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Abstract

Accurate protein druggability predictions are important for the selection of drug

targets in the early stages of drug discovery. Due to the flexible nature of proteins, the

druggability of a binding pocket may vary due to conformational changes. We have

therefore developed two statistical models, a logistic regression model (TRAPP-LR)

and a convolutional neural network model (TRAPP-CNN), for predicting druggability

and how it varies with changes in the spatial and physicochemical properties of a bind-

ing pocket. These models are integrated into TRAPP (TRAnsient Pockets in Proteins),

a tool for the analysis of binding pocket variations along a protein motion trajectory.

The models, which were trained on publicly available and self-augmented data sets,
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show equivalent or superior performance to existing methods on test sets of protein

crystal structures, and have sufficient sensitivity to identify potentially druggable pro-

tein conformations in trajectories from molecular dynamics simulations. Visualization

of the evidence for the decisions of the models in TRAPP facilitates identification of

the factors affecting the druggability of protein binding pockets.

Introduction

Drug development is a very costly and time-consuming process, with only 7-11% of com-

pounds in phase I testing finally becoming approved drugs.1 A thorough drug target vali-

dation in the earlier stages of drug discovery projects could reduce the waste of resources

and improve the success rate. Thus, the druggability of a protein,2–4 which describes the

protein’s potential to accommodate low molecular weight drug molecules that modulate its

biological function, should be evaluated during target validation. Low molecular weight

compounds may show a therapeutic effect when they bind with high affinity to a druggable

disease-related protein at a specific position, known as the binding pocket or binding cavity.

Information on protein druggability is particularly useful for prioritizing therapeutic targets,

and for guiding the design of new drugs to avoid side-effects or unwanted polypharmacology.

The concept of druggability is used to described a biological target that is disease-related

and can be modulated by commercially viable compounds that are usually orally available

and are known as drug-like molecules.5,6 An empirical rule for evaluating the druglikeness of

a given compound is Lipinski’s rule-of-five (RO5),7 which was derived based on the physic-

ochemical properties of 90% of orally active drugs that achieved Phase II status. Thus, a

more precise and practical definition of protein druggability can be formulated as the pro-

tein’s ability to bind drug-like ligands with high affinity. Most experimental approaches for

assessing druggability have involved high-throughput or NMR-based screening using libraries

of molecules that conform to lead-like characteristics.3,8 However, the high cost of instrumen-

tation and the uncertainty of negative assessments due to potentially inadequate compound

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882340doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882340
http://creativecommons.org/licenses/by/4.0/


collections restrict the scope of experimental approaches. Therefore, computational proce-

dures, typically based on virtual screening or machine learning,9 have been developed to

provide a more generally applicable approach.

Here, we focus on protein structure-based druggability prediction using machine learning

approaches to take advantage of the large amount of structural data on proteins. Existent

statistical models for druggability prediction typically have 3 essential elements: an informa-

tive featurization of protein binding pockets, a druggability dataset, and a machine learning

approach. The featurization usually involves two steps. First, a cavity or crevice in the

protein is defined using a pocket estimation method. Then, the features are derived for the

specific cavity. A wide range of features or descriptors can be used to characterize a pocket,

including geometric information such as pocket volume or surface area, and physicochemical

properties like hydrophobicity or polarity. The features that enable better discrimination

between druggable and less-druggable pockets are then used as the input for the druggability

prediction model. Based on the knowledge contained in the druggability dataset, the model

learns to capture the relation between input features and output druggability using machine

learning approaches. In order to compare the performance of different methods, consensus

datasets, such as the non-redundant druggable and less druggable (NRDLD) dataset,10 have

been developed.

One of the earliest methods, developed by Hajduk et al.,3 predicts experimental screening

hit rate, as a druggability measure, with a linear regression model based on descriptors

of the polar/apolar surface area, the surface complexity, and the pocket dimensions. For

DrugPred,10 partial least-squares projection to latent structures discriminant analysis (PLS-

DA) was used to select 5 out of 22 descriptors that show significant contributions to the

model decision with positive contributions to druggability from hydrophobicity and protein-

ligand contact surface and a negative contribution from polar surface area. Volsite6 encodes

both the shape and the pharmacophoric properties of a binding cavity on regularly spaced

grid points and derives 73 global and local descriptors from the grids, using a support vector
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machine algorithm (SVM) with a nonlinear kernel to train the druggability prediction model.

The non-linearity of the SVM means that the contribution of each feature to the model

cannot be obtained directly. Another grid-based method is DoGSiteScorer,11,12 which maps

the protein of interest onto a grid and estimates pockets and subpockets using a Difference

of Gaussian filter.13 Based on the pocket-forming grid points and the pocket-lining residues,

global and local descriptors are computed. From 17 global descriptors three descriptors

namely, pocket depth, number of apolar amino acid residues and the pocket volume, are

used to build a SVM model with a Gaussian kernel. In addition, local pocket properties are

described by distance dependent histograms between atom pairs, e.g. hydrophilic-hydrophilic

and lipophilic-lipophilic atom pairs, which allows druggability assessment through a nearest

neighbor search. The local descriptors reveal that druggable pockets tend to have fewer short-

range hydrophilic interaction pairs and more short-range lipophilic pairs. The combination

of global and local predictors increases the reliability of the model. Subsequently, as the

druggability prediction of a single target varies when applying different pocket estimation

methods, PockDrug14 was developed to overcome these uncertainties by optimizing the model

with different pocket estimation methods. It performs druggability prediction based on the

consensus of seven linear discriminant analysis (LDA) models with complementary input

features. In general, the properties involved describe the geometry, hydrophobicity and

aromaticity of the pockets, as for most other druggability prediction models.15,16

Most druggability prediction methods have been developed to use the static structures

of proteins determined by experimental methods, such as X-ray crystallography, NMR, or

cryo-electron microscopy. However, proteins are dynamic and possess an inherent flexibility17

which alters the shape and properties of their binding pockets.18–20 Therefore, it is valuable

to explore the different conformations of a binding pocket by molecular simulation and the

corresponding variations in druggability. Some methods that combine pocket druggability

prediction and molecular dynamics simulation have been developed, such as MDpocket21

and JEDI.22 To compute the druggability score of a complete trajectory efficiently, these
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methods use only a few descriptors, such as volume and hydrophobicity, and therefore might

not be sensitive enough to capture the variations in druggability due to subtle conforma-

tional changes. Therefore, based on the assumption that a change in the conformation of a

binding site leads to a change in its druggability, our aim in this work was to build drug-

gability assessment models that are able to trace the fluctuation of druggability as a result

of conformational changes. TRAPP is a tool that allows the exploration of different protein

conformations, the analysis of binding pocket flexibility and dynamics, and the extraction of

spatial and physicochemical information on the binding pocket conformations. The goal of

this study was to make use of the information provided by TRAPP for assessing the drug-

gability of a binding pocket as its shape changes using machine-learning based approaches.

Global descriptors of the pocket were generated as the input for linear models using logistic

regression (LR) and a support vector machine (SVM), whereas a grid representation of the

pocket provided input to a convolutional neural network (CNN) for druggability prediction.

Visualization tools were developed to elucidate the evidence for the decisions of the models.

The performance of the models was evaluated and compared with other methods to predict

druggability and they were found to perform equally well or better.

Methods

Data sets

Two data sets of experimentally determined protein structures were used to train and validate

the druggability assessment models. In addition, to illustrate the capabilities of our models,

MD trajectories of pocket motions were generated.

NRDLD dataset

The Non-Redundant Druggable and Less Druggable (NRDLD) dataset is the largest publi-

cally accessible druggability dataset available to date.10 It contains 113 instances of proteins
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with high resolution (less than 2.6 Angstroms ) crystal structures of which 71 are labeled

as druggable and 42 are labeled as less-druggable. A protein is defined as druggable if it

is able to noncovalently bind small drug-like ligands that are orally available and do not

require administration as prodrugs, whereas a protein is less-druggable if none of the ligands

with which it was co-crystallized simultaneously met the following three requirements: (1)

satisfied Lipinski’s rule of five for orally available drugs;7 (2) had clogP ≥ −2;23 and (3)

The ligand efficiency was ≥ 0.3 kcal mol−1/heavy atom.24 The redundant instances were re-

moved by choosing a single crystal structure to represent protein targets sharing a pairwise

sequence identity of greater than 60%. The NRDLD data set has a pre-defined split, with a

training set with 76 instances and a test set with 37 instances. Since the performance of the

latest druggability prediction tools was mainly assessed using the NRDLD test set, it allows

comparison of the performance of our method with other methods.

DaPB dataset

A larger dataset, the Druggability augmented from PDBbind (DaPB) dataset, was con-

structed by filtering the 2017 release of the PDBbind refined set.25 The PDBbind database

collects the experimentally measured binding affinity data for the biomolecular complexes

in the Protein Data Bank (PDB), and the PDBbind refined set is a subset containing 4154

protein-ligand complexes with better quality with regard to binding data, crystal structures

and the nature of the complexes.

In this paper, we use the term bindability15,26 to describe pockets that bind drug-like

ligands with submicromolar affinity and refer to the positive and negative instances in the

DaPB dataset as bindable and less-bindable pockets, in order to distinguish the concepts

of druggability and bindability in the NRDLD and DaPB datasets. Although it was stated

that borderline druggable proteins are bindable,27 the distinction between bindability and

druggability is rather obscure and the two terms are sometimes used synonymously.5,6 Thus,

the DaPB dataset used in this work was built through filtering or selection of data on the basis
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of bindability. To collect positive complexes, we extracted the properties of the ligands using

Pybel, a Python wrapper for the OpenBabel cheminformatics toolkit,28 and then selected the

bindable pockets if they bind ligands that satisfy drug-like properties as defined in Sheridan

et al. 15 with a binding affinity stronger than 1 µM (Table S1). For the negative instances in

the DaPB dataset, instead of introducing a set of rules for filtering out the negative (less-

druggable) data, we directly applied one of the models trained on the NRDLD training set,

TRAPP-SVM (see below), on the remaining unlabeled data and selected the negative data

according to its prediction. In summary, the DaPB dataset used here contained 892 positive

instances and 1180 negative instances. One fifth of the DaPB dataset was used as the test

set and contained 190 positive instances and 224 negative instances.

Input data generation

Two types of input format were generated during the TRAPP-pocket procedure as explained

in more detail in Ref. 29.

Preprocessing of the PDB files

Before interpolating the binding pocket on to a grid and computing descriptors, the input

PDB file of the protein was preprocessed in two steps. First, redundant small molecules such

as solvent, buffer, or some peptide linking groups were removed if they were not in the list

of retained co-factors (Table S2). The protein residues and retained co-factors were then

protonated at pH 7.0 using Pybel.28

Multi-channel grid

8 different 3-dimensional grids, each corresponding to a different channel as shown in Table

1, were generated for each pocket. Each channel describes a specific property of the pocket

(Figure 1), resembling the idea of a color channel in an RGB image. The size of the grid box

can be defined by either the grid edge length, e.g. 24 Å, or the extent around the ligand.
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For druggability assessment, only a fixed grid edge length was used, due to the limitation of

a fixed input dimension for the CNN model. In this 4-dimensional grid representation of the

pocket, the first channel describes the shape and position of the cavity, which is computed

using the cavity distribution function G(ri, p) as described in Ref. 29 with a new pocket

selection algorithm summarized in the Supplementary Information. For a cavity grid in

which a single grid point is denoted as ri and the protein as p , an atom-occupied position

has the grid value G(ri, p) = 0 and a pocket position has the grid value 0 < G(ri, p) ≤ 1. The

remaining 7 channels describe the physicochemical properties of the cavity and were assigned

in two steps. First, the atoms in the grid box were assigned to certain physicochemical

properties if they satisfied the criteria given in Table 1. The positively and negatively

charged atoms were assigned based on the atom and residue information, whereas the atoms

with other properties were specified using Pybel28 definitions. Second, Gaussian distribution

functions Gprop(ri, p) were spanned over those atoms with certain properties in order to map

those atomic features to the grid.

Table 1: List of 3-dimensional grids and their corresponding global descriptors generated
from TRAPP-pocket for the 8 channels.

Channel Global descriptors Contributing atom types
Cavity Volume all atoms

Exposure
Positively charged (Lys, NZ), (Arg, NH1/NH2)
Negatively charged (Asp, OD1/OD2), (Glu, OE1/OE1)

Hydrogen-bond donor Pybel: OBatom.IsHbondDonor
Hydrogen-bond acceptor Pybel: OBatom.IsHbondAcceptor

Hydrophobic
Pybel: OBAtom.IsCarbon and

OBAtom.GetHeteroValence equals 0

Aromatic
Pybel: OBAtom.IsCarbon and

OBAtom.IsAromatic
Metal ion Pybel: OBAtom.IsMetal
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Figure 1: Visualization of the eight channels in grid representation for the structure of
radicicol-bound Hsp90 (PDB ID: 1bgq). Radicicol (shown in cyan) is used only for defining
the center of the pocket and is removed during grid generation. The grid edge length and
grid spacing are 24 Å and 0.75 Å, respectively. The isosurfaces are shown at a level of 0.1.
The metal ion channel is empty since there is no metal ion in the binding pocket of Hsp90.
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Global descriptors

After the grid computations, each channel was compiled into a single value or a few values

describing the global pocket properties. In total, ten global descriptors were extracted from

the grids in the TRAPP-pocket procedure. The list of the ten global descriptors and their

definitions are shown in Table S4. The pocket volume, protein-exposed and solvent-exposed

surface area were computed from the cavity grid. The pocket volume is defined as the sum-

mation of the grid points that have G(ri, p) > 0 and then multiplied by the volume of a

single grid element. The protein-exposed and solvent-exposed surface areas were computed

by counting the number of transitions from a cavity grid point (G(ri, p) > 0) to the pro-

tein grid point (G(ri, p) = 0) or solvent grid point (G(ri, p) = −1), respectively, and then

multiplying by the square of the grid spacing. The ratio of solvent-exposed surface area

to protein-exposed surface area is defined as the pocket exposure, which is an approximate

measure of the pocket shape and is used as one of the global descriptors for druggability

prediction.

The other physicochemical property descriptors were computed based on the overlap

between the cavity grid and the corresponding property grid. If G(ri, p) > 0, the property is

incremented by Gprop(ri, p). The final value representing each property was then multiplied

by the volume of a single grid element in order to make it comparable to the other descriptors

that are derived with a different grid setting.

Statistical Protocol

Linear models based on global descriptors

The global pocket descriptors were taken as the inputs for the druggability assessment models

using logistic regression and linear SVM, as implemented in scikit-learn.30 The models, whose

number of parameters is the number of input features plus one for the bias term, were trained

on the small NRDLD training set with L1 or L2 weight regularization. The pipeline, which
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consisted of input generation, data standardization, and model prediction, was constructed

and optimized as a whole. The hyperparameters, e.g. grid size and grid spacing for grid

generation, as well as the parameter C, which controls the regularization strengths, were

optimized by a 5-fold cross-validated grid search (Table S5). The splitting of the validation

set was performed so as to ensure that each fold had similar numbers of the instances with

the two labels.

Convolutional neural network based on a multi-channel grid

To capture the relationships between the druggability and the spatial/physicochemical prop-

erties of the binding pockets, the multi-channel grid, which serves as a detailed description

of the binding site, was used as the input for druggability prediction with a convolutional

neural network. The network architecture used for druggability prediction was inspired by

Ref. 31, which had 3 3 × 3 × 3 convolutional layers with rectified linear activation units

alternating with max pooling layers followed by a fully connected layer with two outputs

and a softmax layer to obtain a probability distribution over two classes.

The DaPB dataset was used for training and hyperparameter searching of the neural

network. To combat overfitting, data augmentation through 90◦ rotation and random trans-

lation of 2 voxels in x, y, z coordinates for each training instance was performed. The network

architecture and other hyperparameters, such as the learning rate and the weight decay for

regularization, were optimized using a 3-fold cross-validated grid search. In total, 60 different

network architectures with varying numbers of convolutional layers, numbers of convolutional

filters per layer, and numbers of neurons in the fully-connected layer were compared based on

their cross-validated F1 score. Finally, the optimized network structure was trained using the

Adam optimizer with default parameters for momentum scheduling (β1 = 0.99, β2 = 0.999),

a learning rate of 0.001 and a weight decay of 0.0001.
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Model evaluation

The quality of the models was assessed using accuracy (Eq. 1), sensitivity, specificity (Eq.

2), and Matthew’s correlation coefficient (MCC, Eq. 3). These metrics can be derived based

on the four elements in the confusion matrix during binary classification, that is, the numbers

of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

The sensitivity and specificity indicate the ability to identify druggable and less-druggable

pockets, respectively. The MCC, which takes into account all four values, is a balanced

metric for an uneven class distribution and an ideal measure for assessing the quality of a

binary classifier. Since the aim is to achieve a good balance between precision and recall,

the harmonic mean of precision and recall, also known as the F1 score or F-measure, is used

in the cross validated grid search for the optimal hyperparameters (Eq. 4).

accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
(2)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

F1 = (
recall−1 + precision−1

2
)−1 (4)

Interpretation and visualization of the druggability prediction mod-

els

To interpret the results of the linear models, the property values and the contribution of

each property to the decision were visualized as a heatmap. By displaying the standardized

input values, as well as color-coding each global descriptor by the product of the input value
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and the corresponding weight, the dominating features were identified.

On the other hand, the decision of a CNN can be explained by layer-wise relevance

propagation (LRP),32 which is a technique to calculate the contribution of each grid point in

the input space to the prediction made by the network. The relevance, which is initialized as

the network output before the softmax operation, is propagated back through the network

until it reaches the input. Through propagating relevance proportional to the pre-activation

of a specific node at the previous layer, the conservation of relevance at each layer can be

realized. The LRP result is also a grid with the same dimension as the input grid but each

grid point stores the relevance or contribution of that position to the output, thus the regions

in the binding pocket with a strong contribution to the model prediction can be visualized

as a 3D mesh. Since the output layer of TRAPP-CNN contains two units representing

druggable and less-druggable pockets, LRP can be performed from both units in order to

find the critical regions that make the pocket druggable or less-druggable. However, as the

relevance of each grid point is a decomposition of the output, the magnitude of the relevance

depends on both the importance of that position to the prediction and the magnitude of the

output, which represents how certain the model is of the prediction. In order to visualize

the LRP results as 3-dimensional isocontours, the relevance at each grid point was first

normalized by the maximum relevance value in the grid and an empirical threshold of 0.1

was used to show only the regions with a significant contribution. The sub-regions of the

pocket showing a strong contribution to the model decision as druggable or less-druggable

were colored red or blue, respectively.

Model testing using a trajectory from an L-RIP simulation

To assess the ability of our models to monitor druggability in an MD simulation, we used

an enhanced sampling MD method called L-RIP33 (Rotamerically Induced Perturbation34

with Langevin dynamics) to sample different conformations of the active site of p38 mitogen-

activated protein (MAP) kinase and the cryptic pocket of TEM-1 β-lactamase. The p38 MAP
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kinase is an intracellular signaling protein involved in cytokine synthesis and is an important

target for the treatment of osteoarthritis and inflammation. β-lactamase is a hydrolase that

breaks the β-lactam ring, leading to resistance to β-lactam antibiotics among bacteria. To

study how transient pocket formation in these two example proteins impacts druggability,

L-RIP perturbation was applied with 300 perturbation pulses and 300 implicit solvent MD

timesteps of 0.002 ps after each perturbation.33 The last frame of each perturbation step

was stored for further analysis. The remaining parameters for applying L-RIP followed the

default settings on the TRAPP webserver.33,35 Before druggability analysis, all snapshots in

the trajectory were superimposed by fitting all binding site heavy atoms that were within 4

Å of the centre of any ligand atom.
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Results

Three global descriptors - pocket volume, hydrophobicity and the

number of H-bond donors - are the most important for predicting

druggability using linear models

Before training the models, we first inspected the data sets by plotting the global descriptors

in a bar chart and a scatter-plot matrix (Figure 2A and B). We observed similar trends in

both the NRDLD and the DaPB datasets, indicating that both sets convey consistent infor-

mation regarding the relationship between druggability and the global descriptors. Compar-

ing the mean of each global property within the DaPB set (Fig. 2A), we observe that the

values for the pocket volume, number of H-bond acceptors, hydrophobicity and aromaticity

of the druggable targets are higher than those of the less-druggable targets. In contrast,

the values for the pocket exposure, the positively charged property, and the number of H-

bond donors of the druggable targets are slightly lower than those of the less-druggable

targets. The large standard deviation with respect to the mean for each global property for

both druggable and less-druggable pockets demonstrates the variability of different protein

binding pockets.

On the other hand, the scatter-plot matrix allowed us to detect correlations between pairs

of global features (Figure 2B). First, we observed a linear correlation between the pocket vol-

ume and some of the physicochemical properties, such as the numbers of H-bond donors and

acceptors and the hydrophobicity. This correlation reflects the fact that the computation of

a physicochemical property is basically a summation of certain atom types located within the

pocket and thus the value is proportional to the pocket volume. We therefore included the

normalization of each physicochemical property to the pocket volume as one of the hyperpa-

rameters (parameter values: ”yes”/”no”) to be tuned during optimization. It was noticeable

that the scatter plots for hydrophobicity/positively charged or hydrophobicity/number of

H-bond donors show some linear separability between bindable and less bindable pockets,

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882340doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882340
http://creativecommons.org/licenses/by/4.0/


indicating the importance of these global features. In contrast, the most severe overlaps

between the positive and negative data for bindability occur for the scatter-plots for the

pocket exposure, negatively charged, and aromaticity features.

Figure 2: Visualization of the DaPB dataset built on the PDBbind refined set 2017. (A)
Mean and standard deviation of each global property computed using all, bindable and
less-bindable protein structures in the DaPB dataset. (B) Scatter-plot matrix of the DaPB
dataset. The red and blue dots represent bindable and less-bindable binding pockets, re-
spectively. The corresponding plot for the NRDLD set is given in Figure S1

To construct linear models using LR or a linear SVM, the global features extracted from

the TRAPP procedure were used as input for classification. Both methods are simple, fast,

and ideal for binary classification, and less prone to over-fitting for small datasets than more

complex machine learning methods. In addition, the linear dependency of the models on the

global features provides good interpretability. The hyperparameters of the final model that
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achieved the top cross-validated score on the NRDLD training set were a grid size of 24 Å,

a grid spacing of 0.75 Å, and C = 1 with the physicochemical properties normalized by the

pocket volume.

The resulting coefficients of the TRAPP-LR with L1 and L2 regularization and TRAPP-

SVM models are similar (Figure 3). We first consider the interpretation of the coefficients

obtained in the L2 regularized TRAPP-LR model. The output of LR is the log-odds ratio.

Thus, positive coefficients, e.g. for pocket volume and hydrophobicity, imply that the odds

of the pocket being druggable increase as the corresponding input feature increases, whereas

negative coefficients indicate that the odds of the pocket being druggable decrease as the

corresponding feature increases. Thus, by increasing the pocket volume and hydrophobic

groups in the binding pocket while keeping the other features unchanged, the binding pocket

would be more likely to become a drug target. In contrast, larger values for the number of

H-bond donor/acceptor groups, positive charged groups, and the metal ion property lead to

a lower probability that a pocket is druggable.

For all three models, the pocket volume and hydrophobicity are the main properties that

are positively correlated with the druggability, while the other global properties mostly have

a negative correlation. The importance of each feature can be derived from the absolute

size of the coefficient relative to the others. We observe that some features, including pocket

volume, positively charged, number of H-bond donors and hydrophobicity, consistently have

larger coefficients in all models. Notably, the metal ion property contributes more than

several other physicochemical properties, such as aromaticity and the number of H-bond

acceptors, which are commonly included in druggability predictions. Note that most of

the metal ions in the NRDLD dataset have a formal charge of +2e (Table S3). Geometric

descriptors have been widely used for druggability prediction, for example, the pocket depth

or buriedness has been shown to have a positive contribution.11,14,15,36 However, we find that

the coefficient of pocket exposure is relatively small. This difference may arise because some

of the previous models were built using only a few simple input features, thus overestimating
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the importance of pocket shape.15,36 The use of a different druggability training set may

also affect the coefficients of the final model.11 Another possible reason is that the ratio

between solvent-exposed and protein-exposed surface area is not an ideal shape descriptor.

In PockDrug,14 the longest distance in the pocket or the radius of the smallest enclosing

sphere were used instead.

The coefficients of the TRAPP-LR models with L1 or L2 regularization were overall simi-

lar. L1 regularization penalizes the absolute value of the weights instead of the squared value

penalized in L2 regularization. As the L1 penalty induces sparsity, the weights correspond-

ing to the negatively charged descriptor and aromaticity vanished, indicating that these two

properties are less important for druggability prediction. This is as expected because of the

severe overlap of the druggable and less-druggable classes in these two feature dimensions

(Figure. 2B).

Figure 3: Coefficients of the descriptors in the TRAPP-LR models with L2 (grey boxes)
and L1 (circle hatch) regularization and the TRAPP-SVM model (line hatch) trained on the
NRDLD training set. All models have input descriptors on grids with a grid edge length of
24Å, a grid spacing of 0.75Å, a hyperparameter C of 1, and normalization of physicochemical
properties to the pocket volume.
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Large hydrophobic patches in the binding pockets contribute strongly

to the druggability prediction of the TRAPP-CNN model

The DaPB training set was used for training the TRAPP-CNN. To be consistent with the

procedures for TRAPP-LR and TRAPP-SVM, the same configuration for grid generation,

that is, a grid size of 24 Å and a grid spacing of 0.75 Å, was used. Based on the network

architecture of Ref.,31 we further tuned our network architecture by grid searching over

networks with varying depth and width (Tables S6 and S7). In general, increasing the

number of convolutional layers slightly degraded the performance. Modifying the number of

convolutional filters in each layer did not show an obvious effect but adding an additional

fully-connected layer did improve the performance. The final network architecture is shown

in Figure 4.

Figure 4: Final network architecture of TRAPP-CNN.

To provide better interpretability, the decisions of TRAPP-LR and TRAPP-CNN were

visualized with a heatmap and by pixel-wise decomposition through LRP, respectively. Two

positive and two negative examples in the DaPB test set that are correctly predicted by both

TRAPP-LR and TRAPP-CNN are shown in Figure 5. On the heatmap, the standardized

global property values obtained after preprocessing are displayed as numbers, providing in-

formation on how the global properties of a given pocket deviate from an average pocket.

The druggability score of TRAPP-LR is the inner product of the standardized global prop-

erties and the weights plus a bias term. The contribution of each property can therefore be

derived from the product of the property value and its corresponding weight. The contri-
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butions from different properties are displayed by the color of each property. The stronger

the red color, the more positive the contribution of a certain property to the prediction. In

contrast, a stronger blue color indicates a more negative contribution. Thus, a generally red

matrix indicates high druggability, whereas an overall blue matrix indicates low druggability.

Note that the properties are ordered according to the magnitude of the weight, therefore the

more important features are shown in the upper left corner and the less significant features

are in the lower right corner.

The LRP results of TRAPP-CNN can be visualized as meshes on the structure of a

binding pocket in order to identify critical sub-regions of the pocket for its bindability.

The positive and negative evidence are shown by red and blue regions, respectively. In

general, we observe that most of the evidence is located close to or within the pocket mesh,

demonstrating that the cavity grid generated from TRAPP-pocket is able to guide the model

to the region of interest. On the other hand, for pockets predicted to be in the positive

class (druggable), mainly positive evidence but not negative evidence is obtained and vice

versa. This phenomenon is especially prominent for the pockets with predictions of very high

confidence, that is, druggability scores close to 0 or 1. As pixel-wise decomposition distributes

the model raw output onto the input grid points, a confident prediction is associated with a

large difference between the output of the two classes. Therefore, the evidence corresponding

to the class opposite to the prediction should be negligible.

Two positive and two negative examples in the DaPB test set are shown (Figure 5).

Comparing the two positive examples (Figure 5A and B), the heatmap of 1qbu (closed

conformation of the active site of human HIV protease) contains relatively more red fields

than that of 3d7z (ATP binding site of human p38 MAP kinase), which corresponds to the

difference in druggability scores predicted by TRAPP-LR. The large hydrophobicity of the

pocket in structure 3d7z is the main contributing factor, while the large pocket volume and

the relatively H-bond donor/acceptor properties of the poicket in the structure 1qbu make it

a druggable target. The LRP results of the 3d7z and 1qbu structures demonstrate that the
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positive evidence is situated in the main pocket and encompasses most of the pocket mesh,

indicating that the cavity volume has the largest contribution to the positive (druggable)

prediction. A closer examination of the binding site residues reveals that the positive evidence

tends to be surrounded by hydrophobic residues. Thus, hydrophobicity is a critical feature

for enabling TRAPP-CNN to discriminate druggable pockets from less druggable ones.

The negative examples shown are the α-kinase domain of myosin-II heavy chain kinase

A and fumarylacetoacetate hydrolase (FAH). The α-kinases (PDB ID:4zme, Figure 5C) are

serine/threonine protein kinases that exhibit no sequence similarity with conventional eu-

karyotic protein kinases.37 The active site of α-kinase is, compared to that of p38 MAP

kinase, more solvent-exposed and less hydrophobic according to the heatmaps. Two re-

gions with negative evidence are observed. One of them is surrounded by positively charged

residues, which corresponds to the large negative coefficients for the positively-charged de-

scriptor in the TRAPP-LR and TRAPP-SVM models. The other region with negative

evidence is within the pocket mesh and overlaps with the position of the bound adenosine

in a rather shallow sub-region of the pocket. Note that some additional negative evidence is

also present near the side chains of two leucine residues that are not pointing towards the

binding pocket. Hence, the noncontributing hydrophobic residues near the binding pocket

are also recognized by the model as part of the reason for low druggability.

The binding site of FAH (PDB ID: 1hyo, Figure 5D) is an example of a protein pocket

that contains metal ions. The heatmap for 1hyo indicates that the small pocket volume and

relatively higher H-bond donor/ positively charged features are the key reasons for its low

druggability. Interestingly, the negative evidence near the binding site of FAH is concentrated

on the metal ions, a calcium ion and a magnesium ion, which can also be understood from the

negative coefficient for the metal ion property in the TRAPP-LR model. If we repeat LRP

on the same reference structure with no metal ion, the prediction remains as negative (less-

druggable) but the negative evidence transfers to the center of the narrow cavity, surrounded

by positively charged residues, as well as a shallow region of the pocket. The druggability
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score of FAH from TRAPP-LR increases from 0.231 to 0.343 upon removal of the metal

ion, showing the direct negative contribution of metal ions to the druggability. In contrast,

the druggability score from TRAPP-CNN decreases slightly from 0.362 to 0.316, indicating

that, in reality, the impact of metal ions on the prediction is not as severe as indicated in the

visualization. To sum up, the visualization through LRP might lead to over exaggeration

of the negative signal from metal ions, and therefore, druggability prediction for protein

pockets containing metal ions should be interpreted with caution and repeated using the

metal ion-free structures.

Figure 5: Heatmaps from the TRAPP-LR model and pixel-wise decompositions from the
TRAPP-CNN model for two positive and two negative examples in the DaPB test set.
The PDB ID, druggability label, and its predicted druggability scores are shown above the
panels for each example. The druggability labels are shown as D for druggable and LD
for less druggable. In the heatmap, the scaled input values are shown in numbers below
each property name, while the contribution from each property is shown by the color (red-
druggable, blue - less druggable). The cavity extracted by TRAPP-pocket is shown as a
black mesh. Evidence for druggable and less-druggable pockets is shown by red and blue
isosurfaces, respectively. The residues shown in yellow are hydrophobic and the residues in
blue are positively charged. Metal ions are shown as green spheres. (A) p38 MAP kinase
(3d7z). (B) HIV protease (1qbu). (C) Myosin-II Heavy Chain Kinase A (4zme). (D)
Fumarylacetoacetate hydrolase (1hyo).
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The TRAPP-based druggability prediction models show equivalent

or slightly improved performance on a public test set

The performance of the tuned models was first evaluated using the DaPB test set, which is

the 1/5th of the DaPB dataset that was not used for training, see Table 2. As the negative

data were labeled by the TRAPP-SVM model, its specificity is 1 and both accuracy and

MCC are high. The only informative metric for the TRAPP-SVM model is the sensitivity

(true positive rate), which implies a difference between bindable pockets, defined by filter-

ing drug-like properties with high affinity, and druggable pockets described in the NRDLD

dataset. Only 72.5% of the positive instances in the DaPB dataset were recognized as drug-

gable by the TRAPP-SVM model. Having a similar decision boundary according to the

coefficients of the model (Figure 3), the TRAPP-LR model shows comparable performance

to the TRAPP-SVM model with similar sensitivity on the DaPB test set. It can be that the

misclassified positive instances are less-druggable but bindable pockets based on the defini-

tion of druggability in the NRDLD dataset. Interestingly, the TRAPP-CNN model, which

is the only model trained on the DaPB dataset, performed similarly to the other two linear

models with higher specificity than sensitivity. This indicates that the two classes might still

be overlapping in the convolved feature space. As stated above, the positive instances might

contain less-druggable but bindable instances. Since the positive instances are selected using

observation-based rules for drug-like properties which are strongly dependent on the ligand

properties, there might still be bindable pockets in the rest of the PDBbind refined set. The

negative data that are chosen from the rest of the PDBbind refined set based on the predic-

tion of the TRAPP-SVM model might thus also contain less-druggable but bindable pockets.

These data points in the convolved space, which is optimal for separating druggable from

less-druggable pockets, are likely to be close and in the vicinity of the decision boundary.

As the negative data are slightly more numerous than the positive data, the model would

be optimized more towards correct classification of the less-druggable class, leading to the

higher specificity than sensitivity (Figure S2A, S2B).
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To compare with other existing druggability prediction tools, the performance of all three

models was further evaluated on the NRDLD test set as shown in Table 2. The TRAPP-LR

and TRAPP-SVM models perform equally to the other methods in terms of accuracy and

MCC value. The TRAPP-CNN model, however, displays superior performance with only

2 misclassified positive data points. Note that the number of data points in the test set is

low (37 instances), and thus the difference in performance arises from a difference in the

misclassification of just two data points.

Table 2: Predictive performance of the TRAPP-LR/SVM/CNN models for the DaPB and
NRDLD test sets and comparison to other druggability prediction tools for the NRDLD test
set. The value for CavityDrugScore is from the original publication16 while the values for
Volsite, DrugPred and PockDrug are from Table 3 in Ref. 14. The values for the TRAPP-
SVM model on DaPB test set are shown in parentheses since the TRAPP-SVM model was
used for defining the negative data in the DaPB set.

Dataset DaPB test set NRDLD test set

Method TRAPP-
SVM

TRAPP-
LR

TRAPP-
CNN

Cavity-
DrugScore

Volsite DrugPred PockDrug TRAPP-
SVM

TRAPP-
LR

TRAPP-
CNN

Test accuracy (0.882) 0.847 0.838 0.82 0.89 0.89 0.865 0.892 0.892 0.946
Test sensitivity (0.725) 0.713 0.742 - - - 0.957 0.913 0.913 0.913
Test specificity (1.000) 0.949 0.920 - - - 0.714 0.857 0.857 1.000

Test MCC (0.775) 0.694 0.678 - 0.77 0.77 0.712 0.770 0.770 0.894

To interpret the predictions and figure out the reasons for the wrong predictions, we

examined the misclassified examples from the TRAPP-LR model (Figure 6). Note that the

druggability score for the TRAPP-LR and TRAPP-CNN models can be interpreted as the

posterior probability (Figure S2C, S2D). The decision is given by thresholding at 0.5. As

the NRDLD data set contains more positive examples than negative examples, the prior

probability of the positive class, which is part of the posterior probability, is overestimated

and could be corrected. However, since the goal is not to obtain a binary prediction but

to compare the scores between different conformations, we can keep the score unmodified

but instead use a higher threshold for selecting promising conformations. In these misclas-

sified examples, if the threshold is increased to 0.61, the false positive examples would be

eliminated.

In terms of the heatmaps, the misclassified examples, especially 1bmq and 1b74, have less
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strong color than the examples in Figure 5, indicating that none of these properties makes

significant contributions to the predictions of the model. This is another sign of the lack

of confidence in the predictions. For the urokinase (PDB ID: 1owe), the low druggability

comes from the low hydrophobicity, additional H-bond acceptor groups and an overly solvent-

exposed environment. The binding pocket of ADAM 33 (a disintegrin and metalloprotease,

PDB ID: 1r55) is also predicted as less-druggable due to the smaller pocket size and extra

H-bond acceptors. For the interleukin-1 beta converting enzyme (ICE, PDB ID: 1bmq),

the lower H-bond donor and acceptor properties of the pocket lead to the prediction of

slightly druggable. The cavity of glutamate racemase (PDB ID: 1b74) has a relatively

low hydrophobicity and pocket volume, common characteristics of less-druggable pockets.

However, the low amount of positively charged groups in the pocket seems to increase the

probability to be druggable and reverts the prediction.

We further applied the TRAPP-CNN model to these four examples that were misclassified

by the TRAPP-LR model and visualized the evidence by pixel-wise decomposition with LRP

(Figure 6). For the complete NRDLD test set, 1owe and 1r55 are the only two misclassified

cases when using the TRAPP-CNN model, whereas 1bmq and 1b74 are correctly predicted

as less-druggable owing to the higher specificity of the TRAPP-CNN model. According

to the structures and the cavity meshes, all four pockets are shallow and solvent-exposed.

In general, the evidence for less-druggable pockets highlights the regions that are at the

surface or outskirts of each cavity, close to some hydrophobic residues. In comparison to

many druggable pockets characterized by a well defined hydrophobic environment, these

hydrophobic residues tend to be situated on flexible loop structures and are not clustered

together in a confined region; thus they are unable to form a hydrophobic patch for ligand

binding that would favour a druggable pocket. In 1owe, the shallow regions, as well as some

positively charged residues, are identified as evidence for low druggability. The cavity in 1r55

is situated on the protein surface and the bound ligand is barely buried. As the original pixel-

wise decomposition result for 1r55 only emphasizes the metal ion, as discussed previously,
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the procedure was repeated using the metal-ion free structure as input. The less-druggable

evidence also points out the shallow region where the ligand binds, as well as two other

sub-regions which may be noise for the druggability prediction. Similar to the previous two

cases, the shallow regions or dynamic hydrophobic residues close to the exterior of the pocket

are highlighted with less-druggable evidence in 1bmq and 1b74. The cavity centers of 1bmq

and 1b74 are surrounded by positively charged and hydrogen bonding groups, respectively,

which are not characteristics of druggable pockets. Even though 1b74 is correctly predicted

as less druggable by the TRAPP-CNN model and has the lowest druggability score among

the four examples, the impact of the hydrogen bonding groups is unexplained by LRP.

Figure 6: False negatives and false positives in the NRDLD test set from the predictions of
the TRAPP-LR model. The PDB ID, druggability label, and its predicted druggability score
from the TRAPP-LR model are shown above the panels for each case. D indicates druggable
and LD indicates less druggable according to the NRDLD data set. The cavity extracted
by TRAPP-pocket is shown as a black mesh. Evidence for druggable and less-druggable
pockets is shown by red and blue isosurfaces, respectively. The residues shown in yellow,
blue, and pink are hydrophobic, positively charged, and H-bond forming residues. Metal
ions are shown as green spheres. False negatives: (A) urokinase (1owe). (B) ADAM 33 (a
disintegrin and metalloprotease, 1r55). False positives: (C) interleukin-1 beta converting
enzyme (1bmq). (D) glutamate racemase (1b74).
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More druggable conformations of transient pockets are identified

using the TRAPP procedure

To demonstrate how conformational changes impact druggability, we applied our druggability

prediction models to two systems containing cryptic binding sites.38–40 It has been reported

that appropriately sized pockets of the biologically relevant drug targets are necessary for the

strong binding of drug-sized ligands.41,42 For the target proteins that are considered tractable

but less-druggable, it is of interest to identify their cryptic sites and to exploit those sites to

boost the druggability of the drug targets.41

The first example considered is the p38 MAP kinase. It has a deep ATP-binding pocket

that contacts a flexible β-sheet and two flexible loops. The shifting of the F169 side chain

from its buried position (DFG-in conformation) to a position that sterically interferes with

ATP binding (DFG-out conformation), results in the opening of a hydrophobic sub-pocket

adjacent to the ATP binding site which is exploited by diaryl urea inhibitors.43 Inhibitors

bound to the active site of the two conformations were discovered, indicating that both are

potentially druggable. Nonetheless, comparing the crystal structures, an extra hydrophobic

sub-pocket close to the main pocket tends to be more accessible in the DFG-out conformation,

leading to an increased potential for specific ligand binding and thus higher druggability

scores than that of the DFG-in conformation (Figure 7A and B).

To assess how the TRAPP-LR and TRAPP-CNN models facilitate the identification of

more druggable pocket conformations in the TRAPP procedure, an L-RIP simulation was

performed using a crystal structure of p38 MAP kinase in the DFG-in conformation (PDB ID:

1r3c)44 as the starting structure. The resulting sampled conformations were then analyzed by

TRAPP-pocket and druggability assessment (Figure 7C). Through applying perturbations

to F169, multiple flips of the Phe in the DFG motif, as well as slight oscillations of the

β-sheet, were observed in the enhanced sampling MD trajectory. Based on the standardized

global descriptors, we observed that the pocket volume, pocket exposure and aromaticity

of the starting conformation are close to their corresponding average values calculated from
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all binding pockets in the NRDLD training set and that they oscillate along the trajectory,

whereas the hydrophobicity is higher than average throughout the trajectory. The pocket

volume increased around snapshots 20, 40, and 80, which corresponds to the flipping of

F169. However, the orientation of D168 does not change in the earlier perturbations (before

snapshot 80). The DFG-out conformation is achieved after snapshot 80.

The druggability score of each frame in the L-RIP trajectory was predicted using both the

TRAPP-LR and the TRAPP-CNN models. As the druggability scores from the TRAPP-LR

and TRAPP-CNN models are squashed into values between 0 and 1, the data points that are

not close to the decision boundary would not have significant changes upon conformational

change. Here, in order to trace subtle changes in the pocket properties, instead of comparing

the druggability score of different conformations, the direct output from the TRAPP-LR

and TRAPP-CNN models, before squashing by a logistic or softmax function, is displayed

along the trajectory, see Fig 7C. Both models predict the pocket to be druggable and show

similar trends in the pre-activated outputs. Thus, the global descriptors and TRAPP-LR are

sufficient for tracing druggability in this case. On the other hand, the pocket volume shows

the highest correlation to the predicted druggability of the TRAPP-LR and TRAPP-CNN

models, indicating the importance of the pocket estimation procedure in TRAPP.

We further computed the RMS distance in terms of the active site residues of each frame

to a DFG-out conformation of p38 MAP kinase (1wbs). Most interestingly, the snapshot

that had the smallest RMS distance (Frame 81) was the conformation with the highest

druggability score. We then investigated the model prediction for frame 1 and 81 through

visualization (Figure 7D and E). In snapshot 1, the connection to the sub-pocket is blocked

due to the hydrogen bonding between D168 and K53, thus the positive evidence only resides

in the main cavity. On the contrary, the DFG motif in snapshot 81 shifts outward and

the sub-pocket becomes more open, leading to strong positive evidence in both the main

pocket and the cryptic sub-pockets. In addition, extra positive evidence highlights a small

hydrophobic cleft near the β-sheet, which is connected to the main pocket from above K53
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in the pocket estimation procedure, indicating again that the model decision is strongly

dependent on the cavity channel extracted from the TRAPP-pocket procedure. In general,

we noticed that the druggability of p38 MAP kinase depends strongly on the connection

from the main cavity to the cryptic sub-pocket while the orientation of D168 in the flexible

loop is not so critical.

Moreover, the evidence for druggable pockets in the DFG-in and DFG-out conformations

matches the binding energy hot spots identified using FTMap.45 The hotspot regions were

discovered by docking 16 different small organic probe molecules and then thresholding

the properties of these hotspot clusters to obtain a druggability prediction. A single hot

spot at the ATP binding site was detected by mapping unbound structures in the DFG-in

loop conformation whereas multiple hot spots, that cover both the ATP binding site and

the connected sub-pocket, were identified upon mapping a bound structure in the DFG-

out conformation.46 Besides, it has been suggested that cryptic binding sites have a strong

binding hot spot in the vicinity and exhibit above-average flexibility around the incipient

pockets,46 which coincides with the behavior of the cryptic sub-pocket of p38 MAP kinase.

The second example is the cryptic pocket of TEM-1 β-lactamase, which is 16 Å away from

the center of the active site and only occurs upon binding of a core-disrupting inhibitor.47

The opening of the hydrophobic cryptic pocket between helices 11 and 12 leads to a sequence

of linked motions to the catalytic site, which adopts conformations very different from those

in the catalytically incompetent conformations. The crystal structures with a closed and

an open cryptic pocket (PDB ID: 1jwp and 1pzo) also showed drastic differences in terms

of druggability scores (Figure 8A and B). We thus used 1jwp as the starting structure and

applied L-RIP perturbations on the L221 of helix 11, which is strongly relocated in the open

conformation. The global descriptors and druggability of each conformation obtained from

the L-RIP MD trajectory were assessed (Figure 8C). It is apparent from the increase in

pocket volume that the cryptic pocket starts to open up after snapshot 40. Additionally,

the considerable fluctuations in other physicochemical properties are also a consequence of
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Figure 7: Use of the TRAPP-based models to monitor variations in druggability along an
MD simulation of p38 MAP kinase. (A)(B) Crystal structures of p38 MAP kinase in DFG-in
and DFG-out conformations. D168 and F169 are shown in blue, while the bound ligands
are shown in cyan. (C) Traces of druggability and other physicochemical properties along
the L-RIP trajectory starting from the DFG-in conformation (PDB ID: 1r3c, shown in panel
(A)). The RMS distance was calculated between each frame and the DFG-out conformation
based on the active site residues of p38 MAP kinase (PDB ID: 1wbs, shown in panel (A)).
The first frame and the frame 81 that has the lowest RMSD to the DFG-out conformation
and the highest predicted druggability, are highlighted. The metal ion property is not shown
because there is no metal ion in the binding pocket of p38 MAP kinase. (D)(E) Heatmaps for
the TRAPP-LR model and pixel-wise decompositions by LRP for the TRAPP-CNN model
for frames 1 and 81. The druggability scores are shown above the heatmaps.
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the small pocket volume as they are normalized to it. The opening of the cryptic pocket

correlates with the increase in predicted druggability, especially for the prediction with the

TRAPP-CNN model. It is noteworthy that, when comparing the RMS distance between

the cryptic site residues of each frame to the open conformation (1pzo), the conformation

with the highest similarity (snapshot 68) also has the highest druggability score among all

snapshots. By visualizing the model predictions for frames 1 and 68 (Figure 8D and E), a

clear difference in terms of pocket volume and hydrogen bonding properties can be identified.

The strong positive signal in frame 68 highlights the hydrophobic cryptic pocket, whereas the

scattered negative signal regions are located on the protein surface between the two helices.
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Figure 8: Use of the TRAPP-based models to monitor variations in druggability along an
MD simulation of β-lactamase. (A)(B) Crystal structures of β-lactamase with a closed and
an open transient pocket. L220 and L221 are shown in blue, while the bound ligand is
shown in cyan. (C) Trace of druggability and other physicochemical properties along an
L-RIP trajectory. The RMS distance was calculated between each frame and the open
conformation based on the cryptic site residues of β-lactamase. The first frame and the
frame 68, which has the lowest RMSD to 1pzo, are highlighted. (D)(E) Heatmaps from the
TRAPP-LR model and pixel-wise decompositions by LRP for the TRAPP-CNN model for
frames 1 and 68. The druggability scores are shown above the heat maps.
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Conclusions

TRAPP is a useful tool for the exploration of binding site conformations and analysis of

the flexibility and cavity dynamics. More specifically, the TRAPP-pocket module, which

interpolates the atomic information on the binding site onto a grid, enables the identifica-

tion of conserved and transient pockets upon conformational changes and the comparison

of the global properties of the pocket among different conformations. In this work, we have

developed two models to predict protein binding pocket druggability and incorporated them

into TRAPP to detect fluctuations in druggability upon conformational changes, thus pro-

viding a measure for selecting conformations on the basis of druggability. The druggability

prediction models are available for use in the TRAPP webserver (https://trapp.h-its.org/).

The two druggability prediction models were built using either the global descriptors

or the grid information extracted from TRAPP. The former, TRAPP-LR/SVM provides a

linear model trained with logistic regression or a support vector machine using the global

descriptors of the binding pockets. The latter, TRAPP-CNN, uses a convolutional neural

network to process a grid representation of the properties of the binding pockets.

To train the linear models for druggability prediction based on the global descriptors,

namely TRAPP-LR and TRAPP-SVM, the NRDLD dataset10 was used. This data set is a

consensus data set that has been used for training and validation of state-of-the-art drug-

gability prediction models. To optimize the grid settings, the preprocessing steps, and the

hyperparameters for the models together, a pipeline, consisting of preprocessing, standard

scaling of the input vectors, and then the LR or SVM model for binary classification, was

constructed and a cross-validated grid search was performed. For the final TRAPP-LR and

TRAPP-SVM models, which achieve a top mean and a relatively small variance of the cross-

validated score in the grid search, a grid edge length of 24 Å, a grid spacing of 0.75 Å, and

a hyperparameter C of 1 was used.

The parameters in the trained linear models (Figure 3) indicate the importance of each

global descriptor for druggability. The negatively charged and aromatic descriptors are the
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least important features with small or zero weights in L2 or L1 regularized TRAPP-LR. One

of the most intriguing results is that the H-bond donor property has the largest absolute

value for its weight, larger than for pocket volume and hydrophobicity, which occupy the

second and third places, demonstrating the strong (but negative) contribution of the H-bond

donor property to druggability prediction.

TRAPP-CNN, which has detailed grids as inputs and a large amount of adaptive weights,

requires a larger training set than TRAPP-LR/SVM. Thus, we augmented the DaPB dataset

from the PDBbind refined set 2017,25 in which the positive class is selected by thresholding

the properties and the binding affinity of the bound ligand while the negative class was

identified using TRAPP-SVM. By projecting the data on to the global descriptors, similar

trends were observed as in the NRDLD dataset (Figure 2), indicating that the DaPB dataset

is a reasonable surrogate dataset. To overcome overfitting, data augmentations with offline

90◦ rotation and online random translation were applied to the training data. The network

architecture and other hyperparameters were optimized through a cross-validated grid search.

The final network contained 3 convolutional layers and 2 fully-connected layers (Figure 4).

The trained models were evaluated on the DaPB test set and the NRDLD test set,

both of which are subsets of the dataset that were not used for training. Starting from the

performance on the DaPB test set (Table 2), the high specificity was as expected since the

parameters of TRAPP-LR are similar to those of TRAPP-SVM, which is responsible for the

labeling of the negative class. However, the sensitivity of TRAPP-LR on the DaPB dataset

was rather low. This could be due to the fact that the definition of druggable pockets in

the NRDLD set is stricter than the definition of druggable (bindable) pockets in the DaPB

set. The performance of TRAPP-CNN is close to that of TRAPP-LR, with higher specificity

than sensitivity, potentially due to the slightly imbalanced dataset which makes the TRAPP-

CNN model favor the negative class. Moreover, all TRAPP-based models have equivalent

or superior performance on the NRDLD test set in comparison to the other druggability

prediction tools. Both linear models misjudged the same 2 positive and 2 negative data
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points, whereas the TRAPP-CNN model, which is more precise in detecting the negative

class, only missed the 2 positive data points. Thus, the TRAPP-CNN model, although

trained on the DaPB bindability dataset, is suitable for druggability prediction.

Apart from the good performance in terms of druggability prediction, a major advantage

of our models is the explanatory visualization for model prediction (Figure 5). The contribu-

tion of each global descriptor to the druggability prediction from TRAPP-LR is color-coded,

which allows easy reasoning of the model output. Furthermore, TRAPP-CNN, which is the

first druggability assessment model using the grid representation with detailed spatial infor-

mation as the input, allows visualization of the regions contributing to the model prediction.

We observe that for druggable pockets, TRAPP-CNN mainly identifies extensive hydropho-

bic patches in the druggable pockets, whereas for less-druggable pockets, it highlights the

shallow regions, positively charged groups, or metal ions.

The druggability prediction was integrated as a subroutine in TRAPP-pocket and L-RIP

generated trajectories for P38 MAP kinase and β-lactamase were analyzed as examples.

As the variation of the druggability score is only sensitive when it is close to the decision

boundary, we displayed the pre-squashed output from TRAPP-LR and TRAPP-CNN for

druggability. The two models show consistent predictions upon conformational changes of

the binding pockets. For p38 MAP kinase, the druggability rises as the sub-pocket becomes

more connected to the main pocket, which is independent of the position of D168. On the

other hand, the striking increase in druggability upon the opening of the cryptic pocket in β-

lactamase is an ideal example demonstrating the power of combining the TRAPP procedure

and druggability prediction.

In summary, we have built three TRAPP-based druggability prediction models, TRAPP-

LR, TRAPP-SVN and TRAPP-CNN, which allow the comparison of the druggability of dif-

ferent conformations of a protein binding pocket and the identification of critical sub-regions

or properties of a pocket for the corresponding prediction. The druggability assessment

is embedded into the pocket estimation procedure in TRAPP, thus providing an efficient
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platform for selecting protein binding pocket conformations based on druggability scores.
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