genes, but high levels 228 

of Nanog and Tbx3 (Supplementary Fig. 6c, d). Unlike previous studies which overexpressed a master 229 

regulator, Dux, to induce 2C-like state27, we did not observe a significant decrease in Sox2 expression in 230 

the intermediate state (Supplementary Fig. 6c), highlighting the potential difference between the Dux-231 

induced 2C-transitions and the naturally occurring pluripotent-to-totipotent transition process.  232 

Comparative analysis of nascent and pre-existing transcriptomes revealed many state-specific genes 233 

(e.g., Sox2 and Zscan4d) are associated with a higher proportion of nascent transcripts (consistent with 234 

their regulatory roles), whereas house-keeping genes, such as Gapdh, are of slower turnover rate 235 

(Supplemental Fig. 7a, b). For many state-specific genes (e.g., Zfp42 and Zscan4d), their nascent RNA 236 

levels exhibited a more pronounced difference between states than the change of pre-existing RNAs (Fig. 237 

4b, c), indicating that nascent transcription is a more sensitive indicator for the state transition. Gene 238 
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Ontology (GO) enrichment analysis further revealed that state-specific nascent and pre-existing 239 

transcripts were enriched for different GO terms (Fig. 4d). For instance, many pluripotent-state-specific 240 

nascent RNAs (but not pre-existing RNAs) are functionally related to post-transcriptional regulatory 241 

processes, including translational initiation, mRNA processing, and RNA splicing. Furthermore, 2C-state-242 

specific nascent transcripts are preferentially enriched for deubiquitinating enzyme-related genes such as 243 

Usp17lc/d/e (Fig. 4b, d). These results underscore that nascent transcriptomes are more robust than 244 

steady-state transcriptomes to uncover genes related to state-specific biological processes within 245 

heterogeneous stem cell populations.  246 

DNA-binding proteins, such as TFs and epigenetic regulators, show rapid gene expression changes 247 

during pluripotent-to-2C transition27, 29. Our analysis of changes in nascent transcription during the 248 

pluripotent-to-2C transition identified 26 genes encoding DNA-binding proteins that showed a significant 249 

difference at nascent RNA levels between states (Fig. 4e). Consistent with previous scRNA-Seq analysis 250 

of sorted cell populations29, 13 out of 14 commonly detected genes (Tet1, Sox2, Nanog, Rex1/Zfp42, 251 

Sp110, Zfp352, and Zscan4 family) showed similar patterns in our scNT-Seq analysis of nascent RNAs 252 

(Fig. 4e). To further investigate TF/epigenetic regulator activity during the pluripotent-to-2C transition, we 253 

applied SCENIC analysis to both nascent and pre-existing transcriptomes. Among all regulons uncovered 254 

in mESCs (Supplementary Fig. 8a), we identified 25 TF/epigenetic regulators showing differential 255 

nascent regulon activity between states (Fig. 4f and Supplementary Fig. 8b). The activity of several 256 

positive regulators of the cell cycle, such as the E2F family of TFs, decreased in 2C-like states, which is 257 

consistent with previous observations that 2C-like cells are associated with longer cell cycles30. 258 

Interesting, nascent RNA levels and regulon activity of Nanog peak in intermediate state compared to 259 

pluripotent and totipotent 2C-like states, suggesting that this TF may play an unrecognized regulatory role 260 

in intermediate state. In addition, several epigenetic regulators, including Phf8, Hdac2, Ezh2, and Tet1, 261 

were associated with a decrease in regulon activity (Fig. 4f), suggesting a role of these enzymes in 262 

promoting the pluripotent state. Notably, we did not identify the regulon activity of Zscan4 in 2C-like cells, 263 

potentially due to the lack of Zscan4 motif information in the SCENIC TF database. Together, scNT-Seq 264 

directly captures state-specific nascent transcriptomes in rare totipotent cells in heterogeneous mESC 265 

cultures and allows analysis of dynamics of nascent regulon activity during state transitions. 266 

 267 

TET-dependent regulation of the stepwise pluripotent-to-2C transition 268 

The TET family of proteins (Tet1-3) are DNA dioxygenases that mediate active DNA demethylation at 269 

many cis-regulatory elements such as promoters and distal enhancers31, 32, thereby regulating gene 270 

expression. During pluripotent-to-2C transition, both nascent RNA level and regulon activity of Tet1 271 

rapidly decreased (Fig. 4c, f). The nascent transcript level of Tet2 also decreased in both intermediate 272 

and 2C-like states, while Tet3 was undetected in all three states (Supplementary Fig. 7c). Interestingly, 273 
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genetic inactivation of all TET proteins in mESCs resulted in a substantially higher proportion of 2C-like 274 

cells, and elevated expression level of 2C-specific transcripts28.  275 

To better understand the role of TET enzymes in state transition, we generated mESCs deficient for all 276 

three Tet proteins (Tet1/2/3 triple knockout, Tet-TKO) via CRISPR/Cas9 genome editing using previously-277 

tested sgRNAs33 and analyzed isogenic WT and Tet-TKO mESCs (J1 strain) by scNT-Seq after 4 hours 278 

of metabolic labeling. The genotype of Tet-TKO cells was confirmed by both Sanger sequencing and 279 

reads from scNT-Seq (Supplementary Fig. 9a). Clustering and nascent RNA velocity analyses of 280 

combined WT and Tet-TKO mESCs revealed two discrete phases of nascent RNA velocity flows (arrows). 281 

The velocity flow within the pluripotent state is potentially driven by cell-cycle progression 282 

(Supplementary Fig. 9b, c), whereas nascent velocity field of intermediate/2C-like states exhibited a 283 

strong directional flow from intermediate to 2C-like state (Fig. 5a, b). These observations are consistent 284 

with a stepwise model of the state-transition process and suggest that the pluripotent-to-intermediate 285 

state transition is a rate-limiting step.  286 

WT and Tet-TKO cells were separately clustered within the pluripotent state and Tet-TKO (but not WT) 287 

cells were found immediately next to the intermediate/2C-like states (Fig. 5a, b), suggesting that Tet-TKO 288 

cells are transcriptionally reprogrammed to adopt a more poised state to transition to intermediate/2C-like 289 

states. Compared to WT cells, Tet-TKO cells exhibited a 2.2-fold or 3.6-fold increase in intermediate or 290 

2C-like states (Fig. 5c), respectively, indicating that Tet enzymes negatively regulate the transition from 291 

pluripotent to intermediate/2C-like state in WT cells. Because pluripotent and 2C-like cells are globally 292 

distinct in levels of both major histone modifications25 and DNA methylation26, we next examined global 293 

nascent transcription in each state. Interestingly, aggregating nascent transcriptomes within specific 294 

states revealed that a totipotent 2C-like state is associated with markedly lower levels of global nascent 295 

transcription compared to pluripotent and intermediate states in WT cells (Fig. 5d). In contrast, Tet-TKO 296 

cells already exhibited a substantially lower level of global nascent transcription than WT cells in 297 

pluripotent state (Fig. 5d), suggesting that Tet proteins may act as an epigenetic barrier for the 298 

pluripotent-to-2C transition by maintaining a pluripotent state-specific nascent transcriptome. 299 

 300 

Pulse-chase scNT-Seq enables transcriptome-wide measurement of mRNA stability in rare 2C-like 301 
cells. 302 

Pulse-chase assays combined with bulk SLAM-Seq have been used to measure mRNA stability in 303 

mESCs5, but rare intermediate and 2C-like cells have not been studied. Given the enhanced sensitivity of 304 

scNT-Seq compared to bulk assays, combining a pulse-chase strategy with scNT-Seq may enable 305 

transcriptome-wide measurement of mRNA stability in rare cell populations. To test this, we metabolically 306 

labeled mESC cultures with 4sU for 24 hours (pulse), followed by a washout and chase using medium 307 

containing a higher concentration of uridine. Cells from multiple chase time-points were harvested and 308 

cryo-preserved first, and all samples were then re-hydrated and simultaneously analyzed by scNT-Seq 309 
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analysis. After computing the proportion of labeled transcripts for each gene at every time-point relative to 310 

0 h (right after pulse), we calculated the half-life (t1/2) of mRNAs by fitting a single-exponential decay 311 

model in each cell state (Fig. 6a). In total, 20,190 cells were profiled by scNT-Seq from 7 time-points (Fig. 312 

6b). After 24 hours of metabolic labeling, we observed a substantial accumulation of T-to-C substitution 313 

(Fig. 6c), which is consistent with bulk assay observations5. The T-to-C substitution rate decreased over 314 

time and returned to the baseline level 24 hours after chase (Fig. 6c). Inspection of two genes, Sox2 and 315 

Topa2a, revealed that total RNA levels did not change across the 24-hour time course, whereas the level 316 

of metabolically labeled transcripts decreased over time (Supplementary Fig. 10a), confirming that this 317 

strategy can accurately measure mRNA decay in a transcript-specific manner.  318 

Based on expression of marker genes, clustering analysis readily separated mESCs into three states 319 

(n=7, pluripotent: 97.4%+/-0.78%, intermediate: 1.5%+/-0.48%, and 2C-like: 1.1%+/-0.38%) (Fig. 6b and 320 

Supplementary Fig 10b), suggesting that this pulse-chase approach did not significantly alter the state 321 

transition. By filtering out genes expressed in less than 5% of cells, we were able to determine the half-life 322 

of 2,310 genes in pluripotent state, and the RNA half-life determined by pulse-chase scNT-Seq is highly 323 

concordant with previous observation derived from bulk SLAM-Seq assays5 (R2=0.81, Fig. 6d). RNA 324 

stability can also be estimated by assuming simple exponential kinetics, which is calculated by measuring 325 

the ratio of labeled and unlabeled transcripts after metabolic labeling for a specific time34. However, RNA 326 

half-life estimated from one timepoint labeling (4sU, 4 hour) experiment is substantially less correlated 327 

with measurements derived from bulk assays (R2=0.49, Fig. 6d). These results suggest that a pulse-328 

chase strategy may more reliably measure RNA decay rate. Furthermore, the top 10% most stable and 329 

unstable transcripts were enriched for similar GO terms that are uncovered by bulk SLAM-Seq assays5 330 

(Supplementary Fig. 10c). Further analysis of cells in intermediate and 2C-like states revealed the half-331 

life of 1,743 and 821 transcripts in these rare cell states, respectively. Next, we analyzed commonly 332 

detected transcripts between cell states to reveal state-specific regulation of mRNA stability 333 

(Supplementary Fig. 11). Thus, scNT-seq enables transcriptome-wide measurement of RNA stability in 334 

rare stem cell populations in heterogeneous mESC cultures. 335 

Because dynamic changes in RNA levels are regulated by the interplay of RNA biogenesis and 336 

degradation, we sought to investigate the relationship between mRNA stability and gene expression 337 

during the pluripotent-to-2C transition (Supplementary Fig. 12). Consistent with previous findings2, RNA 338 

stability and total mRNA levels are not highly correlated, suggesting mRNA stability is not the major 339 

contributor to total RNA level during stem cell state transition. Nevertheless, we identified a group of 340 

genes showing coordinated changes of RNA stability and gene expression level between pluripotent and 341 

2C-like states, suggesting mRNA stability may play a role in regulating total mRNA level for a subset of 342 

genes (Fig. 6e). Further analysis showed that six RNA-binding protein (RBP) binding motifs were 343 

enriched in 3’UTR of 15 genes showing coordinated changes (Fig. 6f). Among these RBPs, the Pabpc 344 

family proteins (Pabpc1 and Pabpc4) are known regulators of mRNA stability and translation efficiency by 345 
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binding poly-A tails of mRNAs35. Collectively, these results indicate that scNT-Seq can serve as a 346 

powerful approach to investigate RNA stability and post-transcriptional regulatory mechanisms in rare 347 

cells within a heterogeneous population of cells. 348 

 349 

DISCUSSION 350 

By combining the widely accessible Drop-Seq platform and TimeLapse chemistry, scNT-Seq provides a 351 

novel strategy for high-throughput analysis of nascent and pre-existing transcriptomes from the same cell. 352 

A major advantage of scNT-Seq is its ability to accurately estimate nascent RNA levels using UMI-based 353 

statistical correction, which not only reveals acute changes in the nascent transcription that are not 354 

apparent in standard scRNA-seq, but also allows for the analysis of dynamic TF regulatory networks and 355 

single-cell transcriptional trajectory. Our scNT-Seq is conceptually similar to sci-fate36, a recently 356 

developed method that integrates SLAM-Seq chemistry with single-cell combinatorial indexing RNA-Seq. 357 

While scNT-Seq directly captures whole-cell total RNAs on barcoded beads in nanoliter droplets, sci-fate 358 

requires paraformaldehyde fixation and permeabilization of cells for in situ chemical conversion and 359 

reverse transcription, which may pose a challenge to unbiasedly recover both nuclear (enriched for 360 

nascent) and cytoplasmic (enriched for pre-existing) RNAs for accurately estimating nascent RNA 361 

fractions.  362 

Recent studies demonstrate that the purine analog, 6-thioguanine (6tG), enables G-to-A conversions by 363 

TimeLapse chemistry in bulk RNA-seq37. Thus, dual labeling of 4sU and 6tG followed by scNT-Seq may 364 

allow two independent recordings of nascent transcription at single-cell levels.  With new computational 365 

approaches such as Dynamo38, which can take advantage of controlled metabolic labeling to predict past 366 

and future cell states over an extended time period, high-throughput single-cell nascent transcriptomic 367 

analysis methods such as scNT-Seq and sci-fate can open new lines of inquiry regarding cell-type-368 

specific RNA regulatory mechanisms and provide a broadly applicable strategy to investigate dynamic 369 

biological systems.   370 
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Online Methods 421 
 422 
Mouse embryonic stem cell cultures and 4sU labeling 423 

Tet1/2/3 triple-knock out (Tet-TKO) J1 mESCs were generated by CRISPR/Cas9 genome editing as 424 
previously described33 and the genotype was confirmed by Sanger sequencing and scRNA-Seq. Wild-425 
type (WT) and Tet-TKO J1 mESCs (ATCC, SCRC-1010) were initially cultured in presence of Mitomycin 426 
C inactivated mouse embryonic fibroblasts on 0.1% gelatin-coated (Millipore, ES-006-B) 6-well plates in 427 
Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, 11965084) supplemented with 15% fetal bovine 428 
serum (Gibco, 16000044), 0.1 mM nonessential amino acid (Gibco, 11140050), 1 mM sodium pyruvate 429 
(Gibco, 11360070), 2 mM L-glutamine (Gibco, 25030081), 50 μM 2-mercaptoethanol (Gibco, 31350010), 430 
1 μM MEK inhibitor PD0325901 (Axon Med Chem, Axon 2128) and 3 μM GSK3 inhibitor CHIR99021 431 
(Axon Med Chem, Axon 2128), and 1,000 U/mL LIF (Gemini Bio-Products, 400-495-7).  432 

4-thiouridine (4sU) (Alfa Aesar, J60679) were dissolved in DMSO to make 1 M stock. Before 4sU labeling 433 
experiments, WT and Tet-TKO mESCs were passaged and cultured in feeder-free conditions (0.1% 434 
gelatin-coated plates) for 48 hrs. For 4sU labeling in WT and Tet TKO mESC cultures, the medium was 435 
replaced with fresh mESC medium supplemented with 100 μM 4sU. After 4 h, mESCs were rinsed once 436 
with PBS and dissociated with TrypLE-Express (Gibco, 12605010) for 5 min at 37°C. After neutralizing 437 
with culture medium, cells were pelleted at 1,000 rpm for 3 min. After cell counting with the Countess II 438 
system, the single cell suspension was diluted to 100 cells/uL with DPBS containing 0.01% BSA for 439 
scNT-Seq analysis. 440 
 441 

Human K562 cell cultures and species mixing experiments 442 

Human K562 cells (ATCC, CCL-243) were cultured in RPMI media supplemented with 10% FBS (Sigma, 443 
F6178). For species mixing experiments, the mESC or K562 media was replaced with media 444 
supplemented with 4sU (100 μM). After 4 h, the mESCs and K562 cells were rinsed with PBS and 445 
harvested for scNT-Seq analysis. 446 
 447 

Mouse primary neuronal culture and stimulation 448 

Mouse cortices were dissected from embryonic day 16 (E16) C57BL/6 embryos of mixed sex (Charles 449 
River). Cortical neurons were dissociated with papain (Worthington) and plated on 6-well plates (at a 450 
density of ~600,000 cells/well) coated with poly-ornithine (30mg/mL, Sigma, P2533). Mouse cortical 451 
neuronal cultures were maintained in neurobasal media (Gibco, 21103049) supplemented with B27 452 
(Gibco, 17504044), 2 mM GlutaMAX (Gibco, 35050061), and 1X Penicillin/streptomycin (Gibco, 453 
15140122). 454 

After 4 days in vitro culture, primary cortical cultures were stimulated with a final concentration of 55mM 455 
potassium chloride (KCl) for various time (0, 15, 30, 60, and 120 minutes). Before neuronal activation, the 456 
fresh media supplemented with 4sU (200 μM) was added. After 4sU labeling (2 h), the cells were washed 457 
with PBS once and were digested with 0.05% Trypsin-EDTA (Gibco, 25300054) for 20 min at 37°C, then 458 
replaced the buffer with 1 mL of DPBS and dissociated cells with a cell-scraper. After cell counting with 459 
Countess II system, the single cell suspension was diluted to 100 cells/μL with DPBS containing 0.01% 460 
BSA for scNT-Seq analysis. 461 
 462 

Cell fixation, cryopreservation and rehydration for scNT-Seq 463 

The cell fixation was performed as previously described39. Cultured mESCs in 6-well plates were digested 464 
with TrypLE-Express and harvested as aforementioned. After washing once with DPBS, the cells were 465 
resuspended with 0.4 mL of DPBS containing 0.01% BSA. Split the cells to two 1.5 mL LoBind tubes 466 
(Eppendorf) and add 0.8 mL methanol dropwise at final concentration of 80% methanol in DPBS. After 467 
mixing and incubating the cell suspension on ice for 1 hour, store the fixed cells in LoBind tubes at -80°C 468 
freezer for up to one month. For rehydration, cells were kept on ice after moved from –80 °C and kept in 469 
the cold throughout the procedure. After the cells were spun-down at 1,000 g for 5 min at 4°C, Methanol-470 
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PBS solution was removed and cells were resuspended in 1 mL 0.01% BSA in DPBS supplemented with 471 
0.5% RNase-inhibitor (Lucigen, 30281-2). After cell counting with the Countess II system, the single cell 472 
suspension was diluted to 100 cells/μL and immediately used for scNT-Seq analysis. 473 
 474 

Pulse-chase experiment for RNA stability analysis 475 

Remove the medium from plates and add mESC medium supplemented with 200 μM 4sU5. The fresh 476 
medium with 4sU were changed every 4 h to enhance 4sU incorporation and mESCs were labeled for 24 477 
hrs. After 4sU-labeling, the 4sU-containing medium was removed and cells were washed once with 478 
DPBS. Then mESC medium containing 10 mM Uridine (Sigma, U6381) was added to the culture before 479 
cells were harvested at different time-points ranging from 0.5 hour to 24 hours. Cells were fixed with 480 
methanol as aforementioned and store at -80°C for future use. 481 
 482 

scNT-Seq library preparation and sequencing 483 

Drop-Seq was performed as previously described with minor modifications10. Specifically, the single cell 484 
suspension was diluted to a concentration of 100 cells/μL in DPBS containing 0.01% BSA. Approximately 485 
1.5 mL of diluted single cell suspension was loaded for each scNT-Seq run.  The single-nucleus 486 
suspension was then co-encapsulated with barcoded beads (ChemGenes) using an Aquapel-coated 487 
PDMS microfluidic device (uFluidix) connected to syringe pumps (KD Scientific) via polyethylene tubing 488 
with an inner diameter of 0.38 mm (Scientific Commodities). Barcoded beads were resuspended in lysis 489 
buffer (200 mM Tris-HCl pH8.0, 20 mM EDTA, 6% Ficoll PM-400 (GE Healthcare/Fisher Scientific), 0.2% 490 
Sarkosyl (Sigma-Aldrich), and 50 mM DTT (Fermentas; freshly made on the day of run) at a concentration 491 
of 120 beads/μL. The flow rates for cells and beads were set to 3,200 μL/hour, while QX200 droplet 492 
generation oil (Bio-rad) was run at 12,500 μL/h. A typical run lasts ~20 min.  493 

Droplet breakage with Perfluoro-1-octanol (Sigma-Aldrich). After droplet breakage, the beads were 494 
treated with TimeLapse chemistry to convert 4sU to cytidine-analog6. Briefly, 50,000-100,000 beads were 495 
washed once with 450 μL washing buffer (1 mM EDTA, 100 mM sodium acetate (pH 5.2)), then the beads 496 
were resuspended with a mixture of TFEA (600 mM), EDTA (1 mM) and sodium acetate (pH 5.2, 100 497 
mM) in water. A solution of 192 mM NaIO4 was then added (final concentration: 10 mM) and incubated at 498 
45°C for 1 hour with rotation. The beads were washed once with 1 mL TE, then incubated in 0.5 mL 1 X 499 
Reducing Buffer (10 mM DTT, 100 mM NaCl, 10 mM Tris pH 7.4, 1 mM EDTA) at 37°C for 30 min with 500 
rotation, followed by washing once with 0.3 mL 2X RT-buffer. 501 

Reverse transcription and exonuclease I treatment were performed, as previously described, with minor 502 
modifications10.  Specifically, up to 120,000 beads, 200 μL of reverse transcription (RT) mix (1x Maxima 503 
RT buffer (ThermoFisher), 4% Ficoll PM-400, 1 mM dNTPs (Clontech), 1 U/μL RNase inhibitor, 2.5 μM 504 
Template Switch Oligo (TSO: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG )10, and 10 U/ μL 505 
Maxima H Minus Reverse Transcriptase (ThermoFisher)) were added. The RT reaction was incubated at 506 
room temperature for 30 minutes, followed by incubation at 42°C for 120 minutes. To determine an 507 
optimal number of PCR cycles for amplification of cDNA, an aliquot of 6,000 beads (corresponding to 508 
~100 nuclei) was amplified by PCR in a volume of 50 μL (25 μL of 2x KAPA HiFi hotstart readymix (KAPA 509 
biosystems), 0.4 μL of 100 μM TSO-PCR primer (AAGCAGTGGTATCAACGCAGAGT10, 24.6 μL of 510 
nuclease-free water) with the following thermal cycling parameter (95°C for 3 min; 4 cycles of 98°C for 20 511 
sec, 65°C for 45 sec, 72°C for 3 min; 9 cycles of 98°C for 20 sec, 67°C for 45 sec, 72°C for 3 min; 72°C 512 
for 5 min, hold at 4°C). After two rounds of purification with 0.6x SPRISelect beads (Beckman Coulter), 513 
amplified cDNA was eluted with 10 μL of water. 10% of amplified cDNA was used to perform real-time 514 
PCR analysis (1 μL of purified cDNA, 0.2 μL of 25 μM TSO-PCR primer, 5 μL of 2x KAPA FAST qPCR 515 
readymix, and 3.8 μL of water) to determine the additional number of PCR cycles needed for optimal 516 
cDNA amplification (Applied Biosystems QuantStudio 7 Flex). We then prepared PCR reactions per total 517 
number of barcoded beads collected for each scNT-Seq run, adding 6,000 beads per PCR tube, and ran 518 
the aforementioned program to enrich the cDNA for 4 + 10 to 12 cycles. We then tagmented cDNA using 519 
the Nextera XT DNA sample preparation kit (Illumina, cat# FC-131-1096), starting with 550 pg of cDNA 520 
pooled in equal amounts, from all PCR reactions for a given run. Following cDNA tagmentation, we 521 
further amplified the library with 12 enrichment cycles using the Illumina Nextera XT i7 primers along with 522 
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the P5-TSO hybrid primer (AATGATACGGCGACCACCGAGATCTACACGCC 523 

TGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C)10. After quality control analysis using a 524 
Bioanalyzer (Agilent), libraries were sequenced on an Illumina NextSeq 500 instrument using the 75- or 525 
150-cycle High Output v2 or v2.5 Kit (Illumina). We loaded the library at 2.0 pM and provided Custom 526 
Read1 Primer (GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) at 0.3 μM in position 7 of the 527 
reagent cartridge. The sequencing configuration was 20 bp (Read1), 8 bp (Index1), and 60 or 130 bp 528 
(Read2). 529 

Then reverse transcription, exonuclease treatment, cDNA amplification and tagmentation were performed 530 
as previously described11. The libraries were diluted to 2.0 pM, and subjected to paired-end sequencing 531 
on Illumina NextSeq 500 sequencer as described previously11. 532 
 533 

SLAM-Seq reaction on barcoded Drop-Seq beads 534 

After droplet breakage, the beads were washed once with NaPO4 buffer with 30% DMSO (50 mM, pH 535 
8.0), then incubate beads in 500 μL reaction-mix containing 10 mM IAA for either 15 min at 50°C 536 
(standard SLAM-Seq) or 1 hour at 45°C (modified condition)5. Stop reaction by adding 10 μL 1 M DTT 537 
(final concentration: 20 mM). 538 
 539 

Bioinformatic analysis 540 

Read mapping and quantification of labeled and unlabeled transcripts 541 

Paired-end sequencing reads of scNT-Seq were processed as previous described11 with some 542 
modifications. Briefly, each mRNA read (read2) was tagged with the cell barcode (bases 1 to 12 of read 543 
1) and unique molecular identifier (UMI, bases 13 to 20 of read 1), trimmed of sequencing adaptors and 544 
poly-A sequences, and aligned using STAR v 2.5.2a to the mouse (mm10, Gencode release vM13),  545 
human genome (GRCh38, Gencode release v23), or a concatenation of the mouse and human (for the 546 
species mixing experiment) reference genome assembly. Both exonic and intronic reads mapped to 547 
predicted strands of annotated genes were retained for the downstream analysis. To qualify the labeled 548 
and unlabeled transcripts, uniquely mapped reads with mapping score > 10 were grouped by UMI 549 
barcodes in every cell and were used to determine the T > C substitution using sam2tsv40, T > C 550 
substitutions with a base quality of Phred score > 27 were retained. For each experiment, locus with 551 
background T > C substitutions (detected in the sample without TFEA/NaIO4 treatment) was determined 552 
and was excluded for T > C substitution identification. After background correction of T > C substitution, a 553 
UMI was defined as labeled if there is a T > C substitution in any one of the reads belongs to that 554 
particular UMI. To this end, every UMI will be assigned to labeled or unlabeled based on the existence of 555 
T > C substitution (Figs 1d and 5d). For each transcript, the total number of uniquely labeled and 556 
unlabeled UMI sequences were counted and finally were assembled into a matrix using gene name as 557 
rows and cell barcode as columns. 558 
 559 

Cell type clustering  560 

For mouse cortical neurons and RNA-decay experiment (Figs 2b and 6b), the raw digital expression 561 
matrices of nascent and pre-existing UMI counts were added up and loaded into the R package Seurat41 562 
(v 2.3.4). For normalization, UMI counts for all cells were scaled by library size (total UMI counts), 563 
multiplied by 10,000 and transformed to log space. Only genes detected in >10 cells were retained. Cell 564 
with a relatively high percentage of UMIs mapped to mitochondrial genes were discarded (QC metrics in 565 
Supplementary Table 1). Moreover, cells with lower or higher detected genes were discarded (QC 566 
metrics in Supplementary Table 1). As a result, 20,547 cells of mouse cortical culture and 20,190 cells of 567 
mESC (in pulse-chase assay) were retained, respectively. The highly variable genes (HVGs) were 568 
identified using the function FindVariableGenes with the parameters: x.low.cutoff = .05,y.cutoff = .5 in 569 
Seurat, resulting in 2,290 HVGs of primary cortical culture sample and 2,165 HVGs of mESC sample. The 570 
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expression level of highly variable genes in the cells was scaled and centered along each gene and was 571 
conducted to principal component analysis (PCA).  The most significant 30 PCs were selected and used 572 
for 2-dimension reduction by uniform manifold approximation and projection42 (UMAP), implemented by 573 
the Seurat software with the default parameters. Clusters were identified using the function FindCluster in 574 
Seurat with the resolution parameter set to 1. To obtain high level of cell type classification, we merge the 575 
adjacent clusters in UMAP which highly expressed excitatory markers (Neurod2 and Neurod6) and define 576 
it as “Ex” cluster in mouse cortical neurons, while several close clusters highly expressed Sox2 were 577 
combined to “pluripotent” cluster in mESC Pulse-chase experiment.  Cell type specific markers were 578 
identified using function FindMarkers in Seurat with wilcoxon rank sum test with default parameters. 579 

Cell clustering will be affected both by genotype28 and by cell type. To enable directly comparative 580 
analyses within cell types between WT and Tet1/2/3 triple-knock out (Tet-TKO) mESCs, we used Seurat 581 
3 (v. 3.0.0.9000) which was demonstrated as an effective strategy to perform joint analyses43 582 
(Supplementary Fig. 6a).  The raw digital expression matrices of nascent and pre-existing UMI counts 583 
were added up and loaded into the Seurat 3. For normalization, UMI counts for all cells were scaled by 584 
library size (total UMI counts), multiplied by 10,000 and transformed to log space. Only genes detected in 585 
>10 cells were retained. Cell with a relatively high percentage of UMIs mapped to mitochondrial genes 586 
(>=0.05) were discarded. Moreover, cells with fewer than 500 or more than 5,000 detected genes were 587 
discarded, resulting in 4,633 WT cells and 2,319 Tet-TKO cells. Top 2,000 HVGs were identified using 588 
the function FindVariableFeatures with "vst" method. Canonical correlation analysis (CCA) was used to 589 
identify common sources of variation between WT and Tet-TKO cells. The first 20 dimensions of the CCA 590 
was chosen to integrate the two datasets. After integration, the expression level of HVGs in the cells was 591 
scaled and centered along each gene and was conducted to PCA analysis. The 20 most significant PCs 592 
were selected and used for 2-dimension reduction by UMAP. Clusters were identified using the function 593 
FindCluster in Seurat with the resolution parameter set to 3. As above mentioned, adjacent clusters highly 594 
expressed Sox2 were combined to “pluripotent” cluster. 595 
 596 

Estimation of the fraction of nascent transcripts 597 

We implemented a statistical modeling strategy as previously described with some modifications for UMI-598 
based scNT-Seq analysis6. For each experiment, a binomial mixture model, was used to approximate the 599 
number of T-to-C substitutions 𝑦" for each gene transcript 𝑖:  600 

𝑓(𝑦"|𝜃, 𝑝, 𝑞) = 	𝜃	Binom(𝑦"; 𝑝, 𝑛") + (1 − 𝜃)	Binom(𝑦"; 𝑞, 𝑛") 601 

In this expression, 𝜃 is the fraction of nascent transcripts in each experiment, 𝑝 and 𝑞 are the probabilities 602 
of a T-to-C substitution at each nucleotide for nascent and pre-existing transcripts, respectively, and 𝑛" is 603 
the number of uridine nucleotides observed in the transcript 𝑖. A consensus sequence for each transcript 604 
is built by pooling reads with the same UMI barcode and taking the most frequent variant at each position. 605 
10,000 UMIs were randomly sampled and the global substitution probabilities 𝑝 and 𝑞 were estimated 606 
based on the above mixture model. The model was fit by maximizing the likelihood function using the 607 
Nelder-Mead algorithm. The optimization was repeated ten times with random initialization values for 𝜃, 𝑝, 608 
and 𝑞 in the range [0,1], keeping the best fit with 𝜃 ∈ [0,1].  609 

For mouse cortical neuronal culture datasets, besides Ex and Inh1, we respectively combined 4 inhibitory 610 
neuronal clusters (Inh 2-4 and Inh-NP) and 3 non-neuronal clusters (Ex-NP1, Ex-NP2 and RG) to obtain 611 
enough UMI for global parameters estimation at each time-point. By doing this, Ex, Inh, and 2 combined 612 
clusters were subjected to statistical modelling. For mESC data sets, we assumed that Tet-TKO will not 613 
affect 4sU utilization efficiency and thus combined WT and TKO data sets to estimate unified global 614 
parameters, p and q, for 3 cell states (pluripotent, intermediate and 2C-like). To this end, 20 sets of p and 615 
q (5 time-points X 4 combined clusters) were determined in cortical neuronal data sets and 3 sets of p 616 
and q (pluripotent, intermediate and 2C-like clusters) were estimated for mESC data sets. Once these 617 
global parameters were determined, they were used to estimate the fraction of nascent transcripts. 618 

1. Computing aggregate nascent transcript for cell clusters 619 
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For Figs 2C and S3d, we aggregate all the UMIs belongs to the same cell-type and estimate the fraction 620 
of nascent transcripts 𝜃 for each gene with more than 100 UMIs in that cell type at each time-point. The 621 
likelihood function for the mixture model above was maximized using the Brent algorithm with the 622 
constraint 𝜃 ∈ [10<=, 1]. The 95% confidence interval was calculated from the Hessian matrix, and 𝜃 623 
estimates for genes with a confidence interval greater than 0.2 were thrown out. The nascent transcript 624 
(N) was then estimated: 625 

𝑁 = 	𝜃(𝐿 + 𝑈) 626 

Where θ is the nascent fraction of a gene in a cell type, L is labeled transcripts of a gene, U is unlabeled 627 
transcripts of a gene. The pre-existing transcript was calculated by:  (1 − 𝜃)(𝐿 + 𝑈). 628 

2. Computing nascent transcript for each individual cell 629 

In theory, for every cell the fraction of nascent transcripts should be calculated for each gene, which 630 
requires adequate gene coverage of each individual cells as bulk RNA-seq analysis. However, for data 631 
sets generated by high-throughput droplet-based scRNA-Seq methods and shallow sequencing, it is not 632 
feasible to obtain sufficient coverage for every gene in individual cells. Moreover, modeling every gene in 633 
thousands of cells were computationally intensive. To obtain the single-cell level estimation of nascent 634 
transcripts in each cell, we introduced detection rate α to estimate the nascent transcript for each cell. 635 
Since 4sU incorporation is random but each cell may vary in 4sU incorporation and most genes have the 636 
highly similar detection rate α (Supplementary Fig. 3d), we used the strategy above to estimate the 637 
fraction of nascent transcripts for individual cell. The detection rate α was then computed by diving all the 638 
labeled transcripts of a cell by estimated nascent transcript of that cell. We discarded the cells without-639 
range values (α > 1). We computed the detection rate α for 88.3% (18,133/20,547) of mouse cortical 640 
cells, whereas 95.1% (6,609/6,952) of mESC cells were retained. The mean of detection rates α were 641 
60% and 66% in cortex and mESC, respectively. For each individual gene, the nascent transcript was 642 
computed according to the formula: 643 

𝑁 = min	(
𝐿
𝛼 ,
(𝐿 + 𝑈)) 644 

Where α is the T-to-C detection rate of a cell, L is the number of labeled transcripts of a gene in that cell, 645 
U is the number of unlabeled transcripts of a gene. The number of pre-existing transcripts was calculated 646 
by: 𝐿 + 𝑈 −𝑁. The computed nascent and pre-existing transcripts were used for all downstream single-647 
cell-based analysis, including stacked UMAP (right panel of Fig. 2b and Supplementary Fig. 4a), 648 
SCENIC (Figs. 2d, 3c, 4f, Supplementary Fig. 5 and Supplementary Fig. 8a) and nascent RNA 649 
velocity analysis (Figs. 3a and 5b).  650 
 651 

Gene ontology (GO) enrichment analysis  652 

GO enrichment analysis was performed as previously described12. To identify functional categories 653 
associated with defined gene lists, the GO annotations were downloaded from the Ensembl database. An 654 
enrichment analysis was performed via a hypergeometric test. The P value was calculated using the 655 
following formula: 656 

P = 1 −	C
DE" FD

G<E
H<" F

DGHF

I<J

"KL

 657 

where N is the total number of background genes, n is the total number of selected genes, M is the 658 
number of genes annotated to a certain GO term, and i is the number of selected genes annotated to a 659 
certain GO term. P value was corrected by function p.adjust with false discovery rate (FDR) correction in 660 
R. GO terms with FDR<0.05 were considered enriched. All statistical calculations were performed in R.  661 

For enrichment analysis of stable/unstable mRNAs (Supplementary Fig.10c), genes were ranked by the 662 
RNA half-life. Top 10% genes with longest half-lives were defined as stable genes, whereas top 10% 663 
genes with shortest half-life were considered as unstable. Then the stable and unstable gene sets were 664 
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subjected into GO enrichment analysis. For Fig. 4d, genes showed >1.5-fold changes between 665 
pluripotent and 2C-like state were selected and subjected into GO enrichment analysis. 666 
 667 

Identification of differentially expressed genes (DEGs) 668 

Differential gene expression analysis of nascent transcripts between different time-points of neuronal 669 
activation (15, 30, 60 and 120 min) and control (0 min) was performed using the function FindMarkers in 670 
Seurat, using a Wilcoxon rank sum test. Nascent transcripts with a fold-change of more than 1.5 and an 671 
adjust P-value less than 0.05/4 were considered to be differentially expressed (Supplementary Fig. 4b). 672 
Neuronal induction genes were defined if a nascent transcript was significantly increased in at least one 673 
time-point with KCl stimulation in any one of cell-types (Fig. 2c and Supplementary Fig. 4b). For 674 
comparison among 3 cell states within WT mESCs (Fig. 4e), genes encoding DNA binding proteins with a 675 
fold-change of nascent transcript expression level more than 0.25 (log-scale) and an adjust P-value less 676 
than 0.2 were listed.   677 
 678 

Estimation of RNA half-life 679 

For each gene, we separately aggerate labeled and unlabeled UMI counts in each cell state (Fig. 6 and 680 
Supplementary Fig.11). Then the fraction of labeled transcripts was calculated with summed labeled 681 
UMI counts divided by total UMI counts (labeled + unlabeled). The fraction of labeled transcripts was 682 
normalized to chase-onset (0 min). R function nls was used to perform curve fitting with the parameters 683 
setting: “y ~ I(a*exp(-b*x)+c)”, “start=list(a=1, b=1, c=1)” and “na.action=na.exclude”. We kept the fit with 684 
the goodness of R2 > 0.7.  685 
 686 

RNA velocity analysis  687 

For standard RNA velocity analysis (splicing RNA velocity), we started with the bam files which were 688 
generated by the Drop-Seq computational analysis pipeline. The reads were demultiplexed using 689 
dropEst44 (version 0.8.5) pipeline, using “-m -V -b -f -L eiEIBA” options to annotate bam files. The genome 690 
annotations (mm10, Gencode release vM13) were used to count spliced and unspliced molecules for 691 
each experiment. The python package scVelo21, 45, 46 (https://github.com/theislab/scvelo, version 0.1.19) 692 
were employed to perform RNA velocity analysis. Default parameter settings were used, unless stated 693 
otherwise. After loading spliced and unspliced molecules to scVelo, for analysis of excitatory neuron data 694 
sets (left panel of Fig 3a), genes with less than 5 counts of spliced or unspliced molecules were filtered 695 
out. Spliced and unspliced counts of top 1,000 highly variable genes were KNN-imputed in a PCA 696 
reduced space with 10 components, using 15 neighbors and ‘distances’ mode. For nascent velocity 697 
analysis (using the ratio of nascent over total transcripts), all the parameters are the same as splicing 698 
RNA velocity analysis except that we loaded computed nascent transcripts (as spliced counts) and total 699 
transcript (as unspliced counts) into scVelo (right panel of Fig 3a). For nascent RNA velocity analysis of 700 
mESCs (Fig 5a), top 3,000 highly variable genes were KNN-imputed in with 10 PCs, using 15 neighbors 701 
and ‘distances’ mode as well. The gene-specific velocities are obtained by fitting a ratio between nascent 702 
and total mRNA by function ‘scv.tl.velocity’. Finally, function ‘scv.pl.velocity_embedding_stream’ was used 703 
to project the velocities onto UMAP.  704 

To directly compare splicing and nascent RNA velocity, we asked which of them could best predict 705 
whether well-known activity induced genes upregulated with different durations of KCl stimulation in 706 
excitatory neurons. The list of 137 primary response genes was previously defined by bulk RNA-Seq16. 707 
We calculated the average induction fold of genes (expressed in >1% cells) at 30 min of KCl stimulation 708 
compared to 0 min (Fig 3b). For splicing RNA velocity, we used unspliced counts to calculate the 709 
induction fold while estimated nascent transcript were used in nascent RNA velocity analysis. Finally, auc 710 
function in R package pROC was conducted to calculate the area under receiver operating characteristic 711 
curve (AUC), which reflects the accuracy of predicting the known PRGs by gene induction fold computed 712 
in different method. The plots were generated by function plot.roc in pROC package47. 713 
 714 
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Gene regulatory network (GRN) analysis by SCENIC 715 

To assess the regulatory activity of transcript factors associated with different cell states or cell-types, we 716 
used SCENIC18 (version 1.1.2.2) to perform gene regulatory network (GRN or regulon) analysis. 717 
Regulatory modules are identified by inferring co-expression between TFs and genes containing TF 718 
binding motif in their promoters. We separate expression matrix into two parts based on the expression 719 
level of nascent and pre-existing transcripts, then combined them as inputs to SCENIC analysis, which 720 
enabled us to identify specific regulatory modules associated with either nascent or pre-existing 721 
transcriptomes from the same cell. Two gene-motif rankings, 10kb around the TSS and 500 bp upstream, 722 
were loaded from RcisTarget databases (mm9). Gene detected in > 1% of all the cells and listed in the 723 
gene-motif ranking databases were retained. To this end, 8,744 genes in cortical culture data and 9,388 724 
mESC genes were subjected into the downstream analysis. Then GRNBoost, which was implemented in 725 
pySCENIC, was used to infer the co-expression modules and quantify the weight between TFs and target 726 
genes. Targets genes that did not show a positive correlation (> 0.03) in each TF-module were filtered 727 
out. SCENIC found 4,944 and 5,406 TF-modules in mouse cortical neuronal culture and mESC data sets, 728 
respectively. A cis-regulatory motif analysis on each of the TF-modules with RcisTarget revealed 277 and 729 
325 regulons in cortical culture and mESC data, respectively. The top 1 percentile of the number of 730 
detected genes per cell was used to calculate the enrichment of each regulon in each cell. For Figs. 2d, 731 
4f, and Supplementary Fig. 8, we computed the mean AUC of all cells belongs to defined groups, then 732 
scaled the mean AUC by function scale in R. R package pheatmap48 was used to draw the heatmap.  733 

For Fig. 4f and Supplementary Fig. 8, AUC values of TFs were obtained and then subjected to 734 
Wilcoxon rank sum test to access significance of the difference of TF activity. TFs with a fold-change of 735 
mean AUC values more than 1.5 and an adjust P-value (Bonferroni corrected) less than 0.05 were 736 
considered differentially regulated. 737 
 738 

RNA binding protein motif enrichment analysis 739 

For Fig. 6f, 3’ UTR sequences of 552 genes were retrieved from Ensembl Biomart49. All the 3’ UTR 740 
sequences of a gene were obtained to explore all possible binding site. The position weight matrix (PWM) 741 
of 188 mouse RNA binding protein motifs were downloaded from CISBP-RNA database50 (http://cisbp-742 
rna.ccbr.utoronto.ca/). FIMO51 (version 5.0.5) motif scanning software in MEME Suite was used to search 743 
for the RNA binding motifs in the 3’ UTR sequences. 3’ UTR sequences with P- values smaller than the 744 
default threshold (0.0001) were considered to contain a binding motif. As a result, 533 genes were 745 
identified to have RNA binding motif in their 3’ UTR. Hypergeometric test was performed in R by function 746 
phyper, which was used to access significance of RNA binding motif enrichment in defined gene sets. 747 
The pairs of RNA binding protein and targets were visualized in Cytoscape. 748 
 749 

Data availability 750 

All data will be available through from the Gene Expression Omnibus (GEO) database. 751 
 752 

Code availability 753 

The analysis source code underlying the final version of the paper will be available on GitHub repository 754 
(https://gibhub.com/wulabupenn/scNT-seq). 755 

 756 

 757 

 758 
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FIGURE LEGENDS 887 

Figure 1. Development and validation of scNT-Seq. (a) Overview of single-cell Nascent transcript 888 
Tagging sequencing (scNT-Seq). (b) Multi-species mixing experiment measures scNT-Seq specificity. 889 
Mouse ESCs and human K562 cells were mixed at 1:1 ratio after 4sU labeling (100 μM, 4 hrs). 890 
Scatterplot shows the number of transcripts (UMIs) mapped to mouse (y-axis) or human (x-axis) genome 891 
for each cell (dot). Cells with mostly mouse transcripts are labeled as mouse (red), while cells with mostly 892 
human transcripts are labeled as human (blue). Cells with a relatively high percentage of both mouse and 893 
human transcripts are labeled as mixed (green). (c) Transcriptome-wide nucleotide substitutions rates 894 
demonstrate specific T-to-C conversion in 4sU labeled K562 cells after TEFA/NaIO4-treatment compared 895 
to untreated control. (d) Box plots showing percentage of T-to-C containing transcripts (UMIs) in individual 896 
K562 cells. The box plots display the median (center line) and interquartile range (IQR, from the 25th to 897 
75th percentile), the whiskers represent 1.5 times the interquartile range, and the circles represent 898 
outliers. (e) All UMIs of the ACTG1 gene are shown for one K562 cell with or one without TFEA/NaIO4-899 
treatment. Grey circles stand for T without T-to-C substitution, while crosses (“X”s) stand for sites of T-to-900 
C substitution in at least one read. The color of “X” indicates the read coverage in a UMI containing T-to-901 
C substitution at a particular site. All reads from one exemplary transcript (2nd UMI from TFEA/NaIO4-902 
treated sample) are further shown in the lower panel.  903 

Figure 2. scNT-Seq captures cell-type-specific nascent transcriptional dynamics and TF activity in 904 
response to distinct neuronal activity patterns. (a) Schematics of applying scNT-Seq analysis to study 905 
neuronal activation of primary mouse cortical cultures. (b) Uniform manifold approximation and projection 906 
(UMAP) visualization of 20,547 cells from primary mouse cortical cultures. Relative percentage of each 907 
cell-type is listed on the left. Randomly sampled 1,000 excitatory neurons from 5 time points (200 cells 908 
from each time point) are sub-clustered based on nascent (top) or pre-existing transcripts (bottom). Cells 909 
from each time point are color-coded and projected into the stacked UMAP on the right panel. The 910 
nascent and pre-existing transcriptomes of same cell were connected by a black line. Ex, excitatory 911 
neurons; Inh, inhibitory neurons; NP, neural progenitors; RG, radial glia. (c) Cell-type-specific responses 912 
of activity-regulated genes (ARGs) upon neuronal activation. The mean nascent and pre-existing RNA 913 
expression levels (transcripts per 10k, TP10k) were shown in line plot. (d) Heat map showing cell-type-914 
specific TF regulon activity (AUC value quantified by SCENIC) in response to distinct activity durations. 915 
Red color highlights known regulators of ARGs, while blue color highlights potential novel regulators 916 
induced by neuronal activity. 917 

Figure 3. scNT-Seq reveals neuronal activity-induced nascent RNA velocity. (a) RNA velocity 918 
analysis of excitatory neurons using ratios of unspliced-to-spliced transcripts (splicing RNA velocity, left 919 
panel) or nascent-to-total transcripts (nascent RNA velocity, right panel) as inputs. The cells are color-920 
codeed by different neuronal activity durations. The arrow indicates the projection from the observed state 921 
to extrapolated future state. (b) Comparison between splicing and nascent RNA velocity. Spliced counts 922 
or nascent RNA counts (30 min KCl stimulation) were used to predict induction of 137 known primary 923 
response genes16. The area under the curve (AUC) values of predictions from these two methods are 924 
shown. (c) Enrichment analysis of TF regulons for early- or late-response genes. Bar plots showing the 925 
significance of enriched TF regulons by hypergeometric test. TF regulons that are enriched for both 926 
groups, only early- or only late-response genes are highlighted by three boxes (left to right). The cut off of 927 
significance was indicated by red dash line (adjusted P-value < 0.001). (d) UMAP plots showing clustered 928 
Ex neurons from five time-points (left), expression level of early-response (middle), and late-response 929 
genes (right). (e) UMAP plots showing the regulon activity of two representative TFs regulating early- 930 
(Jun) or late-response genes (Mef2d), respectively. The UMAP plots in Fig. 3d-e are the same as in Fig. 931 
3a. 932 

Figure 4. scNT-Seq captures both nascent and pre-existing transcripts in different states of 933 
mESCs. (a) Schematics of the scNT-Seq analysis of mESCs. (b) MA-plot showing differential gene 934 
expression of nascent and pre-existing transcripts between pluripotent and 2C-like states. Dashed line 935 
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denotes 1.5-fold differences. (c) The line plots showing nascent and pre-existing transcript levels of Tet1 936 
and Zscan4d in pluripotent, intermediate, and 2C-like state. (d) Heat map showing enriched GO terms of 937 
state-specific genes. Significance of enrichment (FDR) is scaled by colors. (e) Heat map showing nascent 938 
transcript levels of state-specific genes encoding DNA-binding proteins. (f) Heat map showing the regulon 939 
activity of state-specific TFs or epigenetic regulators. The color scales depict the regulon activity. 940 

Figure 5. scNT-Seq reveals TET-dependent regulation of the plutipotent-to-2C transition. (a) 941 
Nascent RNA velocity analysis of combined wild-type (WT) and Tet-TKO mESCs. The arrow indicates the 942 
projection from the observed state to extrapolated future state. (b) Projection of cell state and the nascent 943 
RNA level of the Zscan4a gene on the same UMAP plot as in Fig. 5a.  (c) Relative composition of three 944 
stem cell states in WT (4,633 cells) and Tet-TKO (2,319 cells) mESCs. (d) The fraction of labeled 945 
transcripts in WT and Tet-TKO mESCs across three states. The box plots display the median (center line) 946 
and interquartile range (IQR, from the 25th to 75th percentile), the whiskers represent 1.5 times the 947 
interquartile range, and the circles represent outliers. 948 

Figure 6. Pulse-chase scNT-Seq reveals cell state-specific mRNA decay in mESCs. (a) Schematics 949 
of pulse-chase scNT-Seq experiment. (b) UMAP plots of 20,190 mESCs profiled in the pulse-chase 950 
scNT-Seq analysis. Cells are colored by three states (left) or by 7 time-points (right). Cell numbers of 951 
each state across different time-points are also shown. (c) Line plots showing temporal changes of 952 
nucleotide substitution rates. (d) Scatterplots showing the correlation of RNA half-life measurements 953 
between this study (top: one timepoint inference analysis; bottom: pulse-chase analysis) and bulk SLAM-954 
Seq5. (e) Heat map (left) and bar plot (right) showing concordant change of RNA half-life (left) and gene 955 
expression (right) between pluripotent and 2C-like states, respectively. (f) Network of RNA-binding 956 
proteins (pink quadrate) and their binding targets (green circle). Enriched RNA-binding proteins were 957 
inferred by motif sequenced enriched in 3’UTR of target genes. 958 
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Supplementary Figure 1: Quality control of scNT-Seq in mESCs.  
a. Violin plot comparing the number of genes and number of UMIs detected in individual cells among 
different treatment conditions. Cell number and sequencing depth were shown on the top.  
b. Scatter plot showing reproducibility between two replicates. 
c. Transcriptome-wide nucleotide substitution rates reveal the effect of labeling time (100 μM 4sU/4hr or 
200 μM 4sU/24hr) and methanol fixation (two rehydration buffers, PBS versus SSC) on T-to-C conversion 
rate. The control sample (100 μM 4sU/4hr) was not treated with TFEA/NaIO4. 
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Supplementary Figure 2: scNT-Seq identifies different cell types in primary mouse cortical 
cultures. 
a. UMAP visualization of 20,547 cells from mouse cortical cultures (same UMAP plot as Fig. 2b). The 

cells are colored by different durations of neuronal activation. 
b. Violin-plot showing gene expression levels of representative marker genes in different cell-types. 
c. Marker gene expression is scaled by colors in the same UMAP as (a).  Ex, excitatory neurons; Inh, 

inhibitory neurons; NP, neural progenitors; RG, radial glial progenitor cells. 
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Supplementary Figure 3: UMI-based statistical correction of the nascent RNA levels. 
a. Density plot of the number of covered uridine sites per read or UMI. Data set of excitatory neurons 

with 60 min KCl stimulation were shown. 
b. Bar plot of the number of T-to-C substitutions per read or UMI. Data set of excitatory neurons with 60 

min KCl stimulation were shown. 
c. All UMIs of the Fos and Mapt genes from one excitatory neuron with 60 min KCl stimulation were 

shown. Grey circles stand for T without T-to-C conversion, while crosses (“X”s) denote sites of T-to-C 
conversion in at least one read. 
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d. Comparison of nascent RNA levels of each gene in excitatory neurons (with 60 min KCl stimulation) 
before and after statistical correction. Ten neuron activity-dependent genes and two house-keeping 
genes are highlighted with red dots. 
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Supplementary Figure 4: Different cell types show different neuron activity-dependent gene 
expression programs. 
a. UMAP visualization of the expression profiles of 20,547 cells from primary mouse cortical cultures 

with or without KCl stimulation (bottom panel, same UMAP plot as Figure 2b). Cells from non-
neuronal cell clusters (RG/Ex-NP) are sub-clustered based on nascent or pre-existing mRNAs (top). 
The nascent and pre-existing mRNAs of same cell were connected by black line. Ex, excitatory 
neurons; Inh, inhibitory neurons; NP, neural progenitors; RG, radial glial progenitor cells. 

b. Heat map showing nascent transcript levels of genes with significantly increased expression level 
after KCl stimulation in at least one cell type. 

c. Heat map showing nascent transcript levels of early- and late-response genes in excitatory neurons 
with different durations of KCl stimulation. 97 significantly induced genes were clustered into 2 groups 
(early- and late-response).  
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Supplementary Figure 5: Heat map of activity-regulated TF regulons in mouse cortical cultures. 
Heat map showing correlated transcription factor activity (quantified by SCENIC) during neuronal activity-
dependent gene expression.  
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Supplementary Figure 6: scNT-Seq reveals different stem cell states in mESC cultures. 
a. UMAP visualization of 4,633 WT mESCs from two replicates. The cells are colored by different cell-

types or cell-states. Feeders (purple dots) are contaminated mouse embryonic fibroblasts in cell 
culture. 

b. UMAP plots were colored by replicate. 
c. Violin plot showing gene expression level of marker genes in different stem cell states or cell-types. 
d. Feature-plots showing marker gene expression is scaled by colors in the same UMAP as (a). 
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Supplementary Figure 7: scNT-Seq reveals nascent and pre-existing RNA level of representative 
genes in mESCs. 
a. Violin plots showing expression levels of nascent and pre-existing transcripts of selected genes in 

three cell-states of mESCs. 
b. Scatterplots showing nascent and pre-existing RNA levels of representative genes, including 

pluripotent genes (Sox2, Nanog), 2C-like state specific genes (Zscan4d, Gm8300), and house-
keeping gene (Gapdh).  

c. Nascent and pre-existing RNA levels of major DNA methylation regulators in three stem cell states.  
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Supplementary Figure 8: scNT-Seq reveals TF activity changes during pluripotent-to-2C transition 
in mESCs. 
a. Heat maps showing TF regulon activity (left) and the similarity of transcription factors activities in 

three stem cell states (right). 
b. Volcano-plot showing state-specific TF regulon activity. TFs with a fold-change of mean AUC values 

more than 1.5 and adjust P-value less than 0.05 were highlighted in red. 
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Supplementary Figure 9: scNT-Seq analysis of TET-dependent regulation of the plutipotent-to-2C 
transition in mESCs.  
a. Validation of genotypes of the Tet1 (-11bp/+1bp) and Tet2 (-7bp/-1bp) genes in Tet-TKO cells by 

aligning scNT-Seq reads to the CRISPR/Cas9 genome editing sites. 
b. Projection of cell states onto the same UMAP plot as Fig. 5a. 
c. Projection of genotypes and the cell-cycle states onto the same UMAP plot as Fig. 5a. 
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Supplementary Figure 10: Pulse-chase scNT-Seq reveals transcript-specific mRNA decay of 
mESCs. 
a. Violin plots showing levels of labeled and total transcripts of the Sox2 and Top2a genes during pulse-

chase assay. 
b. Marker gene expression is scaled by colors in the same UMAP plot as Fig. 6b. 
c. Enrichment analysis of GO terms within stable (top 10% genes with longest half-lives) and unstable 

genes (top 10% genes with shortest half-life) in pluripotent state mESCs. 
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Supplementary Figure 11: Pulse-chase scNT-Seq reveals cell state-specific mRNA decay in 
mESCs. 
Scatterplots comparing the RNA half-life of commonly detected transcripts between two stem cell states 
(a: pluripotent vs. intermediate; b: intermediate vs. 2C; c: pluripotent vs. 2C) and number of genes 
showing >1.5-fold change in RNA half-life (indicated by blue and red dashed line) between two states are 
shown (left panels). Representative genes showing state-specific RNA half-life are shown in the right 
panels.  
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Supplementary Figure 12: Characterization of mRNA stability and gene expression levels in 
different states of mESCs. 
a. Scatterplot showing the correlation between gene expression levels (total transcripts) and RNA half-

life in pluripotent and 2C-like states. Representative GO terms enriched in genes in each quadrant, as 
well as genes belong to these GO terms, are highlighted. The mRNA decay kinetics and expression 
level of selected 4 genes were also shown in the middle panel. Representative state-specific genes 
with different RNA half-life are shown in the right panel. 2C-like state enriched genes are highlighted 
in blue, while genes preferentially expressed in the pluripotent state are highlighted in red. 

b-c. Scatterplot showing the correlation between gene expression levels (total transcripts) and RNA half-
life in different states (b: Pluripotent vs. intermediate; c: intermediate vs. 2C-like). Genes that are 
differentially expressed in one stem cell state are highlighted in red or blue. 
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