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Abstract 22 
 23 
Single-cell technologies allow measuring chromatin accessibility and gene expression in each cell, but 24 
jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains 25 
challenging. Here, we generate independent single-cell RNA-seq and single-cell ATAC-seq atlases of 26 
the Drosophila eye-antennal disc and spatially integrate the data using a virtual latent space that mimics 27 
the organization of the 2D tissue. To validate spatially predicted enhancers, we use a large collection of 28 
enhancer-reporter lines and identify ~85% of enhancers in which chromatin accessibility and enhancer 29 
activity are coupled. Next, we infer enhancer-to-gene relationships in the virtual space, finding that 30 
genes are regulated by multiple redundant enhancers. Exploiting cell-type specific enhancers, we 31 
deconvolute cell-type specific effects of bulk-derived chromatin accessibility QTLs. Finally, we 32 
discover that Prospero drives neuronal differentiation through the binding of a GGG motif.  In summary, 33 
we provide a comprehensive spatial characterization of gene regulation in a 2D tissue. 34 
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Introduction 44 
 45 
Cellular identity is defined by Gene Regulatory Networks (GRNs), in which transcription factors bind 46 
to enhancers and promoters to regulate target gene expression, ultimately resulting in a cell type-specific 47 
transcriptome. Single cell technologies provide new opportunities to study the mechanisms underlying 48 
cell identity. Particularly, single-cell transcriptomics allow measuring gene expression in each cell; 49 
while single-cell epigenomics, such as single-cell ATAC-seq, serves as a read-out of chromatin 50 
accessibility1. Although these technologies and computational approaches are recently evolving to 51 
include spatial information2–6, most approaches currently target single-cell transcriptomes. It remains a 52 
challenge how to exploit single-cell epigenomics data for resolving spatiotemporal enhancer activity 53 
and GRN dynamics, both experimentally and computationally.  54 
 55 
In addition, while ATAC-seq is a powerful tool for predicting candidate enhancers, not all accessible 56 
regions correspond to functionally active enhancers7. For example, accessible sites can correspond to 57 
ubiquitously accessible promoters or binding sites for insulator proteins8; to repressed or inactive 58 
regions due to binding of repressive transcription factors7,9–11; or to primed regions that are accessible 59 
across a tissue, but become only specifically activated in a subset of cell types 12. Importantly, single-60 
cell ATAC-seq has not been fully exploited to explore these aspects yet. While most scATAC-seq 61 
studies have been carried out in mammalian systems - in which enhancer testing is not trivial -, 62 
Cusanovich et al. evaluated 31 cell-type specific enhancers predicted from scATAC-seq in the 63 
Drosophila embryo, finding that ~74% showed the expected activity patterns13.  64 
 65 
Another current challenge in the field of single-cell regulatory genomics is how to integrate epigenomic 66 
and transcriptomic information. Although some experimental approaches have been developed for 67 
profiling both the epigenome and the transcriptome of the same cell14–16, currently either the quality of 68 
the measurements, or the throughput, is still significantly lower compared to each independent single-69 
cell assay. For example, sci-CAR or SNARE-seq on human cells achieved a median of 1,000-4,000 70 
UMIs (scRNA-seq) and 1,500-3,000 fragments (scATAC-seq) per cell; while the coverage with non-71 
integrative methods, such as 10X, is around 20,000 UMI per cell and 10,000 fragments per cell for 72 
scRNA-seq and scATAC-seq, respectively14,15,17. Methods that achieve high sensitivity, such as scCAT-73 
seq16 , are based on microwell plates rather than droplet microfluidics, making their throughput limited.  74 
 75 
Given the current limitations of combined omics methods, the computational integration of independent 76 
high-sensitivity assays provides a valuable alternative. For example, Seurat18 and Liger19 have been 77 
used to integrate independently sequenced single-cell transcriptomes and single-cell epigenomes. 78 
Nevertheless, these methods require the “conversion” of the genomic region accessibility matrix to a 79 
gene-based matrix, and how to perform such a conversion is an unresolved issue. Some studies have 80 
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used the accessibility around the TSS as proxy for gene expression20; others aggregate the accessibility 81 
regions that are co-accessible (i.e. correlated) with the TSS of the gene in a certain space21. However, 82 
promoter accessibility is not always correlated with gene expression. Furthermore, enhancers can be 83 
located very far from their target genes -upstream or downstream, up to 1 Mbp in mammalian genomes, 84 
or up to 100-200kb in Drosophila, often with intervening non-target genes in between - and relationships 85 
between enhancers and target genes are often not one-to-one (i.e. an enhancer can have multiple targets, 86 
and a gene can be regulated by more than one enhancer)7. Enhancer-promoter interactions can also be 87 
predicted using Hi-C approaches at the bulk level22, however these methods have limited sensitivity at 88 
single-cell resolution23.   89 
 90 
The Drosophila third instar larval eye-antennal disc provides an ideal biological system for the spatial 91 
modelling of gene regulation at single cell resolution. The eye-antennal disc comprises complex, 92 
dynamic, and spatially restricted cell populations in two dimensions. The antennal disc consists of 4 93 
concentric rings (A1, A2, A3, and arista), each with a different transcriptome and different combinations 94 
of master regulators. For example, both Hth and Cut regulate the outer antennal rings (A1 and A2), with 95 
additional expression of Dll in A2; while Dll, Ss, and Dan/Danr are key for the development of the 96 
inner rings (A3 and arista), among others24,25. On the other hand, a continuous cellular differentiation 97 
process from anterior to posterior occurs in the eye disc, in which progenitor cells differentiate into 98 
neuronal (i.e. photoreceptors) and non-neuronal (i.e. cone cells, bristle and pigment cells) cell types. 99 
This differentiation wave is driven by the morphogenetic furrow (MF). Posterior to the MF, R8 100 
photoreceptors are specified first, and then they sequentially recruit R2/R5, R3/R4 and R7 101 
photoreceptors and cone cells to form hexagonally packed units called ommatidia26 (Fig 1a). In 102 
summary, the heterogeneity of cell types and differentiation trajectories results in diverse - static and 103 
dynamic - GRNs, which can be modelled with a combination of experimental and computational 104 
approaches.  105 
 106 
In this work, we first generate a scRNA-seq and a scATAC-seq atlas of the eye-antennal disc. Second, 107 
taking advantage of the fact that the disc proper is a 2D tissue, we spatially map these single-cell profiles 108 
on a latent space that mimics the eye-antennal disc, called the virtual eye-antennal disc. Next, by 109 
exploiting publicly available enhancer-reporter data27, we assess the relationship between enhancer 110 
accessibility and activity. Third, we use these virtual cells, for which both epigenomic and 111 
transcriptomic data is available, to derive links between enhancers and target genes using a new 112 
regression approach. Fourth, we use a panel of 50 bulk ATAC-seq profiles across inbred lines to predict 113 
cell-type specific caQTLs (chromatin accessibility QTLs). Finally, we use our findings to characterize 114 
the role of Prospero in the differentiation of photoreceptors. In summary, we provide a comprehensive 115 
characterization of gene regulation in the eye-antennal disc, using a strategy that is applicable to other 116 
tissues and organisms. Our results can be explored as a resource on Scope28 117 
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(http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc) and the UCSC Genome Browser 118 
(http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc). 119 
 120 
Results 121 
 122 
A single-cell transcriptome atlas of the eye-antennal disc 123 
 124 
First, we set out to identify the different cell populations in the eye-antennal disc, and obtain their 125 
transcriptomes. We profiled 3,531 high-quality cells using scRNA-seq on the 10X Genomics platform, 126 
with a median of 20,761 UMIs and 3,094 expressed genes per cell, respectively (Fig S1a, b). Analysis 127 
with Seurat revealed 17 clusters, most of which map to spatially located cell types (Fig 1b). Importantly, 128 
the structure in the tSNE - and UMAP (Fig S1c) -, reveals two main branches, one corresponding to the 129 
antennal disc, in which clusters represent the antennal rings from outer to inner; and one corresponding 130 
to the eye disc, in which progenitors differentiate into ommatidial (i.e., photoreceptors and cone cells) 131 
and interommatidial cell types. We verified that cell clustering was driven by cell identity and not 132 
affected by batch effects, using three independent biological replicates (Fig S1d). We also found a 133 
subset of ommatidial cells with a high number of UMIs and genes expressed, which was annotated as 134 
doublets by DoubletFinder29 (Fig S1e-g). The higher proportion of doublets in this group is not 135 
unexpected, since ommatidia are tightly packed and are more difficult to dissociate.  136 
 137 
To annotate these 17 cell clusters we combined two approaches. First, we used known marker genes 138 
from literature (Fig 1c, S1h). For example, we find Dfd expressed in the peripodial membrane clusters; 139 
with dpp expressed in the lateral peripodial membrane30; and oc as key marker of the head vertex31. In 140 
the eye disc we find a gene expression gradient starting from Optix expression in progenitors and 141 
precursors; to ato expression in the MF, and then gl expression in the ommatidial and interommatidial 142 
cells. Importantly, we find Gasp as key marker of the interommatidial cells (Fig 1c), which plays a role 143 
in extracellular matrix integrity and assembly32. Indeed, Gene Ontology (GO) enrichment of the genes 144 
differentially expressed in this group reveals terms related to cell-cell junction assembly and 145 
organization (p-val: 10-16). Meanwhile, in the ommatidial groups we observed a gene expression 146 
gradient of markers from early photoroceptors (R8, sens), to intermediate (R3-4, svp) and late-born PRs 147 
and cone cells (R7 and cone cells, sv)33–35. In fact, semi-supervised analysis of these populations (see 148 
Methods) subdivides the ommatidial classes into the different photoreceptor types and cone cells (Fig 149 
S2), largely finding R8, R3/R4 and R1/R6 in the early-born PRs cluster, and R7 and cone cells in the 150 
late-born photoreceptors and cone cells cluster (only 26 R2/R5 cells are detected). On the other hand, 151 
markers of the antennal rings form a gradient along the antennal cell types, from ct (A1 and A2), to Dll 152 
(A2, A3 and arista) and ss (A3 & arista)25. Interestingly, within A2, we find a subpopulation of cells 153 
expressing ato and sens, corresponding to the Johnston Organ Precursors (JOPs)36,37. We also identify 154 
a population of glial cells, based on the enrichment of the transcription factor repo38; a cluster of 155 
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hemocytes, enriched for pnr39; and a small group of cells with high expression the transcription factor 156 
twi, corresponding to adepithelial cells (mesodermal myoblasts), which are known to reside in most 157 
imaginal discs40,41. Accordingly, GO term enrichment using the differentially expressed genes in this 158 
group reveals terms related to mesoderm development (p-val: 10-4). Finally, we found a population of 159 
299 cells coming from the brain expressing Oli42; which represent contaminating cells from the brain 160 
due to the dissections. 161 
 162 
To validate and further extend our cell type annotations, we used a publicly available Drop-seq dataset 163 
from the eye disc containing 11,500 single cell profiles43, with a median of 517 genes detected per cell 164 
(Fig S3a,b). Using Seurat's label transferring, we mapped the previously annotated cell types on our 165 
dataset (and vice versa) and found that both annotations agreed (Fig 1d, Fig S3c,d). These labels 166 
permitted to subdivide our glial cell cluster into wrapping glia, subperineural glia and perineural glia; 167 
and to annotate a small population of cells just posterior to the MF as the second mitotic wave (SMW), 168 
which is a round of synchronous cell division that occurs right after cells exit the MF (Fig S3e). On the 169 
other hand, no twi+ cells are found in the Drop-seq dataset. This is likely due to the fact that these cells 170 
are located in the antennal disc, which is missing in Drop-seq dataset. Indeed, the activity of a twi 171 
enhancer (Fig S3f) is observed in the antennal disc rather than in the eye disc27. 172 
 173 
Next, we used SCENIC to identify master regulators and gene regulatory networks in the eye-antennal 174 
disc44, resulting in 175 regulons (159 motif-based regulons and 16 regulons based on ChIP-seq tracks; 175 
see Methods). While some regulons are enriched across the entire tissue (such as Grh12), many are cell-176 
type specific. For the antennal rings, we find Lim1 (A1), TfAP-2 (A1, A3 and arista) and ss (arista and 177 
A3), in agreement with literature45–47. In the eye disc, regulons recapitulate the GRN dynamics during 178 
the differentiation process, with Optix and Ey in the progenitor and precursor cells, Ato in the 179 
morphogenetic furrow, So in photoreceptors and B-H2 in interommatidial cells, among others48,49. We 180 
further validated the Ato regulon using previously published RNA-seq data from Ato gain-of-function 181 
and loss-of-function mutants50 (Fig S4). Indeed, genes included in the Ato regulon are significantly 182 
upregulated in the Ato gain-of-function (NES: 2.44) and downregulated in the ato mutant (NES: -2.57), 183 
respectively. 184 
 185 
In conclusion, using scRNA-seq we have identified the different populations in the eye-antennal disc 186 
and the interplay of GRNs that underlie the developmental program of this system. We provide this 187 
data as loom files that can be explored in SCope at: 188 
http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc. 189 
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 190 
Figure 1: scRNA-seq recapitulates cellular diversity and GRNs in the eye-antennal disc. a. Experimental 191 
approach. scRNA-seq was performed in eye-antennal discs using 10X Genomics, resulting in a data set with 3,531 192 
high quality cells. Main spatial compartments in the eye-antennal disc are annotated. b. tSNE representation of 193 
the scRNA-seq data (with 3,531 cells). c. tSNE colored by the standardized gene expression of known cell type 194 
markers in the eye antennal disc. In each plot three marker genes are shown, using RGB encoding. d. tSNE 195 
annotated by label transfer with Seurat v316 using the scRNA-seq eye disc data set from Ariss et al.43 e. Cell-to-196 
regulon heatmap showing the standardized enrichment or Area Under the Curve (AUC) from SCENIC44 for each 197 
selected regulon based on RSS in each cell. Top enriched motifs for representative regulons are shown below. 198 
Regulons marked with * are based on ChIP-seq track enrichment. AMF: Anterior to the morphogenetic furrow. 199 
PMF: Posterior to the morphogenetic furrow. PR: Photoreceptor. CC: Cone cell. PMM: Peripodial membrane 200 
medial. PML: Peripodial membrane lateral. HV: Head Vertex. Pro: Progenitors. Pre: Precursors. MF: 201 
Morphogenetic furrow. EPR: Early photoreceptors. LPR/CC: Late photoreceptors and cone cells. INT: 202 
Interommatidial cells. Hemo: Hemocytes. SMW: Second mitotic wave. PG: Perineurial glia. WG: Wrapping Glia. 203 
SPG: Subperineurial glia. 204 
 205 
 206 
A single-cell ATAC-seq atlas of the eye-antennal disc 207 
 208 
Next, we performed scATAC-seq to explore the chromatin accessibility landscape of the eye-antennal 209 
disc. Using 10x Chromium, we obtained 15,766 scATAC profiles (Fig 2a). We assessed the quality of 210 
the data set based on the relative enrichment of fragments around the TSS and the correlation with bulk 211 
ATAC-seq on the same tissue (R2=0.9615; Fig 2b), among other quality control measures; and filtered 212 
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out a total of 379 cells based on the number of fragments within bulk peaks and the total number of 213 
fragments (Fig S5). This resulted in a data set with 15,387 single-cell epigenomes.  214 
 215 
We ran cisTopic20 using three different sets of regulatory regions: (1) narrow peaks as called by MACS2 216 
from the bulk ATAC-seq profile of the wild type Drosophila eye-antennal disc; (2) bulk peaks defined 217 
by extending +/- 250 bp from the summits called by MACS2; and (3) cisTarget regions, defined by 218 
partitioning the entire non-coding Drosophila genome based on cross-species conservation, resulting in 219 
more than 136,000 bins with an average size of 790 bp51. We found that the cisTopic analysis performed 220 
with cisTarget regions resulted in the highest resolution compared to using bulk peaks or summits (Fig 221 
S6). For example, small subpopulations such as brain and twi+ cells could be revealed, which were 222 
otherwise mixed with ommatidial and glial cells, respectively. Hence, we used this model, with 49 223 
topics, for further analysis. 224 
 225 
Clustering on the topic-cell distributions (i.e., the contribution of each regulatory topic to each cell) 226 
resulted in 22 clusters, most of which map to spatially located cell types (Fig 2c). Despite the fact that 227 
cell clustering is not driven by read coverage, we find two groups that likely correspond to doublets 228 
based on read depth and percentage of reads in peaks (Fig S7a-c). Annotation of cell types from 229 
scATAC-seq is not as straightforward as for scRNA-seq, because the cluster markers now represent 230 
regulatory regions instead of genes. To address this, we exploit four different approaches: (1) motif 231 
(and ChIP-seq track) enrichment on the regulatory topics; (2) enrichment of epigenomic signatures of 232 
FAC-sorted cell types; (3) a novel method for deriving gene activity scores from cisTopic distributions; 233 
and (4) label transferring from our previously annotated scRNA-seq data set. 234 
 235 
Of the 49 predicted topics, two represent a batch effect of the run, and one represents a female sex-236 
specific topic (Fig S7d-g). The remaining topics represent general, cell-type specific and low 237 
contribution topics (Fig 2d, Fig S8, Fig S9a). Among the cell-type specific topics we find a topic for 238 
each antennal ring (topics 19, 26, 40 and 22; respectively), with a subdivision of A2 in two groups (A2a 239 
and A2b, respectively). Regions in these topics, from the outer to the inner ring, are enriched for motifs 240 
(and/or ChIP-seq tracks) linked to known master regulators, such as Hth in A1, Dll in A2, and Ss in A3 241 
and arista (Fig S8). Additionally, we identify a subpopulation of cells in A2b with accessible regions 242 
controlled by Ato, which correspond to the Johnston Organ Precursors (JOPs). Similarly, retinal 243 
developmental topics recapitulate the dynamic changes in chromatin during differentiation, with the 244 
Optix motif enriched in regions specific to the domain anterior to the MF; the Ato motif in MF specific 245 
regions; the Glass, Sine oculis (So), and Onecut motifs in the clusters representing ommatidial cells; 246 
and the Glass, So, and Lozenge motifs in interommatidial cell types; among others (Fig 2e). 247 
Furthermore, we also find a new, highly enriched GGG motif in the genomic regions specific to 248 
ommatidial development, which can be linked to a relatively large set of candidate TFs based on motif-249 
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to-TF mappings, as will be discussed further below. We also discovered generally accessible topics, 250 
highly enriched for promoters (Fig S9b), some of which decrease in accessibility during ommatidial 251 
development. These epithelial topics are represented by genomic regions bound by the pioneer 252 
transcription factors Trl and Grh, based on motif and ChIP-seq enrichment (Fig 2e). Indeed, Grh has 253 
been shown to be expressed and promote chromatin opening in all epithelial cells, decreasing upon 254 
neuronal differentiation12; which is also supported by our scRNA-seq data set (Fig S9c). We also 255 
identify other cell-type specific topics for other subpopulations; such as a topic enriched for the Twist 256 
motif that identifies the twi+ adepithelial cells; a topic enriched for the Serpent (Srp) motif, 257 
corresponding to hemocytes; and a topic enriched for the Repo motif, corresponding to glial cells. 258 
Finally, we also identify two small subpopulations with topics enriched for Stripe (Sr), which 259 
correspond to brain cells likely attached during the dissection. 260 
 261 
To further validate these cell type annotations, we used our previously published ATAC-seq data from 262 
FAC-sorted cells located specifically anterior to the morphogenetic furrow, based on the activity of the 263 
Optix2/3 enhancer driving GFP (Optix-GFP+, Fig 2f)12,52. We find that regions specifically accessible 264 
in these cells compared to the rest of the eye are accessible in the cells identified as precursors in the 265 
scATAC-seq data; and also show enrichment for the motif of the transcription factor Optix, in 266 
agreement with the topic specific to this population. We also re-used our previous single-cell ATAC-267 
seq data, obtained on the Fluidigm C1, of Optix-GFP+ FAC-sorted cells12 and we performed an 268 
additional Fluidigm C1 run with cells FAC-sorted based on the activity of the sens-F2 enhancer53 (sens-269 
GFP+), which correspond to the intermediate groups in the MF and R8 photoreceptors. When mapping 270 
these cells into the topic space, we find that they cluster within the correct cell types of the 10X sc-271 
ATAC-seq data (Fig S9d). Accordingly, we also find that the activity of the Optix 2/3 enhancer and the 272 
sens-F2 enhancer agrees with the accessibility of these regions in the matching cell types (Fig S9e-f). 273 
 274 
Next, we developed a new approach for deriving a “gene activity matrix” from the topic-cell and region-275 
topic distributions (Fig 2g). Briefly, we first multiply the region-topic and topic-cell distributions to 276 
obtain a region-cell distribution, which indicates the probability of accessibility of each region in each 277 
cell. Then, for each gene, we aggregate the probabilities of the surrounding regions (in this case, 5kb 278 
around the TSS plus introns), resulting in a gene activity score. This new matrix, which contains 279 
scATAC-seq cells as columns and gene activities as rows, can be analyzed as a gene expression matrix. 280 
For example, we used it to score SCENIC regulons on the scATAC-seq cells to validate the master 281 
regulators found in the topics (Fig 2g). We find the Optix regulon enriched anterior to the 282 
morphogenetic furrow; the Ato regulon enriched in the MF; Onecut enriched in late ommatidial cells; 283 
and Grh enriched across all cell types except late ommatidial cells. Furthermore, we also used 284 
DoubletFinder29, developed for scRNA-seq data, and labelled a group of cells enriched in both 285 
ommatidial and interommatidial topics as doublets (Fig S9g).  In addition, we used this matrix for label 286 
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transferring with our scRNA-seq data set using Seurat v318, finding a strong agreement between our 287 
independent RNA and ATAC-based annotations (Fig 2h, Fig S9h). Interestingly, we find that when 288 
mapping groups from scRNA-seq to scATAC-seq some cells in the eye are assigned to the next 289 
developmental cluster (i.e. some cells annotated as MF are labelled as early PRs). This lag effect may 290 
be explained by the fact that chromatin accessibility changes could occur slightly before changes in the 291 
steady-state transcriptome during differentiation. 292 
 293 
Importantly, we find regions enriched for a specific motif that are located in the surroundings of genes 294 
(learned from the scATAC-seq data) that are co-expressed with the corresponding transcription factor 295 
(learned from the scRNA-seq data), likely representing bona fide functional enhancers. For example, 296 
we find 2,769 regions enriched for the Optix/so motif; out of which 505 and 894 are in the surroundings 297 
of genes co-expressed with Optix and so, respectively. Similarly, out of the 1,859 and 1,128 regions 298 
enriched for the Atonal and the Glass motifs, 285 and 452 are close to co-expressed genes (Figure S10; 299 
Table S1).  300 
 301 
In summary, we provide a thorough characterization of the chromatin accessibility landscape of the 302 
eye-antennal disc, corroborated by our scRNA-seq data set. This data can also be explored at SCope 303 
(http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc) and UCSC 304 
(http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc). 305 
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 306 
Figure 2: scATAC-seq recapitulates cell diversity in the eye-antennal disc. a. Experimental set up. 15,387 307 
nuclei were profiled using 10X scATAC-seq. b. Comparison of bulk ATAC profiles, scATAC-seq aggregates 308 
with 10X (from the 1st run) and scATAC-seq aggregates from FACS sorted populations (Optix-GFP+ and sens-309 
GFP+) profiled with Fluidigm C1. Number of cells in each aggregate is indicated between brackets. c. cisTopic 310 
cell tSNE (15,387 nuclei) colored by annotated cell type. d. Topic-cell enrichment heatmap with selected topics. 311 
e. Topic modelling recapitulates the dynamic chromatin changes during differentiation in the eye disc. Top: 312 
Aggregate profiles per cell type in the top region of the indicated topic. Middle-top: cisTopic cell tSNE colored 313 
by topic enrichment. Middle-bottom: cisTopic region tSNE colored by topic enrichment. Bottom: Selected 314 
enriched motifs in each topic. For topics 9 and 15, the cistopic region tSNE colored by Grh ChIP-seq peaks. f. 315 
Bulk ATAC was performed on Optix-GFP+ and Optix-GFP- FACS sorted cells (based on the activity of the 316 
Optix2/3 enhancer). cisTopic cell tSNE and region tSNE are colored based on the enrichment of regions that are 317 
differentially accessible between Optix-GFP+ and Optix-GFP-. Motifs enriched in the regions differentially 318 
accessible in Optix-GFP+ cells are shown. Scale bar, 100 µm. h. cisTopic topic-cell and region-topic distributions 319 
can be exploited to predict the probability of each region in each cell. By aggregating the probabilities of regions 320 
around the TSS of each gene (in this case, 5kb upstream and introns), a gene accessibility matrix can be derived. 321 
cisTopic cell tSNE is colored based on the enrichment of regulons derived from scRNA-seq, evaluated in the gene 322 
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accessibility matrix. g. cisTopic cell tSNE colored by the scRNA-seq annotation after label transferring with 323 
Seurat v3 using cisTopic gene accessibility matrix. PMM: Peripodial Membrane Medial. PML: Peripodial 324 
Membrane Lateral. HV: Head Vertex. Pro: Progenitors. Pre: Precursors. MF: Morphogenetic Furrow. EPR: Early 325 
photoreceptors. LPR/CC: Late photoreceptors and cone cells. INT: Interommatidial cells. Hemo: Hemocytes. 326 
JOP: Johnston Organ Precursor. 327 
 328 
Spatiotemporal mapping of single-cell omics couples enhancer accessibility with 329 

functionality 330 

 331 
Since most of the cell types in the eye-antennal disc map to locally restricted populations, we developed 332 
a strategy to map the scRNA-seq and scATAC-seq profiles to their putative position of origin in the 333 
tissue using a template of the eye-antennal disc with 5,058 virtual cells, corresponding to the 5,058 334 
pixels in our eye-antennal disc representation (Fig 1a, Fig 2a, Fig 3a). Briefly, we first order antennal 335 
and eye cells by pseudotime (see Methods), which correspond to the proximal-distal and anterior-336 
posterior axes in the antenna and the eye, respectively (Fig S11). For each cluster, we divide real and 337 
virtual cells into bins based on pseudotime and position in the corresponding axis, respectively. Finally, 338 
we map real cells onto the virtual cells in the matching bin in the virtual eye-antennal disc, with a 1-to-339 
1 matching. When there are fewer real cells than virtual cells in the bin, real cells are sampled randomly 340 
more than once; and when more real cells are available than virtual cells, N real cells are sampled, 341 
where N is the number of virtual cells in that bin.  342 
 343 
Using the mapped scRNA-seq data we can visualize previously known gene expression patterns (Fig 344 
3b). For example, our spatial map recapitulates expression of hth, salm, danr, ct, Dll and ss in the 345 
antennal rings; as shown by Emerald et al.25. In the eye part, patterns from anterior to posterior, with 346 
the expression of oc in the head vertex, Optix and toy anterior to the MF, ato and dpp in the MF, and gl 347 
posterior to the MF, among others, agree with literature49. 348 
 349 
To validate the scATAC-seq mapping we used image data of more than 700 enhancer-reporter lines 350 
from the Janelia Flylight project27. In short, in each line a specific enhancer controls the expression of 351 
GAL4, and when crossed with a UAS-GFP reporter line the activity of the enhancer is recapitulated by 352 
the GFP signal. These enhancer activity patterns were registered onto the virtual eye-antennal disc using 353 
a custom landmark-based pipeline (see Methods). By comparing the predicted accessibility pattern for 354 
each region (based on ATAC-seq) with its activity (based on the GFP reporter), we find that 355 
accessibility and activity are correlated in 77% of the enhancers (Fig 3c); however, there are cases in 356 
which accessibility and activity are uncoupled (Fig 3d). We find that specific enhancers (with a high 357 
gini score) tend to agree in their accessibility and activity; while ubiquitously accessible enhancers (with 358 
a low gini score) do not show corresponding accessibility and activity patterns (Fig 3e). In addition, 359 
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motifs linked to transcription factors with a restricted expression, such as Glass (posterior to the MF) 360 
and Ocelliless (head vertex), are found in the specifically accessible enhancers; while motifs linked to 361 
Grainyhead, an epithelial transcription factor, are found in the generally accessible regions. Indeed, 362 
Jacobs et al. showed that Grh is a pioneer transcription factor which directly promotes opening of all 363 
its target regions throughout the epithelial tissue of the eye-antennal disc, while their activity is 364 
restricted to certain cell-types12. Our data confirms that Grh binding results in a general ATAC-seq 365 
signal, but not necessarily in activity. For example, among 20 Atonal target enhancers found earlier50, 366 
6 are bound by Grh and are ubiquitously accessible, yet activated only in Ato positive cells; while the 367 
other 14 enhancers are not bound by Grh and these show cell-type specific accessibility (Fig S12). 368 
 369 
Thus, the scATAC-seq data corroborates a model consisting of two classes of enhancers: (1) primed 370 
enhancers, with general accessibility (e.g. by Grh binding) but specific activity based on the presence 371 
of other transcription factor/s (e.g. Ato) and (2) unprimed regions, in which accessibility (e.g. by binding 372 
of a TF/s, as Ato) and activity are coupled (Fig 3f). Most of the enhancers of the first class belong to 373 
the general topics (with a total of 4,500 binarized regions on the representative general topics); while 374 
regions from the second class are spread across the cell-type topics (with a total of 26,500 regions 375 
classified in cell type specific topics). In summary, accessibility can be used as a proxy for enhancer 376 
activity for the majority of enhancers, but there are ~15% of enhancers that form an exception. 377 
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 378 
Figure 3: Spatiotemporal mapping of single cell RNA-seq and single cell ATAC-seq data. a. Computational 379 
approach for mapping single cell RNA or single cell ATAC-seq data into the virtual eye-antennal disc. Briefly, 380 
cells are ordered by pseudotime, corresponding to the proximal-distal axis in the antennal disc and the anterior-381 
posterior axis in the eye disc. For each cluster, real and virtual cells are divided into the same number bins based 382 
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on pseudotime and axis position, respectively. Finally, cells are mapped into the virtual cells in the matching bin. 383 
b. Gene expression correspondence between the Seurat tSNE and the virtual eye. The expression of three genes 384 
are shown per plot, using RGB encoding. c. Correspondence between region accessibility and activity for 12 385 
Janelia-Gal4 enhancers. Top row: cisTopic cell tSNE colored by the accessibility probability of each region in 386 
each cell. Middle row: Virtual eye colored by the accessibility probability of each region in each cell. Bottom 387 
row: Confocal images showing the activity (GFP, green) of each region in eye-antennal discs. Scale bar, 100 µm. 388 
d. Discordance between region accessibility and activity for 2 Janelia-Gal4 enhancers. Top row: cisTopic cell 389 
tSNE colored by the probability of each region in each cell. Middle row: Virtual eye colored by the probability of 390 
each region in each cell. Bottom row: Confocal images showing the activity (GFP, green) of each region in eye-391 
antennal discs. Scale bar, 100 µm. e. Relationship between the correlation between the accessibility and the 392 
activity of the regions and their distribution (as gini score). Below, representative motifs enriched in generally 393 
and specifically regions, with low (< 0.2) and high (> 0.4) gini score, respectively, are shown. f. Model describing 394 
the two classes of enhancers found. On one hand, some enhancers (such as grh targets) are generally accessible, 395 
but only become functional with a specific co-factor(s) binds; on the other hand, for other enhancers, accessibility 396 
is more specific and is couples with activity (based on the binding of one or more TFs). Histograms shown the 397 
average topic score for enhancers of both classes are shown. PMM: Peripodial Membrane Medial. PML: 398 
Peripodial Membrane Lateral. HV: Head Vertex. Pro: Progenitors. Pre: Precursors. MF: Morphogenetic Furrow. 399 
EPR: Early photoreceptors. LPR/CC: Late photoreceptors and cone cells. INT: Interommatidial cells. Hemo: 400 
Hemocytes. JOP: Johnston Organ Precursor. 401 
 402 

Exploiting the latent space to link enhancers to target genes 403 

 404 

The virtual eye-antennal disc acts as a latent space in which both transcriptomic and epigenomic profiles 405 
are available in the same virtual cell. Hence, we developed a computational strategy to infer enhancer-406 
to-gene relationships. Particularly, we investigated to what extent enhancers in a large space around the 407 
TSS of a gene (i.e. +-50kb from the TSS plus introns) can predict the expression of the gene (Fig 4a). 408 
For each gene, we calculated: (1) the correlation between gene expression and the accessibility 409 
probability of each candidate region across all the virtual cells and (2) the importance of each candidate 410 
region for predicting the expression of the gene using random forest regression models, which assess 411 
non-linear relationships. We used the sign of the correlation score to classify links as positive (> 0) or 412 
negative (< 0) and the random forest importance as measurement of the confidence of the links. After 413 
pruning low confidence links (see Methods), we obtained a total of 183,336 enhancer-to-gene 414 
relationships.  415 
 416 
To verify these predicted enhancer-to-gene links, we used validated associations from literature. For 417 
example, we predict sens expression to be exclusively regulated by one enhancer, sens-F2, as proven 418 
by Pepple et al.53 (Fig 4a). In other cases, we find that gene expression is a result of combinations of 419 
enhancers. For instance, dac expression is mainly controlled by two redundant enhancers (3EE and 420 
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5EE), as shown by Pappu et al.54. Both enhancers are accessible in the precursor cells, where dac is 421 
expressed (Fig S13a). As a more complex example, gl expression is regulated by a combination of 14 422 
enhancers, out of which 3 enhancers have been validated by Fritsch et al.55 (Fig 4b, Fig S13b). While 423 
gl is expressed in all cell types posterior to the MF (ommatidial and interommatidial); some of these 424 
regions are exclusively accessible and active in interommatidial cells (i.e. subregion in enhancer 3), 425 
while others are only accessible and active in photoreceptors (i.e. enhancer 2, subregion in enhancer 3 426 
and enhancer 4); suggesting that different enhancer combinations are involved in ommatidial cells 427 
versus interommatidial cells. Overall, there is a median of 22 enhancers linked to each gene and only 428 
2.4 % of all genes are regulated by one enhancer (Fig 4d). These results indicate that gene expression 429 
is regulated by an intricate network of enhancer interactions. Further corroborating these links, we find 430 
that ~62% of the Janelia enhancers for which accessibility and activity are coupled are positively linked 431 
(with a correlation > 0.2) to a target gene. 432 
 433 
Interestingly, TF genes are regulated by significantly more enhancers compared to non-TF genes (H0: 434 
average number of positive links for TF genes (13) <= Average number of positive links for non-TF 435 
genes (11); p-value: 2x10-4; Fig S13c). This is further supported by Gene Ontology analysis with 436 
GOrilla (Genes ordered by decreasing number of links, p-value: 5x10-4; Fig S13d-e). Indeed, it has been 437 
hypothesized that TF genes require a tighter regulation because abnormalities in their expression can 438 
cause more dramatic effects compared to defects in the expression of terminal effector genes56. In 439 
addition, we find enhancer-enhancer pairs linked to the same gene with a high correlation in 440 
accessibility (with a median of 4 enhancer-enhancer pairs with a correlation > 0.8; equivalent to 3-4 441 
redundant enhancers), being significantly higher between enhancers linked to a TF gene compared to 442 
those linked to a non-TF gene (H0: average number of enhancer-enhancer pairs with a correlation above 443 
0.8 for TF genes (13) <= Average number of enhancer-enhancer pairs with a correlation above 0.8 for 444 
non TF genes (7); p-value: 0.006; Fig S13f). In agreement, ~73% of the enhancer-enhancer pairs 445 
involving Janelia enhancers also show correlation between their activity patterns (Fig S14). The 446 
multiplicity of enhancers with the same function, known as shadow enhancers, has an evolutionary 447 
basis and provides robustness during development57. In fact, redundant enhancers can compensate when 448 
an enhancer is affected by a loss-of-function mutation or deletion58,59.  Altogether, we conclude that 449 
genes are regulated by many enhancers, likely with a redundant function to ensure an accurate 450 
regulation of gene expression. 451 
 452 
Based on the 183k enhancer-to-gene associations, we investigated the distance between regions and 453 
their predicted genes, the genomic annotation and the motif composition of the enhancers involved in 454 
these networks. Firstly, we found that enhancers do not necessarily act on their closest gene, although 455 
the nearest gene is overall the most likely target (Fig 4e). Secondly, most regions linked to a target gene 456 
fall in non-promoter regions (75%) (Fig S13g). Indeed, for 84% of the genes that show cell-type specific 457 
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expression (with adjusted p-value < 0.05 and average log FC > 1), the accessibility of the promoter is 458 
not correlated with the expression of the gene (correlation < 0.5), as promoters tend to ubiquitously 459 
accessible (H0: Proportion of promoters in generally accessible topics (0.54) <= Proportion of promoters 460 
across all topics (0.36), p-value < 2.2x10-16). Interestingly, enhancer accessibility can be positively 461 
(95,484; of which 13,125 are uniquely positive with a correlation > 0.1) or negatively (87,229; of which 462 
2,927 are uniquely negative with a correlation < -0.1) correlated with target gene expression. Negative 463 
correlation is suggestive of gene repression, whereby a repressor binds to the enhancer, creating an 464 
accessible region, only in the cells where the gene is not expressed. On the 'activating' enhancers we 465 
find Lola-T/K, AP-1 and Onecut related motifs enriched, among others. Interestingly, the GGG motif 466 
previously found in the ommatidial cell types enhancers is also enriched in these links. On the other 467 
hand, on the 'repressive' enhancers we identified motifs linked to so/Optix, Lz and Blimp-1, among 468 
others. While Blimp-1 and Lz can act as repressors in Drosophila60,61, so and Optix have been suggested 469 
to act as either activators or co-repressors (anterior to the morphogenetic furrow) during eye 470 
development62. For instance, by looking at enhancer-to-gene links related to hth, a gene potentially 471 
repressed by So63, we find a repressive enhancer (chr3R:10563160-10564462) with a So binding site 472 
(based on ChIP-seq) that is also enriched in the Optix-GFP+ FAC-sorted cells (Fig S15). In fact, this 473 
enhancer is specifically accessible in the cells in which both Optix and so are expressed, while hth is 474 
repressed in these cells. This suggests that Optix and so may cooperate to repress hth in the eye 475 
precursor cells via this regulatory region.  476 
 477 
Next, we used the inferred enhancer-to-target genes in an attempt to improve the inference of a “gene 478 
activity matrix” from the scATAC-seq data (i.e., predicting gene expression from ATAC-seq peaks). 479 
Briefly, instead of aggregating the probability of all the regions around a certain space around the TSS 480 
(i.e. 5kb upstream the TSS and introns as used above) of the gene of interest, we calculate the gene 481 
activity score by the weighted sum (weighted by importance) of the accessibility probabilities of the 482 
enhancers linked to each gene. We were able to recapitulate previously observed gene expression 483 
patterns (Fig 1c, Fig 4g), supporting the robustness of the inferred links. For instance, we found the 484 
expression gradient of ct, Dll and ss from outer to inner antennal rings, and a gradient from Optix, to 485 
ato, and to gl driving differentiation in the eye25,49. 486 
 487 
We then exploited these enhancer-to-gene associations to create new regulons, now being able to extend 488 
the search space for motif discovery around each gene. Particularly, comparison to the SCENIC 489 
workflow44, in which after deriving co-expression modules per TF the target genes are selected based 490 
on the enrichment of the motif/s linked to the TF in the entire sequence space around the TSS (i.e. 5kb 491 
upstream the TSS and introns); we evaluated motif enrichment restricted to the regions that are linked 492 
to each potential target gene. Out of the 161 regulons predicted in this manner, 91 have a canonical 493 
SCENIC counterpart, and have average size 2.6 times smaller than the SCENIC regulons (Fig S16a). 494 
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In addition, this approach identifies new regulons that were not found with SCENIC, such as Toy and 495 
Zld, which are involved in differentiation of ommatidial cell types; Salm in ommatidial cell types; Ct 496 
in R7 and cone cells and A1; Dll in A2, A3 and arista and Dfd in the peripodial membrane25,30,49,64,65 497 
(Fig S16b, c). We further validated the link-based regulons using differential expression rankings from 498 
Ato gain and loss-of-function mutant (versus WT), GMR-GFP+ cells (versus GMR-GFP-), and a loss-499 
of-function mutant of onecut (versus WT). We found that the predicted genes in the Ato regulon are 500 
upregulated in the GOF mutant and downregulated in the LOF mutant; Glass predicted target genes are 501 
enriched in GMR-GFP+ cells; and the predicted onecut regulon is downregulated in the onecut LOF 502 
(Fig 4h). In addition, we find an overlap of 24% when comparing the predicted Glass binding sites with 503 
Glass ChIP-seq binding sites in the embryo66. 504 
 505 
In summary, we provide a new method to infer GRNs involving distal enhancers, and a resource of 506 
enhancer-to-gene relationships that can be exploited to validate basic principles of gene regulation and 507 
infer detailed gene regulatory networks.  508 

 509 
Figure 4: Enhancer-to-target links unveil a complex multi-level regulation of gene expression. a. 510 
Computational approach for linking enhancer to target genes. b. Example of a gene (sens) controlled by uniquely 511 
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one enhancer (sens-F2). Linkage importance is shown on top, followed by the cisTarget regions, the sens-F2 512 
enhancer, gene annotation and the aggregated ATAC-seq profiles of the different cell types. The activity of sens-513 
F2 is shown below, together with the virtual eye-antennal disc colored by sens gene expression (red) and sens-F2 514 
accessibility probability (green). Scale bar: 100 µm. c. Example of a gene (gl) controlled by multiple enhancers, 515 
validated by Fritsch et al.55. Linkage importance is shown on top, followed by the cisTarget regions, the constructs 516 
tested by the authors, gene annotation and the aggregated ATAC-seq profiles of the different cell types. 517 
Highlighted areas indicate the cell types in which those segments of the sequence result in activity. The activity 518 
of the Glass Multimer Reporter (GMR) is shown, together with the cisTopic cell tSNE colored by the accessibility 519 
of the marked regions. d. Number of enhancer-to-gene links per gene e. Number of links with genes in the ranked 520 
position based on distance from the enhancer. f. Number of positive and negative links, with representative 521 
enriched motifs in each category with Normalized Enrichment Score (NES). g. Predicted gene expression (or gene 522 
accessibility) based on the signed aggregation of the probabilities of the enhancers linked to each gene weighted 523 
by importance. Three genes are shown per plot, using RGB encoding. h. Link-based regulons for ato, gl and 524 
onecut, built using GRNBoost co-expression modules and motif enrichment on the regions linked to each potential 525 
target gene.  Left: Cytoscape view of the link-based regulons. Color scale indicates the average importance of the 526 
regions enriched in the transcription factor motif for each gene. Middle: Examples of target genes, showing the 527 
enhancer-to-region links (top), cisTarget regions (middle) and gene annotation. cisTarget regions in which the 528 
motif for the transcription factor is enriched are shown in red. The area highlighted in yellow corresponds to the 529 
motif enrichment search space used in SCENIC44. Right: GSEA plots comparing the link-based regulons with 530 
differentially expressed genes in a compendium of conditions compared to wild type. We score the atonal regulon 531 
against both gain and loss of function mutants described in Aerts et al. 50; the gl regulon, against GMR+ FAC 532 
sorted cells from Potier et al.; and the onecut regulon, against a loss-of-function mutant of onecut, also presented 533 
by Potier et al.67. PMM: Peripodial Membrane Medial. PML: Peripodial Membrane Lateral. HV: Head Vertex. 534 
Pro: Progenitors. Pre: Precursors. MF: Morphogenetic Furrow. EPR: Early photoreceptors. LPR/CC: Late 535 
photoreceptors and cone cells. INT: Interommatidial cells. Hemo: Hemocytes. JOP: Johnston Organ Precursor. 536 
 537 
Cell-type specific caQTL analysis reveals key transcription factor binding sites that 538 

impact chromatin accessibility 539 
 540 
Having established a gene regulatory landscape at single-cell resolution, we next asked whether it can 541 
be exploited to interpret the effects of cis-regulatory variation on enhancer function. To this end, we 542 
identified chromatin accessibility quantitative trait locus (caQTLs) using a cohort of bulk eye-antennal 543 
disc ATAC-seq profiles across inbred lines12 (Fig 5a). While 21 of these samples were profiled by 544 
Jacobs et al.12, we performed 29 additional bulk ATAC-seq experiments, resulting in a panel with 50 545 
samples with highly robust ATAC-seq profiles (correlation between samples: 0.5-1, Fig 5b). 546 
 547 
To identify caQTLs (i.e. SNPs or indels that correlate with ATAC-seq signal), we used a generalized 548 
linear model (GLM) on all the 456,893 SNPs present in the 38,179 accessible regions, finding 10,969 549 
SNPs (2.4%) that correlated significantly with accessibility changes in the regions where they are 550 
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located (adjusted p-val < 0.05). These ~10k caQTLs are found across 4,853 genomic regions (Fig 5c). 551 
Compared to the reference allele, 6,781 of these caQTLs promote chromatin closure, while the 552 
remaining 4,188 result in chromatin opening (Fig 5c). Next, we evaluated whether these caQTLs either 553 
create or break a TF motif, using a collection of more than 24,000 transcription factor motifs51,68. 554 
Particularly, for each motif we compared the motif score between the reference enhancer sequence and 555 
the enhancer carrying the SNP, obtaining a Delta score for each caQTL and each motif. In agreement 556 
with Jacobs et al.12, we found that the motif linked to Grh is significantly more associated to caQTLs 557 
than to control SNPs (adjusted p-val: 10-29 by Fisher's exact test) and directly explains the accessibility 558 
of 158 regions (with abs(delta) > 2, Fig S17a). However, in Jacobs et al. we failed to detect any 559 
additional enriched motifs similarly affected by caQTLs.  560 
 561 
Here, we exploited our cell-type specific topics to perform the motif enrichment analysis for each topic 562 
separately. This effectively changes the null model, and aims to detect motifs that are significantly more 563 
altered in caQTLs in cell-type specific regions, compared to SNPs in cell-type specific regions. This 564 
strategy of using cell-type specific null models indeed revealed 33 additional motifs (log(Fisher test 565 
adjusted p-value) > 8, in at least one topic), which explain 2,061 extra caQTLs genome-wide (with 566 
abs(delta) > 2), increasing the number of explained caQTLs compared to performing bulk analysis 567 
where only the Grainyhead motif was found with comparable significance12.  568 
 569 
Indeed, cell-type specific motif enrichment permits to infer in which cell types these caQTLs are 570 
relevant. For example, caQTLs found within accessible regions anterior to the morphogenetic furrow 571 
and interommatidial cells significantly affect Optix and So binding sites (adjusted p-val: 10-2 by Fisher's 572 
exact test); while caQTLs in photoreceptor and cone cell regions mainly impact the GGG motif 573 
(adjusted p-val: 10-4 by Fisher's exact test) (Fig 5d, S17b), among others; suggesting that transcription 574 
factors linked to these motifs play an important role in chromatin regulation in these specific cell types. 575 
In addition, when evaluating caQTLs genome-wide (instead of binarized topic regions) affecting the 576 
binding sites of Grh (158), Optix/so (53), Gl (49) and the GGG motif (29) we observe accessibility in 577 
epithelial cell types, anterior to the MF and interommatidial cells, interommatidial cells and 578 
photoreceptors and cone cells, and photoreceptors, cone cells and brain neurons; respectively (with 579 
abs(delta) > 2, Fig 5e,f, S17c).  580 
 581 
In summary, cell-type specific signatures derived from single-cell ATAC-seq can be exploited to assess 582 
cell-type specific effects of caQTLs derived from a panel of bulk ATAC-seq profiles, providing a higher 583 
resolution and sensitivity compared to a bulk data analysis. 584 
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 585 
Figure 5: Cell-type specific caQTL analysis reveals key transcription factor binding sites that model the 586 
chromatin landscape during the development of the eye disc. a. Approach for the identification of genome-587 
wide caQTLs using bulk ATAC-seq profiles of 50 inbred Drosophila melanogaster lines. Briefly, after identifying 588 
the SNPs among the lines, a generalized linear model (GLM) is used to assess whether the presence of the SNP 589 
has an effect in chromatin accessibility. Once these caQTLs are identified, we estimate the effect they have on 590 
transcription factor binding sites by comparing the motif score with the reference and alternative SNP (i.e. delta 591 
score). A positive delta score indicates that the presence of the motif is related to chromatin opening, while a 592 
negative delta score reflects that the motif cause chromatin closeness. b. Bulk chromatin profiles of the 50 inbred 593 
lines. While 21 of these ATAC-seq experiments were performed by Jacobs et al.12, we generated 29 additional 594 
profiles. Peak calling defined regions are shown in black on the top. c. Examples of caQTLs linked to openness 595 
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(left) and closeness (right). d. Adjusted p-value by Fisher exact test comparing the proportion of caQTLs versus 596 
random SNPs affecting each motif and aggregated delta score per topic and bulk regions. e. cisTopic cell tSNE 597 
colored by the enrichment of regions whose accessibility is affected by caQTLs that alter the highlighted binding 598 
sites. f. Examples of caQTLs in regions that belong to different topic and affect a certain binding site. Top: Motif 599 
with delta score. Middle: Representative bulk ATAC-seq profile on lines with the reference and the alternative 600 
allele. Bottom: cisTopic cell tSNE colored by the accessibility of the region affected by the caQTL. The caQTLs 601 
coordinates are, from left to right: chr3L:17392596, chr3R:14076593, chr2R:18674001 and chr2R:18674002, and 602 
chr3R:29376820.  PMM: Peripodial Membrane Medial. PML: Peripodial Membrane Lateral. HV: Head Vertex. 603 
Pro: Progenitors. Pre: Precursors. MF: Morphogenetic Furrow. EPR: Early photoreceptors. LPR/CC: Late 604 
photoreceptors and cone cells. INT: Interommatidial cells. Hemo: Hemocytes. JOP: Johnston Organ Precursor. 605 
 606 
Prospero mediates terminal photoreceptor differentiation by binding the GGG motif 607 
 608 
While the GGG motif plays an important role in regions specifically accessible in photoreceptor 609 
neurons, the transcription factor/s that bind to it are currently unknown. In fact, this motif is enriched 610 
in regions specifically accessible in photoreceptors (Fig 2); the accessibility of regions with this motif 611 
is tightly correlated with their activity (Fig 3); these regions are related to gene activation rather than 612 
repression (Fig 4); and caQTLs affecting this motif are enriched in photoreceptor-specific enhancers 613 
(Fig 5). 614 
 615 
To find potential transcription factors that bind to this motif, we first collected candidate TFs that are 616 
expressed in photoreceptors, and that have a GGG-like motif, based on the Drosophila motif, or the 617 
motif of the orthologous factor in other species. We also analyzed the entire modERN collection of 618 
ChIP-seq data by motif enrichment, and identified three TFs (Pros, Nerfin-1, and l(3)neo38), that have 619 
a very strong GGG motif enriched in their ChIP-seq peaks (cisTarget Normalized Enrichment Score 620 
(NES) of 10.40, 5.93 and 5.61). In total we selected 14 candidate TFs, namely Pros, Lola (isoforms L 621 
and T), Nerfin-1 (FlyORF constructs CC and HA), l(3)neo38, Sp1, Ttk (isoforms Ttk88 and Ttk69), 622 
Lz, Lov, Psq and Fru (alleles EY09280 and E0Y2366). Next, we overexpressed each of these 14 TFs 623 
in the posterior part of the eye disc using GMR-GAL4 as driver, and for each TF we analyzed 624 
phenotypic changes as well as bulk ATAC-seq.  625 
 626 
Firstly, we assessed whether over-expression of these TFs in the posterior part of the eye disc resulted 627 
in an adult eye phenotype, which was the case for 9 of the 14 TFs (Fig S18). Of these, overexpression 628 
of Pros and Lola-T had the most severe phenotype, resulting in lethality in the early pupa stage. 629 
Overexpression of l(3)neo38, Nerfin-1 and Sp1 caused a rough eye phenotype, provoked by defects in 630 
the development of photoreceptors69; the overexpression of Ttk69 gave rise to a small eye and loss of 631 
photoreceptors; and overexpression of Lz and Lola-L led to loss of pigment and rough eye phenotype.  632 
 633 
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To assess the changes caused in the chromatin landscape by the overexpression of these TFs, and to 634 
investigate whether GGG-regions are affected, we performed bulk ATAC-seq on the eye-antennal disc 635 
for each TF gain-of-function. We clustered all ATAC-seq data across all TFs using cisTopic (on 636 
bootstrapped data, see Methods), revealing two topics whose regions are highly enriched in the GGG 637 
motif, namely topics 4 and 18 (Fig 6a,b). Both topics represent regions that become highly accessible 638 
upon overexpression of Pros, with regions in topic 18 also weakly increasing in accessibility upon 639 
overexpression of other TFs, including Nerfin-1 and l(3)neo38 (Fig S19a,b).  640 
 641 
Importantly, only Pros overexpression results in a strong opening of both early and late-born 642 
photoreceptor GGG enriched regions, while overexpression of other TFs has a weak effect (Fig 6c, 643 
S19c,d). On the other hand, topic 4, which contains regions uniquely accessible upon Pros 644 
overexpression, is more strongly enriched in the late-born photoreceptor regions found in the scATAC-645 
seq data compared to regions in topic 18; which contains regions that slightly increase in accessibility 646 
upon overexpression of other TFs, such as Nerfin-1 and l(3)neo38 (Fig S19e,f). These results agree 647 
with the phenotype observed in the third instar larvae eye disc: Pros overexpression has a strong impact 648 
throughout photoreceptor development, while the effects of Nerfin-1 and l(3)neo38 are milder and 649 
largely affect the structure of early ommatidia (Fig S19g). 650 
 651 
In the wild-type eye antennal disc, Nerfin-1 and l(3)neo38 are expressed in early and late-born 652 
photoreceptors, while Pros expression is limited to late-born photoreceptors (Fig 6d). This suggests that 653 
Nerfin-1 and l(3)neo38 could be the early openers of the GGG enriched regions, while Pros would act 654 
in late-recruited photoreceptors. In fact, the embryonic ChIP-seq profiles of these transcription factors 655 
support their binding to the photoreceptor GGG enriched regions, especially for Pros and Nerfin-1 (Fig 656 
S19h). When comparing the GGG regions bound by these factors in the embryo, we find that 50-65% 657 
of the sites are shared by the three transcription factors (Fig 6e). Differential motif enrichment analysis 658 
between shared versus transcription factor specific binding sites reveals that the shared sites are highly 659 
enriched for GGG motifs (adjusted p-value: 10-14), meaning that the three TFs can bind to regions with 660 
strong GGG motifs. On the other hand, regions specifically bound by l(3)neo38 are enriched for the 661 
canonical l(3)neo38 binding site (adjusted p-value: 10-17); regions uniquely bound by Pros are enriched 662 
for a GATC motif, previously reported as being associated with Prospero binding sites and linked to 663 
Lola-N70 (adjusted p-value: 10-10); and regions uniquely bound by Nerfin-1 are enriched for the 664 
Ara/Caup/Mirr motif (adjusted p-value: 10-5). Indeed, both Nerfin-1 and Mirr have been reported to be 665 
involved in axon guidance71,72.  666 
 667 
In summary, given the high enrichment of the GGG motif within Pros ChIP-seq peaks in the embryo, 668 
the strong opening of GGG enriched regions upon Pros overexpression and its expression in late 669 
photoreceptors, we propose Prospero as the key regulator of late-born photoreceptors (R7) and cone 670 
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cells through the binding of the GGG motif. In addition, our data suggests that in early photoreceptors, 671 
in which Pros is not expressed, Nerfin-1 and l(3)neo38 can be weaker binders of strongly GGG enriched 672 
regions. 673 

 674 
Figure 6: Prospero mediates terminal photoreceptor differentiation by binding the GGG motif. a. cisTopic 675 
topic-cell heatmap, based on a model with 21 topics. For running cisTopic, 50 single cell profiles were 676 
bootstrapped from the 15 bulk ATAC-seq profiles of the GMR-GAL4 UAS-TF and wild type lines included in 677 
the screen. b. Highlighted topics showing a representative topic region (top) and representative enriched motifs 678 
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with their Normalized Enrichment Score (NES). c. Heatmaps showing the normalized coverage of the early 679 
photoreceptor GGG enriched regions and late GGG enriched photoreceptor regions on the selected GMR-GAL4 680 
UAS-TF lines. d. Seurat cell tSNE colored by the expression of l(3)neo38, Nerfin-1 and Prospero. e. Venn diagram 681 
showing the overlap between the GGG enriched binding sites of Prospero, Nerfin-1 and l(3)neo38. Differentially 682 
enriched motif in each class are shown with their adjusted p-value.  683 
 684 
Discussion 685 
 686 
Single cell technologies provide unprecedented insights into the dynamics of gene regulation across all 687 
cell types within a tissue. However, these techniques require the dissociation of the tissue, resulting in 688 
the loss of spatial information. While new experimental techniques are arising to preserve spatial 689 
information while profiling single cells, these mainly target single-cell transcriptomics and methods 690 
that profile genome-wide transcription are limited in resolution6,73,74. Alternatively, new computational 691 
approaches have been developed, such as novoSpaRc5; however, de novo spatial relationships are only 692 
possible on one-dimensional tissues, and otherwise require of a gene expression reference map4. In this 693 
work, we present a semi-supervised approach to map omics data into a virtual template by extracting 694 
axial information via pseudotime ordering. The main limitations of this approach are that (1) it can be 695 
currently applied to 1D or 2D tissues, (2) it requires a priori information about at least one landmark 696 
between the real and the virtual cells and the direction of the axis and (3) it assumes symmetry around 697 
the axes, meaning that other gradients may be lost as cells are spread randomly in each bin. 698 
Nevertheless, the spatial gene expression atlas resulting from the mapping of scRNA-seq accurately 699 
recapitulates known gene expression patterns, and allows to generate virtual gene expression profiles 700 
for any gene, at a resolution comparable with novoSpaRc5. 701 
 702 
Whereas spatial inference has been reported based on scRNA-seq data, in this work we generate the 703 
first spatial map of a tissue from scATAC-seq data. This accessibility atlas effectively predicts 704 
enhancer-reporter activity for more than 700 enhancers from the Janelia FlyLight Project, with ~85% 705 
enhancers showing matching accessibility and activity patterns. The remaining enhancers (~15%) are 706 
binding sites of the epithelial pioneer transcription factor Grainyhead12, which primes these regions in 707 
all the epithelial cells without resulting in enhancer activity. Indeed, pioneer transcription factors are 708 
able to displace nucleosomes, resulting in an ATAC-seq signal; and despite that they are necessary, 709 
their binding is not sufficient for activity12. Thus, enhancer accessibility can be achieved either by the 710 
binding of pioneer factors or through the cooperative binding of multiple TFs. These results highlight 711 
both the power of using scATAC-seq as a proxy of enhancer activity, as well as the need for caution 712 
when dealing with pioneer factors. 713 
 714 
The virtual map also acts as a latent space in which scATAC-seq and scRNA-seq data are available for 715 
each virtual cell. While experimental approaches for the simultaneous profiling of epigenome and 716 
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transcriptome are emerging14–16, these do not yet achieve the same throughout and sensitivity compared 717 
to the independent assays. Computationally, Granja et al.75 have taken a similar approach, in which 718 
cells are mapped into the same latent space and for each single cell transcriptome the aggregate 719 
scATAC-seq profile of the closest neighbors is assigned. The resulting integrated profiles allow 720 
inferring relationships between enhancers and target genes. While Pliner et al.21 have tackled this 721 
problem uniquely using scATAC-seq data, Granja et al.75 used Pearson correlation between the 722 
chromatin accessibility and gene expression. In this work, we extend this approach by also using 723 
Random Forest models to assess non-linear relationships. Of note, these approaches are not robust to 724 
pioneer sites, whose accessibility and activity are unpaired. For example, in our approach a validated 725 
intronic enhancer of Atonal and Grainyhead in sca50 is missed, as the enhancer is ubiquitously 726 
accessible while only functional in the morphogenetic furrow, where the gene is expressed. 727 
Nevertheless, for the remaining 85% of the enhancers in which accessibility and activity are coupled, 728 
in this system, we have been able to reconstruct novel and validated enhancer-to-target gene links.  729 
 730 
The predicted links between enhancers and target genes support that (1) the probability of an enhancer 731 
regulating a gene decreases exponentially with the distance and the number of non-intervening genes 732 
in between, as also reported by other authors7,76,77; and (2) genes are regulated by several - and in some 733 
cases, redundant - enhancers, with a median of 22 enhancers linked to each gene. Indeed, Cannavó et 734 
al. reported in the Drosophila embryo that ~64% of the mesodermal loci has redundant (or shadow) 735 
enhancers, of which ~60% contain more than one pair of shadow enhancers78. In agreement, we find 736 
that ~80% of the genes are regulated by shadow enhancers (6,937 out of 8,307 genes), out of which 737 
~72% are regulated by at least 3 shadow enhancers (4,900 out of 6,937 genes). Importantly, 738 
transcription factors are more tightly regulated, being linked with a higher number of enhancers (with 739 
an average of 13 positive links per gene) and having almost twice the number of redundant enhancers 740 
compared to non-TFs genes (with an average of 13 enhancer-enhancer pairs, equivalent to ~5 shadow 741 
enhancers). As abnormalities in the expression of transcription factor genes can have more severe 742 
phenotypes compared to final effector genes, having more - and redundant - enhancers may provide 743 
evolutionary robustness. 744 
 745 
Of note, almost ~50% of the inferred links are negatively correlated with their target genes. While 746 
Polycomb mediated repression has been shown to reduce region accessibility79, other studies suggest 747 
that, although repressed enhancers are less accessible than active enhancers, they still show accessibility 748 
compared to the non-regulatory genome80. Such an effect can be observed in the embryonic eve stripe 749 
2 enhancer, which is active (and more accessible) in the second embryonic stripe, while repressed (and 750 
less accessible) in the rest81. Meanwhile, in the eye antennal disc, where it is not active nor repressed, 751 
there is no accessibility (Fig S20). Thus, accessible regions can not only correspond to promoters or 752 
insulator regions, or primed or active enhancers, but also to repressed enhancers. 753 
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Several works have focused on the inference of GRNs from single-cell data, mostly exploiting scRNA-754 
seq to infer co-expression patterns between TFs and potential target genes82. In an attempt to reduce the 755 
number of false positive targets due to activating cascade effects, we introduced SCENIC44, which 756 
additionally evaluates the enrichment of binding sites for the TF around the TSS of the putative target 757 
genes. On the other hand, other studies have exploited single-cell ATAC-seq to find target enhancers 758 
with binding sites for specific TFs. For example, chromVAR83 aggregates regulatory regions based on 759 
motif enrichment, and then evaluates these modules on single-cell ATAC-seq data; while cisTopic20 760 
performs motif enrichment on sets of co-accessible enhancers inferred from scATAC-seq profiles (i.e. 761 
topics) to find common master regulators. However, none of these approaches incorporates knowledge 762 
about the TF nor target genes expression. Here, we aim for the first time to integrate all these layers - 763 
transcription factor binding sites, chromatin and gene expression - to infer bona fide GRNs, by deriving 764 
co-expression modules between genes and transcription factors (from the scRNA-seq data) and pruning 765 
them based on the enrichment of the TF motif in the enhancers that regulate these genes (based on the 766 
enhancer-to-target gene links derived from the integration of scATAC and scRNA-seq data). In other 767 
words, single-cell Gene Regulatory Networks are not built with TF-Gene relationships, but we rather 768 
expand them to introduce the enhancers as nodes (TF-Enhancer-Gene). 769 
 770 
As bulk profiles may mask true biological signal (due to the proportions of the different cell types), 771 
single-cell data has been used to deconvolute cell-type specific signals from RNA-seq bulk data84; 772 
permitting to exploit bulk omics population panels only requiring one single-cell analysis. In fact, when 773 
evaluating chromatin accessibility QTLs, if a binding site is created, or destroyed, by a mutation in an 774 
enhancer that is active in a subset of cells, its effect at the bulk level will be less pronounced and may 775 
remain undetected. In this work we exploit for the first-time cell-type specific enhancers, learned from 776 
the scATAC-seq data, to account for cell-type specific genomic variation. For example, we revealed 777 
the relevance of Atonal binding sites for opening of Johnston's organ precursor specific regions and the 778 
GGG motif, previously unlinked to any transcription factor, in photoreceptors; among others. 779 
Interestingly, Atonal has been shown as key transcription factor for the specification of sensory 780 
neurons37; and bHLH proteins have been proposed to act as pioneer transcription factors on certain 781 
contexts85, such as the mammalian family member Ascl186.  782 
 783 
The importance of the GGG motif in neuronal enhancers was evident in most of our analyses; however, 784 
its interpretation was a challenge because the binding TFs were unknown. While yeast one-hybrid 785 
(Y1H) experiments have been previously used to reverse-engineer which transcription factors can bind 786 
a motif of interest, lowly expressed TFs may be underrepresented in the cDNA library and interactions 787 
that occur in vivo may be missed (such as those dependent of post-transcriptional modifications)70,87. 788 
Here, we have used a novel in vivo approach, in which we identify the changes that overexpression of 789 
potential TF candidates cause in chromatin accessibility through bulk ATAC-seq. Although this 790 
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strategy allows to characterize the effects of TF overexpression directly on the tissue of interest, it also 791 
has limitations, such as the limited throughput of in vivo genetic screens (one TF per experiment, 792 
compared to dozens of TFs that can be tested by Y1H or Perturb-ATAC88 in vitro). This requires making 793 
a stringent selection of potential candidates, that can be further bounded by the existence of compatible 794 
tools, such as UAS-TF lines. In addition, the changes in chromatin may not be direct; but these effects 795 
can be ruled out using external data available, such as ChIP-seq. 796 
 797 
We have also identified the neuronal precursor transcription factor Prospero as the strongest binder of 798 
the GGG motif, followed by Nerfin-1 and l(3)neo38. In fact, overexpression of each of them, but 799 
especially Prospero, results in the opening of GGG regions; and all three transcription factors, especially 800 
Pros and Nerfin-1, can bind to the GGG motif. Based on the expression of these transcription factors, 801 
we hypothesize that Nerfin-1 - and l(3)neo38 - are the early binders of the GGG motif, while Pros can 802 
bind to these regions in the late-born photoreceptors, where it is expressed. In fact, Pros and Nerfin-1 803 
have been reported to share direct targets during CNS differentiation89 and have been found to be key 804 
regulators during the photoreceptor and retinal differentiation in other organisms, such as zebrafish, 805 
chicken and mammals90–93. 806 
 807 
Finally, we provide a comprehensive and user-friendly single-cell resource of the Drosophila's eye-808 
antennal disc. We envision that our computational strategies and enhancer resource will be of value not 809 
only to the Drosophila community, but also to the field of single-cell regulatory genomics in general. 810 

 811 

Methods 812 
 813 
Fly husbandry and genotypes 814 
 815 
A detailed description of the lines used in this work is provided in Table S2. A wild type line, hybrid 816 
of DGRP-551, DGRP-360, DGRP-907 and DGRP-913, was used on the single-cell RNA-seq and 817 
single-cell ATAC-seq experiments with 10X Genomics. For cell sorting (followed by bulk and single-818 
cell ATAC-seq with Fluidigm C1), we used a sens-F2B-GFP transgenic line53. For measuring enhancer 819 
activity in a subset of lines from the Janelia Flylight Project, we selected the stocks (with Bloomington 820 
number): 49564, 49076, 45619, 39134, 47330, 49534, 47473, 48098, 47166, 49127, 40482, 45172 and 821 
49359; and crossed them with a UAS-eGFP line (Bloomington number: 4776). For the analysis of 822 
caQTLs, we performed bulk ATAC-seq on 29 lines from the Drosophila Genetics Reference Panel 823 
(with Bloomington number):  25189, 25191, 25194, 25198, 25201, 28129, 28136, 28138, 28140, 28141, 824 
28176, 28177, 28185, 28189, 28194, 28198, 28212, 28229, 28233, 28235, 28238, 28239, 28250, 29652, 825 
29658, 55015, 55018, 55028 and 55030. For the genetic screen, we used the following lines from the 826 
Bloomington Drosophila Stock Center: 32244, 28828, 7361, 33836, 28829, 16994, 17551, 7360 and 827 
15564; and the following from FlyORF: F000093, F000461, F004559, F001783 and F004846. These 828 
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lines were crossed with a GMR-GAL4 line. All flies were raised and crossed at 25°C on a yeast based 829 
medium. 830 

 831 

Dissociation of eye-antennal discs into single cells 832 
 833 
Wandering third instar larvae were collected and a total of ~30 eye-antennal discs were dissected and 834 
transferred into a tube containing 200 µl of ice-cold PBS. The sample was centrifuged at 800 g for 5 835 
minutes, and after removing the supernatant, 50 µl of dispase (3mg/ml; Sigma-Aldrich_D4818-2mg) 836 
and 70 µl of collagenase (100 mg/mL; Invitrogen_17100-017) were added. The tissue was dissociated 837 
during 45-60 minutes at 25°C at 550 rpm, pipetting up and down every 15 minutes to disrupt clumps of 838 
cells. Cells were washed with 1 mL of ice-cold PBS, and resuspended in 400 µl of PBS 0.04% BSA. 839 
The cells were passed through a 10 µm pluriStrainer (ImTec Diagnostics_435001050) and cell viability 840 
and concentration were assessed by the LUNA-FL Dual Fluorescence Cell Counter.  841 
 842 
Single-cell RNA-seq (10X Genomics) 843 
 844 
Single-cell libraries were generated using the GemCode Single-Cell instruments and the Single Cell 3' 845 
Library & Gel Bead Kit v2 and ChIP Kit from 10X Genomics, following the protocol provided by the 846 
manufacturer. Briefly, the eye-antennal disc cells were suspended in PBS 0.04% BSA. About 8,700 847 
cells were added in each reaction with a targeted cell recovery of 5,000 cells. Following the generation 848 
of nanoliter-scale Gel bead-in-EMulsions (GEMs), GEMs were reverse transcribed in a C1000 Touch  849 
Thermal Cycler (Bio Rad) programed at 53°C for 45 min, 85°C for 5 min, and hold at  4°C. After 850 
reverse transcription, single-cell droplets were broken and the single-strand cDNA was isolated and 851 
cleaned with Cleanup Mix containing DynaBeads (Thermo Fisher Scientific). cDNA was then 852 
amplified with a C1000 Touch Thermal Cycler programed at 98°C for 3 min, 12 cycles of (98°C for 15 853 
s, 67°C for 20 s, 72°C for 1 min), 72°C for 1 min, and held at 4°C twice. Subsequently, the amplified 854 
cDNA was fragmented, end-repaired, A-tailed and index adaptor ligated, with SPRIselect Reagent Kit 855 
(Beckman Coulter) with cleanup in between steps. Post-ligation product was amplified with a C1000 856 
Touch Thermal Cycler programed at 98°C for 45 s, 14 cycles of (98°C for 20 s, 54°C for 30 s, 72°C for 857 
20 s), 72°C for 1 min, and hold at 4°C. The sequencing-ready library was cleaned up with SPRIselect 858 
beads. 859 
 860 
Dissociation of eye-antennal discs into single nuclei 861 
 862 
Wandering third instar larvae were collected and a total of ~30 eye-antennal discs were dissected and 863 
transferred into a tube containing 200 µL of ice-cold PBS. The sample was centrifuged at 800 g for 5 864 
minutes, and after removing the supernatant, resuspended in 500 µl of nuclei lysis buffer (10 mM Tris-865 
HCl (pH 7.4), 10 mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40, 0.01% Digitonin, 1% 866 
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BSA, and water) and transferred to a dounce homogenizer (Sigma-Aldrich-D8938_2mL). After 867 
incubating the sample for 5 minutes on ice, 25 strokes were applied with the loose pestle. The sample 868 
was incubated for 10 minutes on ice and after applying 25 strokes with the tight pestle, transferred to a 869 
2 mL tube. The homogenizer and the pestle were rinsed with wash buffer (10 mM Tris-HCl (pH 7.4), 870 
10 mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA and water), and the solution was also transferred 871 
to the 2mL tube. The sample was washed once with wash buffer and resuspended on 50 µl of 1X diluted 872 
nuclei buffer (10X Genomics). The nuclei were passed through a 10 µm pluriStrainer (ImTec 873 
Diagnostics_435001050) and cell viability and nuclei concentration were assessed by the LUNA-FL 874 
Dual Fluorescence Cell Counter.  875 

 876 
Single-cell ATAC-seq (10X Genomics) 877 
 878 
Single-cell libraries were generated using the GemCode Single-Cell instruments and the Single Cell 879 
ATAC Library & Gel Bead Kit and ChIP Kit from 10X Genomics, following the protocol provided by 880 
the manufacturer. Briefly, the eye-antennal disc nuclei were suspended in 1X diluted nuclei buffer (10X 881 
Genomics). About 8,700 nuclei were added in each reaction with a targeted nuclei recovery of 5,000 882 
nuclei. The samples were incubated at 37°C for 1 hour with 10 µl of transposition mix (per reaction, 7 883 
µl ATAC Buffer and 3 µl ATAC Enzyme (10X Genomics)). Following the generation of nanoliter-884 
scale Gel bead-in-EMulsions (GEMs), GEMs were reverse transcribed in a C1000 Touch Thermal 885 
Cycler (Bio Rad) programed at 72°C for 5 min, 98°C for 30 sec, 12 cycles of 98°C for 10 sec, 59°C for 886 
30 sec and 72°C for 1 min, and held at 15°C. After reverse transcription, single-cell droplets were 887 
broken and the single-strand cDNA was isolated and cleaned with Cleanup Mix containing DynaBeads 888 
(Thermo Fisher Scientific). cDNA was then amplified with a C1000 Touch Thermal Cycler programed 889 
at 98°C for 3 min, 12 cycles of (98°C for 15 s, 67°C for 20 s, 72°C for 1 min), 72°C for 1 min, and held 890 
at 4°C twice. Subsequently, the amplified cDNA was fragmented, end-repaired, A-tailed and index 891 
adaptor ligated, with SPRIselect Reagent Kit (Beckman Coulter) with cleanup in between steps. Post-892 
ligation product was amplified with a C1000 Touch Thermal Cycler programed at 98°C for 45 s, 14 893 
cycles of (98°C for 20 s, 54°C for 30 s, 72°C for 20 s), 72°C for 1 min, and hold at 4°C. The sequencing-894 
ready library was cleaned up with SPRIselect beads. 895 

 896 

Cell sorting 897 
 898 
Wandering third instar larvae were collected and a total of 200 eye-antennal discs were dissected in ice-899 
cold PBS and placed in SF900 medium. For dissociation, the tissue was placed in 400 µl of trypsin in 900 
0.05% EDTA. The eye–antennal discs were then incubated at 37 °C for 1 h with agitation; being mixed 901 
every 20 min with a pipette. After dissociation, cells were centrifuged at 800 g for 5 min at 4 °C and 902 
washed with PBS. Finally, the cells were resuspended in 400 µl of PBS, filtered using a 40 µm cell 903 
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strainer and stained with propidium iodide (PI; final concentration 1 µg/ml) to exclude dead cells. The 904 
cells were sorted on a BD Aria I, selecting against the presence of PI and for the presence of GFP. 905 
 906 
As many cells as possible were sorted into a microcentrifuge tube, pelleted by centrifugation at 800 g for 907 
5 min at 4 °C and resuspended at a concentration of 1,000 cells/µl. Single-cell ATAC–seq was 908 
performed as previously described20,94, using 5- to 10-µm Open App integrated fluidic circuits (IFCs) 909 
on the Fluidigm C1 and with no cell washing step. Briefly, cells were loaded (using a 40:60 ratio of 910 
RGT:cells) on a primed Open App IFC (5-10 µm, the protocol for ATAC-seq from the C1 Script Hub 911 
was used). After cell loading, the plate was visually checked under a microscope and the number of 912 
cells in each of the capture chambers was noted. Next, the sample preparation was performed on the 913 
Fluidigm C1 during which the cells underwent lysis and ATAC-seq fragments were prepared. In a 96-914 
well plate, the harvested libraries were amplified in a 25 µl PCR reaction. The PCR products were 915 
pooled and purified on a single MinElute PCR purification column for a final library volume of 15 µl. 916 
Quality checks were performed using the Bioanalyzer high sensitivity chips. Fragments under 150 bp 917 
were removed by bead-cleanup using AMPure XP beads (1.2x bead ratio) (Beckman Coulter). 918 

 919 

ATAC-seq 920 
 921 
For the DGRP panel lines we used the ATAC-seq protocol for eye-antennal discs as previously 922 
described94,95. Briefly, ~10 eye-antennal discs were dissected and lysed in 50 µl ice-cold ATAC lysis 923 
buffer (10 mM Tris-HCl, pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630). Lysed discs were 924 
then centrifuged at 800 g for 10 minutes at 4°C and the supernatant was discarded. The rest of the 925 
ATAC-seq protocol was performed as described previously94,95, using the following primers: Fwd:- 926 
‘AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG’ and Rev:- 927 
‘CAAGCAGAAGACGGCATACGAGATXXXXXXGTCTCGTGGGCTCGGAGATGT’ (where X 928 
indicates barcode nucleotides). The final library was purified using a Qiagen MinElute kit (Qiagen) and 929 
Ampure XP beads (Ampure) (1:1.2 ratio) were used to remove remaining adapters. The final library 930 
was first checked on an Agilent Bioanalyzer 2000 for the average fragment size. Resulting successful 931 
libraries were sequenced with 75bp, single end reads on the Illumina NextSeq 500 platform. Single end 932 
sequencing was chosen for this part of the study because we were not interested in the fragment contents 933 
(i.e., how many nucleosomes are placed between two insertion sites), rather just the profile of insertion 934 
sites, and also made the comparison with the previously existing data (i.e. the bulk ATAC-seq DGRP 935 
panel and Optix-GFP from Jacobs et al.12) easier. 936 
 937 
For the genetic screen samples we used the Omni-ATAC-seq protocol, as previously described20. 938 
Briefly, ~10 eye-antennal discs were dissected and lysed using 50 µl of cold ATAC-Resupension Buffer 939 
(RSB) (see Corces et al.96 for composition) containing 0.1% NP40, 0.1% Tween-20 and 0.01% 940 
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digitonin, by pipetting up and down three times and incubating the cells for 3 min on ice. The lysis was 941 
washed out by adding 1 mL of cold ATAC-RSB containing 0.1% Tween-20 and inverting the tube three 942 
times. Nuclei were pelleted at 500 RCF for 10 min at 4°C, the supernatant was carefully removed and 943 
nuclei were resuspended in 50 µl of transposition mixture (25 µl 2x TD buffer (see Corces et al.96 for 944 
composition), 2.5 µl transposase (100 nM), 16.5 µl DPBS, 0.5 µl 1% digitonin, 0.5 µl 10% Tween-20, 945 
5 µl H2O) by pipetting six times up and down, followed by 30 minutes incubation at 37°C at 1,000 946 
RPM mixing rate. After MinElute clean-up and elution in 21 µl elution buffer, the transposed fragments 947 
were pre-amplified with Nextera primers by mixing 20 µl of transposed sample, 2.5 µl of both forward 948 
and reverse primers (25 µM) and 25 µl of 2x NEBNext Master Mix (program: 72°C for 5 min, 98°C 949 
for 30 sec and 5 cycles of [98°C for 10 sec, 63 °C for 30 sec, 72°C for 1 min] and hold at 4°C). To 950 
determine the required number of additional PCR cycles, a qPCR was performed (see Buenrostro et 951 
al.97 for the determination of the number of cycles to be added). The final amplification was done with 952 
the additional number of cycles, samples were cleaned-up by MinElute and libraries were prepped using 953 

the KAPA Library Quantification Kit as previously described 86. Samples were sequenced on an 954 
Illumina NextSeq 500 High Output chip, with 50bp single-end reads. 955 

 956 

Immunohistochemistry  957 
 958 
Imaginal eye-antennal discs from third-instar larvae were dissected and fixed in 4% formaldehyde at 959 
room temperature for 30 min. Next, they were washed in 1X PBT (PBS + 0.3% Triton X-100) during 960 
15 min for 3 times and blocked in 3% BSA for 1 hour at room temperature. To test enhancers, tissues 961 
were incubated with a primary antibody mixture (rabbit anti-GFP (Invitrogen) 1:1000; rat anti-Elav 962 
(DSHB, 7E8A10) 1:50; and mouse anti-pros (DSHB) 1:200) at 4 °C overnight. The samples were then 963 
washed 3 times with 1X PBT for 15 min at room temperature, followed by 2 hours incubation with 964 
secondary antibody mixture (Goat Anti-Rabbit - Alexa Fluor® 488 antibodies; donkey anti-rat Alexa 965 
Fluor® 647; and donkey anti-mouse Alexa Fluor® 555) (Invitrogen/Life Technologies) at room 966 
temperature in the dark. The samples were washed again 3 times as mentioned above before mounting 967 
the eye-antennal discs on slide with Vectashield (Vector Laboratories). For imaging, an Olympus 968 
FV1200 confocal microscope was used (20X dry). Fiji98 (ImageJ v2.0.0-rc-69/1.52p) was used to merge 969 
and process the images. 970 
 971 
Analysis of single-cell RNA-seq data 972 
 973 
The 10X eye-antennal disc samples were processed (alignment, barcode assignment and UMI counting) 974 
with the Cell Ranger (version 2.0.2) count pipeline, using the cellranger aggr command with --975 
normalize=mapped, and building the reference index upon the 3rd 2017 FlyBase release 976 
(D. melanogaster r6.16)99. Lowly expressed genes detected in less than 11 cells (0.3% of the cells) and 977 
with less 32 UMI counts across the data set (3 counts in 0.3% of the cells) were filtered, resulting in a 978 
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data set with 8,744 genes and 3,531 cells that was analyzed using Seurat (v2.3.4). Briefly, data was log-979 
normalized with a scale factor of 104 and latent variables, defined as the number of UMIs, were 980 
regressed out. For further downstream analysis, the most variable genes (1,495) were selected 981 
using FindVariableGenes() with default parameters. Next, we used PCA to reduce the dimensionality 982 
of the original matrix, selecting the first 102 PCs based on a cross-validation step. These 102 PCs were 983 
used as input for the Shared Nearest-Neighbor (SNN) graph method implemented in Seurat, with a 984 
resolution of 1.2, resulting in 17 cell clusters. Differentially expressed genes for each cluster were 985 
estimated with the function FindAllMarkers(), using a Wilcoxon Rank Sum test with a logFC threshold 986 
of 0.25. tSNE and UMAP were performed with default parameters, using the first 102 PCs. In addition, 987 
DoubletFinder29 (v2.0.1) was run using the first 102 PCs, with an estimated pK value of 0.04. Assuming 988 
a doublet formation rate of 7.5%, 246 high confidence doublets were found. For the semi-supervised 989 
clustering of photoreceptor subclasses, singlet cells in the early photoreceptors and late photoreceptors 990 
and cone cells were selected and Seurat (v2.3.4) was run as previously explained using marker genes 991 
for each photoreceptor subclass and cone cells as listed in Flybase, comprising a total of 86 unique 992 
genes, using the first 7 PCs based on a cross-validation step. PySCENIC44,100 (v0.9.1) was run with 993 
default parameters, using motif and ENCODE ChIP-seq based databases (as in i-cisTarget68), resulting 994 
in 175 regulons (159 motif-based regulons). Regulon Specificity Scores (RSS) were calculated as 995 
described by Suo et al.101, and the Atonal regulon was used as input for GSEA analysis using as rankings 996 
the genes ordered by log fold change values calculated by GEO2R for eye-antennal disc RNA-seq 997 
profiles of a Gain-Of-Function Atonal mutant and a Loss-Of-Function Atonal mutant (versus WT)50. A 998 
representative gene regulatory network with regulons enriched in the morphogenetic furrow was built 999 
using Cytoscape.  1000 
 1001 
Seurat (v3.0.1) was also used for transferring cluster labels between the eye disc data set from Ariss et 1002 
al.43 and this data (and vice versa). Brain cells from our data set were not included in the analysis, 1003 
resulting in a data set with 3,232 cells and 8,744 genes, and the eye disc data set from Ariss et al. was 1004 
filtered to keep cells with more than 1,000 UMI counts and 500 genes expressed, resulting in a data set 1005 
with 5,630 cells and 7,801 genes. Label transferring was performed with default parameters and PCA 1006 
as dimensionality reduction method, using vst as selection method and 2,000 features for finding the 1007 
variable features and the first 30 PCs for finding anchors and transfer the data. Antennal cell types were 1008 
not transferred between our data set and Ariss et al. eye disc data set. Loom files with the results of 1009 
these analyses were created using SCopeLoomR95 (v0.4.0) and are available at 1010 
http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc and processed data can be visualized at 1011 
http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc. 1012 
 1013 
 1014 
 1015 
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Analysis of FAC-sorted ATAC-seq data 1016 
 1017 
ATAC-seq reads were first cleaned for adapters using fastq-mcf. (ea-utils v1.12) and a list of sequencing 1018 
primers. Cleaned reads (FastQC v0.1) were then mapped to the 3rd 2017 FlyBase release 1019 
(D. melanogaster r6.16) genome using Bowtie2 (v2.2.5) with default parameters, and sorted bam files 1020 
were produced using using SAMtools (v1.2). Single-cell profiles were aggregated using samtools 1021 
merge. Normalized bigwigs were generated using the Kent software (UCSC). 1022 
 1023 
The single-cell data was deduplicated using picard MarkDuplicates. Aggregation plots were produced 1024 
using in-house scripts available at: https://github.com/aertslab/ATAC-seq-analysis, and cells were 1025 
filtered manually based on the aggregation plot profiles, resulting in 74 and 72 Optix-GFP+ and sens-1026 
GFP+ single cell ATAC-seq profiles (out of 96 and 384 sequenced cells, respectively). Downstream 1027 
analysis was done using cisTopic (v0.2.2)20. 1028 
  1029 
On the bulk samples, peaks were called on mapped reads using MACS2 (v2.1.2.1) with the following 1030 
additional options: –nomodel –call-summits --nolambda. Peaks in the independent samples were 1031 
merged, and fragments per peak (and ctx region) in each sample were counted using featureCounts 1032 
(Subread v2.0.0). Deseq2 (v1.18.1) was used to obtained differentially accessible peaks between 1033 
positive and negative cells (with logFC > |1| and p-value < 0.05). 1034 
 1035 

Analysis of ChIP-seq data 1036 
 1037 
ChIP-seq reads were first cleaned for adapters using fastq-mcf. (ea-utils v1.12) and a list of sequencing 1038 
primers. Cleaned reads (FastQC v0.1) were then mapped to the 3rd 2017 FlyBase release 1039 
(D. melanogaster r6.16) genome using Bowtie2 (v2.2.5) with default parameters, and sorted bam files 1040 
were produced using using SAMtools (v1.2). Single-cell profiles were aggregated using samtools 1041 
merge. Normalized bigwigs were generated using the Kent software (UCSC). Peaks were called on 1042 
mapped reads using MACS2 (v2.1.2.1) with the following options: -g dm –nomodel –bdg -t Samples -1043 
c Control. 1044 
 1045 

Analysis of single-cell ATAC-seq data 1046 
 1047 
The 10X eye-antennal disc samples were processed (alignment and barcode assignment) with a 1048 
customized version of the Cell Ranger ATAC (version 1.0.0) pipeline, in which the parameter 1049 
PEAK_MERGE_DISTANCE was set to 50 (instead of 500) and the parameter PEAK_ODDS_RATIO 1050 
was set to 4 (instead of 1/5). In addition, the reference index was built upon the 3rd 2017 FlyBase release 1051 
(D. melanogaster r6.16)99. Sex was assigned to each cell based on the percentage of reads mapped to 1052 
the X chromosome, as shown by Cusanovich et al.13. 1053 
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 1054 
Downstream analysis was performed with cisTopic20 (v0.2.2). Briefly, fragments within defined 1055 
regulatory regions (such as ctx regions) were counted, resulting in a matrix with 129,553 regulatory 1056 
regions and 15,387 cells, after filtering out a total of 379 cells based on the number of fragments within 1057 
bulk peaks and the total number of fragments. Topic modelling was performed using 2, 10, 20, 30 to 1058 
50 (1 by 1), 60, 70, 80, 90 and 100 topics, and 500 iterations, out of which 250 were used as burn-in. 1059 
Based on the highest log-likelihood, the model with 49 topics was selected. The cell-topic tSNE 1060 
representation was obtained by using tSNE on the normalized topic-cell matrix (by Z-Score), without 1061 
using the PCA reduction and with a perplexity of 100. Cell clustering was performed on the normalized 1062 
cell-topic matrix (by Z-Score) using the Shared Nearest-Neighbor (SNN) graph method implemented 1063 
in Seurat (v2.3.4), with a resolution of 1.2, resulting in 22 cell clusters. For identifying topics potentially 1064 
related to batch effects (mainly experimental run and sex), we binarized the cell-topic distributions and 1065 
used a proportion test comparing the proportion of cells corresponding to each experimental run or sex 1066 
versus their proportion in the entire population. Two batch effect topics significantly related to the 1067 
experimental run: topic 46 with run 1 (Bonferroni adjusted p-value for topic 46: 10-29) and topic 18 with 1068 
run 2 (Bonferroni adjusted p-value for topic 18: 10-217); and a topic was found to be related to the female 1069 
sex (Bonferroni adjusted p-value for topic 4: 10-21). 1070 
 1071 
On the other hand, region-topic distributions were binarized with a probability threshold of 0.985. The 1072 
region-topic tSNE was performed with similar parameters as before, using a perplexity of 200. The 1073 
annotation of regions was done with default parameters. RcisTarget44 (v1.5.0) and i-cisTarget51,68 were 1074 
run to assess motif enrichment on the binarized topics, using a ROC threshold of 0.01, a maximum rank 1075 
of 5,000 and the version 8 motif database, containing more than 20,000 motifs. The probability of each 1076 
region in each cell (region-cell) was calculated using the predictiveDistribution() function, in which the 1077 
topic-cell and the region-topic matrices are multiplied. For the enrichment of epigenomic signatures, 1078 
region sets were mapped to the regions in the data set with a minimum overlap of 40% and the 1079 
enrichment of the signatures in the cells was estimated using a maximum AUC rank of 12,956 (10% of 1080 
the total number of regions) and cell-region rankings based on the region-cell probability matrix, while 1081 
the enrichment of signatures in topics was estimated using a maximum AUC rank of 3,887 (3% of the 1082 
total number of regions) and the region-topic distributions as rankings. Additionally, we projected the 1083 
FAC-sorted single cell profiles (Optix-GFP+ and sens-GFP+) with at least 70% of the fragments within 1084 
regulatory regions into the existing topic space. Briefly, the topic-cell distributions of the new cells 1085 
were estimated by multiplying the binary count matrix (cell-regions) by the region-topic distributions 1086 
of the existing models. The estimated topic-cell contributions were merged with the topic-cell 1087 
distributions of the original cells, normalized (by Z-Score) and batch effects were corrected with 1088 
Harmony (v1.0)102. 1089 
 1090 
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Gene activity scores were estimated by aggregating the region probabilities of the regions surrounding 1091 
the TSS of each gene (5kb upstream and introns), as used for cisTarget enhancer-to-gene associations68, 1092 
and probabilities were multiplied by 106 and rounded before creating the loom file. These gene-activity 1093 
based matrix was used to assess the enrichment of the regulons derived from the analysis with 1094 
pySCENIC (v0.9.1) in the single-cell RNA-seq data, using AUCell44 (v1.5.2) with default parameters, 1095 
with a maximum AUC rank of 439 (5% of the total number of genes). In addition, we also used 1096 
DoubletFinder (v2.0.1) on this matrix, using the first 102 PCs, with an estimated pK of 0.27. Assuming 1097 
a doublet formation rate of 20%, we find 13,848 high confidence singlets. Finally, we performed label 1098 
transferring between the scRNA-seq and the scATAC-seq (gene activity based) data sets (and vice 1099 
versa) with Seurat (v3.0.1). Label transferring was performed with default parameters and CCA as 1100 
dimensionality reduction method, using vst as selection method and 3,000 features for finding the 1101 
variable features and the first 20 dimensions for finding anchors and transfer the data. Loom files with 1102 
the results of these analyses were created using SCopeLoomR95 (v0.4.0) and are available at 1103 
http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc and processed data can be visualized at 1104 
http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc. 1105 
 1106 
Projection of single-cell omics data into a virtual latent space 1107 
 1108 
The eye-antennal disc representation (Fig 1a, 2a) was used to generate the virtual eye template 1109 
coordinates. Importantly, for representing non-spatially restricted groups (i.e. twi+ cells, hemocytes, 1110 
glia, peripodial membrane groups) and clarify cell types posterior to the morphogenetic furrow (i.e. 1111 
early photoreceptors, late photoreceptors and cone cells, and interommatidial cells; for both scRNA-1112 
seq and scATAC-seq) or in the antenna and anterior to the morphogenetic furrow (i.e. antennal rings 1113 
A2a and A2b and precursors and progenitors, respectively, on the scATAC-seq analysis), circles were 1114 
added to the representations. The template was reduced to a size of 100x100 pixels and was split into 1115 
one image per cell type (in red color). Each image was read using the jpeg (v0.1-8) R package, and the 1116 
background (in white color) was removed using k-means clustering on the RGB pixel values. Since 1117 
interommatidial cells and photoreceptors are mixed posterior to the morphogenetic furrow, we 1118 
intercalated photoreceptors and interommatidial cells in the early and late compartments posterior to 1119 
the morphogenetic furrow. The resulting template coordinates were annotated per cell type, resulting in 1120 
5,058 cells on the eye-antennal disc representation, and a total of 5,379 and 5,526 cells for the scRNA-1121 
seq and scATAC-seq maps considering the non-spatially mapped cell types and detailed groups.  1122 
 1123 
For mapping the scRNA-seq and the scATAC-seq data, antennal and eye disc cell types were ordered 1124 

by pseudotime in each data set using the DPT() function from the destiny103 (v3.0.0) R package, using 1125 
Seurat PCs and topic contributions of the singlet cells, respectively, as input for estimating the diffusion 1126 
components. The pseudotime order represents the distal-proximal axis for the antennal cells, and the 1127 
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anterior-posterior axis in the eye cell types. Each cell type was divided in 10 bins based on their 1128 
pseudotime order. Similarly in the virtual eye-antennal disc template, for each spatially located cell type 1129 
in eye we calculated the distance to a reference vertical line located in the morphogenetic furrow (i.e. 1130 
distance is calculated on the X axis between the landmark point on the same Y coordinate); and for each 1131 
spatially located group in the antenna we calculated the distance of each virtual cell to a reference point 1132 
in the center of the arista (i.e. the length of the X-Y vector from the cell and the reference). Each cell 1133 
type was then divided in 10 bins based on their distance to the reference landmark. For each cell type, 1134 
we assigned a real profile from the matching bin to each virtual cell randomly (e.g. the cells in the first 1135 
bin of a pseudotime ordered cell type are assigned to the virtual cells in the first bin of that cell type 1136 
based on the distance to the landmark in the virtual eye). Progenitors and precursors and antennal rings 1137 
A2a and A2b in the scATAC-seq mapping were assigned together to the anterior to the morphogenetic 1138 
furrow and antennal ring A2 compartments based on pseudotime. For non-spatially located cell types 1139 
and detailed groups cells were sampled randomly without binning. If there are more real cells than 1140 
virtual ones, random sampling is done without repetition, if there are more virtual cells than real ones, 1141 
real profiles are assigned more than once. The scRNA-seq (i.e. gene expression) and scATAC-seq (i.e. 1142 
region-cell probabilities) of the virtual cells are those of their matching real cell. Loom files with the 1143 
results of these analyses were created using SCopeLoomR95 (v0.4.0) and are available at 1144 
http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc. 1145 
 1146 
Comparison of accessibility and activity profiles in the virtual latent space 1147 
 1148 
The enhancer activity GFP signal was mapped into the virtual eye representation using a customized 1149 
script which leverages Matlab's Image Toolbox for landmark-based image registration. Briefly, signals 1150 
in the antenna and the eye were mapped independently, using projective and polynomial 1151 
transformations, respectively; and manually selecting 6-8 landmarks per image. The GFP channel from 1152 
the transformed images was read into R using the jpeg package (v0.1-8) and overlapped with the virtual 1153 
eye template coordinates; if GFP signal was detected on a cell a value of 1 was given, if not, a value of 1154 
0 was assigned. After removing images with low or unclear signals, with signal out of the disc proper 1155 
(e.g, remaining of the peripodial membrane or glial cells), with unsuccessful mapping, and duplicates, 1156 
we obtained a matrix recapitulating the activity 390 enhancers, with each enhancer being active in a 1157 
median of 106 virtual cells. Since Janelia enhancers are quite broad (i.e. 1-5kb) and may include more 1158 
than one cisTarget region, the accessibility probability of each Janelia enhancer was calculated by 1159 
aggregating the region-cell probabilities of the regions falling within it. For comparing accessibility and 1160 
activity in these regions, we calculated the Spearman correlation between the accessibility probabilities 1161 
and the activity patterns, and the accessibility gini scores using the gini.index() function from the R 1162 
package lawstat (v3.2). Motif enrichment was performed in the generally accessible regions (with gini 1163 
index < 0.2) and specific regions (with gini index > 0.4) using i-cisTarget68. For scoring the Atonal 1164 
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enhancers validated by Aerts et al., PWMs were scored in the enhancer sequences using Cluster-1165 
Buster104, and visualized with TOUCAN105. 1166 
 1167 
Linkage of enhancers to target genes 1168 
 1169 
For each gene, we identified as potential regulatory regions those included in a genomic space of +/-1170 
50kb around the TSS of the gene, including introns, resulting in a median of 54 potential regulatory 1171 
regions per gene. For genes with more than one TSS, we selected one TSS position randomly. We then 1172 
combined two approaches to establish relationships between enhancer and target genes, (1) a linear 1173 
strategy by calculating the Pearson correlation between the enhancer probabilities and gene expression 1174 
in the virtual cells and (2) a non-linear strategy based on Random Forest models, using the enhancer 1175 
probabilities as predictors, the gene expression as response and the GENIE3 R package44 (v1.8.0) to 1176 
build each - gene specific - model, with 1,000 trees and default parameters. Importantly, we used all 1177 
virtual cells profiles except for those representing detailed subgroups, covering 5,253 virtual cells. 1178 
Correlation-based relationships were filtered to keep those below -0.181 and above 0.194, 1179 
corresponding to the 1st and 99th percentiles of the normal distribution fitted to all the correlations 1180 
derived with the fitdistrplus R package (v1.0-11). Random forest derived relationships, based on the 1181 
importance given to each region in each model, were filtered to keep the top relationships for each gene 1182 
by binarizing the region importances per gene using BASC binarization as implemented in the Binarize 1183 
R package (v1.3). We classified links as positive if they were positively correlated with their target 1184 
genes (>0) and negative if they were negatively correlated with their target genes (<0). This resulted in 1185 
a total of 183,336 enhancer-to-gene relationships, with a median of 22 links per gene. The Gviz R 1186 
package (v1.22.3) was used to make figures representing links, and link tracks (with scores and sign of 1187 
the relationship) are available at http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc. 1188 
 1189 
For estimating GO terms related to the genes with the most and the least links we used GOrilla106 and 1190 
visualized the results with REVIGO107. The list of transcription factors for comparing features in TF 1191 
and non-TF genes was obtained from the RcisTarget Drosophila database44. For estimating the number 1192 
of redundant enhancers, we considered that two enhancers linked to the same gene were correlated if 1193 
the Pearson correlation between their region-cell probabilities was above 0.8. For estimating the 1194 
correlation in activity between enhancer-enhancer pairs, we evaluated the 63 combinations for which 1195 
the activity of both enhancers was mapped into the virtual eye (with correlation > 0.1). Gene activity 1196 
scores were calculated by aggregating the region-cell probabilities of the regions linked to each gene, 1197 
weighted by their signed (positive or negative effect) random forest importance. For integrating these 1198 
links in the pySCENIC pipeline, we use the modules derived from GRNBoost108 (Arboreto v0.1.5) and 1199 
performed the motif enrichment step (with RcisTarget44 (v1.5.0), using a ROC threshold of 0.01 and a 1200 
maximum AUC rank of 5,000) on the regions linked to each gene in the module (using the region-based 1201 
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cisTarget databases) instead of around the TSS of the gene (using the gene-based cisTarget databases 1202 
implemented in the original workflow). Genes linked to regions in which motifs linked to the 1203 
transcription factor in each module were enriched (NES > 3), were kept as part of the regulon. The 1204 
regulons were evaluated on the cells using AUCell44 (v1.5.2). For validating the link-based regulons, 1205 
we used as input for GSEA the regulons and the genes ordered by decreasing logFC for (1) Atonal 1206 
Gain-of-Function and Loss-of-Function mutants (versus WT, using GEO2R), (2) GMR+ versus GMR- 1207 
populations and (3) onecutx562 (Loss-of-Function mutant) versus WT, as provided by Potier et al.67. 1208 
Loom files with the results of these analyses were created using SCopeLoomR95 (v0.4.0) and are 1209 
available at http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc. 1210 
 1211 
caQTL analysis 1212 
 1213 
Data preprocessing 1214 
 1215 
Adapter sequences were trimmed from the raw reads using fastq-mcf (ea-utils v1.1.2, with default 1216 
parameters and using a list containing the common Illumina adapters) and the quality of the cleaned 1217 
reads was checked with FastQC (v0.1). All experiments were mapped using Bowtie2 (v2.2.5) to their 1218 
personalized version on 3rd 2017 FlyBase release (D. melanogaster r6.16) genome.  1219 
 1220 
Briefly, called variants in this genome assembly were retrieved from 1221 
ftp://ftp.hgsc.bcm.edu/DGRP/freeze2_Feb_2013/liftover_data_for_D.mel6.0_from_William_Gilks_O1222 
ct_2015/ and for each of the 50 DGRP lines we adapted the consensus genome (r6.16) using seqtk mutfa 1223 
(seqtk (v1.0)), each time including their SNPs (previously called from whole genome sequencing). 1224 
After the first mapping round, additional SNPs were called on the ATAC reads using SAMtools (v1.2), 1225 
with the command samtools mpileup -B –f r6.16.fasta DGRP_lineX.bam | varscan.sh mpileup2snp --1226 
output-vcf 1. Newly called homozygous SNPs (several thousands per line) were added to the existing 1227 
vcf files using VCFtools (v0.1.14). The genomes were again updated to obtain a final personalized 1228 
genome for every DGRP line, strongly reducing mapping errors and increasing the sensitivity of 1229 
subsequent analyses. Cleaned reads were mapped onto the final genomes using Bowtie2 (v2.2.5) again 1230 
and SAMtools (v1.2) was used for sorting and indexing. 1231 

Peaks were called on the mapped reads using MACS2 (v2.1.2.1), with the command macs2 callpeak -1232 
g dm –nomodel–keep-dup all –call-summits. The narrow peak files (bed format) for all the DGRP lines 1233 
were merged into a single file that contained a total of 39,879 regions accessible in at least one DGRP 1234 
line. After filtering out chrU, chrUextra, chrHet and chrM regions and removing regions enriched in 1235 
repeats (>25% of the sequence) using bedtools (v2.28.0) with the command intersectBed -v -f 0.25, we 1236 
obtained 38,179 accessible regions across this DGRP panel. For every ATAC-seq sample we counted 1237 
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the number of reads falling into each accessible region using featureCounts (Subread v2.0.0). 1238 
Normalized bigwig files were generated using the Kent software from UCSC. 1239 

Determination of caQTLs 1240 
 1241 

Next, 209 regions with a low coverage for every DGRP line were removed (coverage of the region 1242 
below 0.2pb for every DGRP lines), ending up with 37,990 accessible regions. For each region, we 1243 
extracted the normalized ATAC-seq reads for these 50 DGRP lines and linked each region to the 1244 
annotated and additionally called SNPs for these lines. 676,916 SNPs were assigned to their 1245 
encompassing region using bedtools.2.26.0 intersectBed on the extended vcf file.  1246 

In this way, we obtained for each region the normalized reads for each of the 50 lines as one vector and 1247 
all SNPs called inside this region as a binary matrix for the 50 lines (present =1, absent=0, 1248 
unknown=NA). We searched for correlating region-SNP vectors using the generalized linear model 1249 
function in R (version 3.5.0). The p-values were adjusted using the Benjamini-Hochberg procedure in 1250 
R. We identified 10,969 highly correlating SNP-region pairs referred to as caQTLs (Chromatin 1251 
Accessibility Quantitative Trait Loci ; adjusted p-value < 0.05). 1252 

Delta motif scores 1253 
 1254 
To single out motifs that correlate significantly with the open chromatin changes, a Delta motif score 1255 
was calculated for every of the 24,454 unique motifs in our collection. The sequence for each of the 1256 
4,853 variable regions, that contained at least one caQTL, was extracted using bedtools getfasta 1257 
(Bedtools v2.28.0). Next, we mutated these sequences with their encompassing caQTLs according to 1258 
their effect on the open chromatin using seqtk mutfa (seqtk (v1.0)). For each of the 4,853 regions we 1259 
obtained 2 sequences, one for the accessible chromatin and one for the less accessible/closed chromatin. 1260 
We scored every time both sequences with the 24,454 motifs using Cluster-Buster104, with the options –1261 
m 0 –c 0, and retained for every motif the highest CRM score for each sequence. By subtracting the 1262 
CRM score of the less accessible/closed region from the encompassing accessible region we obtained 1263 
a delta motif score for that region.  1264 

 1265 
Motif significance 1266 
 1267 
For the general significance, we summed all delta scores from the 4,853 regions to obtain a cumulative 1268 
delta score for each motif. We calculated a Delta motif score, following the same procedure, on 20K 1269 
random SNPs that were present in an accessible region but had no effect on chromatin accessibility 1270 
(GLM FDR > 0.95). We then calculated for each motif whether it was significantly more affected 1271 
(|Delta score| > 3) by caQTLs compared to the non-correlating SNPs, using the Fishers exact test. 1272 
 1273 
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Out of the 10K caQTLs, 6,682 caQTLs fall within a topic (60.9%), having in average 362 caQTLs per 1274 
binarized topic. For the cell-type specific analysis, we summed all delta scores from all the regions 1275 
containing at least one caQTL per topic to obtain a cumulative delta score for each motif (in average, 1276 
there are 362 caQTLs per topic). We calculated a Delta motif score, following the same procedure, on 1277 
the 40K random SNPs that were present in an accessible region in a topic but had no effect on chromatin 1278 
accessibility (GLM FDR > 0.95). We then calculated for each motif whether it was significantly more 1279 
affected (|Delta score| > 3) by caQTLs compared to the non-correlating SNPs, using the Fishers exact 1280 
test. 1281 
 1282 
Genetic screen data analysis 1283 
 1284 
ATAC-seq reads were first cleaned for adapters using fastq-mcf. (ea-utils v1.12) and a list of sequencing 1285 
primers. Cleaned reads (FastQC v0.1) were then mapped to the 3rd 2017 FlyBase release 1286 
(D. melanogaster r6.16) genome using Bowtie2 (v2.2.5) with default parameters, with the single end 1287 
option (to compare with the WT sample, which was single-end sequenced). Sorted bam files were 1288 
produced using using SAMtools (v1.2). Normalized bigwigs were generated using the Kent software 1289 
(UCSC). Peaks were called on mapped reads using MACS2 (v2.1.2.1) with the following options: -g 1290 
dm –nomodel –bdg -t Sample/Control -c Sample/Control (depending on whether we want to determine 1291 
upregulated or downregulated peaks). ChIP-seq bam files were downloaded from ENCODE and 1292 
normalized bigwigs were also generated using the Kent software (UCSC). Peaks were called on mapped 1293 
reads using MACS2 (v2.1.2.1) with the following options: -g dm –nomodel –bdg -t Samples -c Control. 1294 
Normalized bigwigs are available at: http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc. 1295 
 1296 
For each sample, 50 single cells were simulated by bootstrapping 20,000 mapped reads (per cell) from 1297 
the bulk bam files, resulting in a data set with 750 simulated single cells. Downstream analyses were 1298 
performed with cisTopic20. Briefly, we determined the number of ctx regions in which at least one read 1299 
is mapped, and topic modelling was run using default parameters, with models including 2, 10 to 60 1300 
(one by one), 70, 80, 90 and 100 topics, using a total of 500 iterations, out of which 250 were used as 1301 
burn-in. Based on the highest log-likelihood, we selected a model with 21 topics. Motif enrichment 1302 
analysis was performed using RcisTarget and i-cisTarget, using a ROC threshold of 0.01 and maximum 1303 
AUC rank of 5,00044,68. The enrichment of epigenomic signatures in cells was performed using default 1304 
parameters, using a maximum AUC rank of 12,320 (10% of the total number of ctx regions), while the 1305 
enrichment of epigenomic regions within topics was done with default parameters. Coverage heatmaps 1306 
were done using deepTools (v3.3.1). For identifying differentially enriched motifs between groups of 1307 
regions, we first scored the ctx regions in the groups of interest with the 24,454 PWMs available in the 1308 
cisTarget motif collection using Cluster-Buster104, with the options–m 0 –c. Using this matrix, with ctx 1309 
regions as columns, motifs as rows and the value of the best Cis-Regulatory Module (CRM) as value, 1310 
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we performed a Likelihood Ratio test between the region groups of interest, as implemented in MAST 1311 
(v1.4.1). P-values were adjusted using the FDR method.  1312 

Publicly available data used in this work 1313 
 1314 
Eye disc Drop-seq data was obtained from GEO, with GEO accession number GSE115476, while 1315 
dimensionality reduction coordinates and cell labels were retrieved from the supplementary data from 1316 
Ariss et al.43. Raw data from Optix-GFP+ single-cell and bulk ATAC-seq, Grh ChIP-seq and 21 bulk 1317 
ATAC-seq profiles from were retrieved from GEO, with GEO accession number GSE102441. Raw 1318 
Sine Oculis ChIP-seq data was retrived from GEO, with GEO accession number GSE52943. Atonal 1319 
Gain-Of-Function and Loss-Of-Function data was retrieved from GEO, with GEO accession number 1320 
GSE16713. Differential expressed genes between GMR+ FAC sorted cells and GMR- FAC sorted cells 1321 
and onecutx562 versus WT was retrieved from the supplementary materials from Potier et al.67.Glass, 1322 
Prospero, Nerfin-1 and l(3)neo38 ChIP-seq profiles were retrieved from ENCODE, with the following 1323 
experiment IDs, respectively: ENCSR472URU, ENCSR682YQM, ENCSR335NNR and 1324 
ENCSR643EOU. ATAC-seq profiles on different embryonic domains were obtained from GEO, with 1325 
GEO accession number GSE118240. 1326 
 1327 
Resource description 1328 
 1329 
SCope 1330 
 1331 

• Ariss - WT 11416 cells 1332 
o EAD_Ariss_WT_Seurat_SCENIC: Loom file containing dimensionality reductions (as 1333 

shown by Ariss et al., based on analysis with Seurat, and based on pySCENIC 1334 
regulons), gene expression and regulon enrichment from pySCENIC (with regulons 1335 
derived from pySCENIC in this data set) from the Drop-seq eye disc data set from 1336 
Ariss et al.43. This data set contains 11,416 cells, 7,801 genes and 140 regulons. The 1337 
labels given by Ariss et al. ('Ariss labels') and the labels transferred with Seurat from 1338 
the 10X scRNA-seq data ('10X labels') are given as metadata. 1339 

o EAD_Ariss_WT_Seurat_SCENIC_regulonsfrom10X: Loom file containing 1340 
dimensionality reductions (as shown by Ariss et al., based on analysis with Seurat, and 1341 
based on pySCENIC regulons), gene expression and regulon enrichment from 1342 
pySCENIC (with motif-based regulons derived from pySCENIC in our 10X data set) 1343 
from the Drop-seq eye disc data set from Ariss et al.43. This data set contains 11,416 1344 
cells, 7,801 genes and 159 regulons. The labels given by Ariss et al. ('Ariss labels') and 1345 
the labels transferred with Seurat from the 10X scRNA-seq data ('10X labels') are given 1346 
as metadata. 1347 

 1348 
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• scATAC-seq - 15387 cells 1349 
o Gene 1350 

§ EAD_scATAC_AggSumPredictiveDistribution_Gene_Regulons: Loom file 1351 
containing the cisTopic cell-Topic tSNE coordinates, gene activity scores 1352 
based on the aggregation of region probabilities around the TSS (5kb plus 1353 
introns, multiplied by 106) and regulon enrichment (on the gene activity score 1354 
matrix, using the regulons derived from the analysis with pySCENIC in the 1355 
10X scRNA-seq data set). This data set contains 15,387 cells, 16,892 genes 1356 
and 175 regulons. The labels transferred from the 10X scRNA-seq data ('RNA 1357 
labels') are given as metadata. 1358 

§ EAD_scATAC_AggSumPredictiveDistribution_Gene_Topics: Loom file 1359 
containing the cisTopic cell-Topic tSNE coordinates, gene activity scores 1360 
based on the aggregation of region probabilities around the TSS (5kb plus 1361 
introns, multiplied by 106) and topic enrichment. This data set contains 15,387 1362 
cells, 16,892 genes and 49 topics. The labels transferred from the 10X scRNA-1363 
seq data ('RNA labels') are given as metadata. 1364 

§ EAD_scATAC_AggSignedImportancePredictiveDistribution_Gene_Regulon1365 
ss: Loom file containing the cisTopic cell-Topic tSNE coordinates, gene 1366 
activity scores based on the aggregation of region probabilities based on the 1367 
enhancer-to-gene links (multiplied by 108) and regulon enrichment (on the 1368 
gene activity score matrix, using the regulons derived from the analysis with 1369 
pySCENIC in the 10X scRNA-seq data set). This data set contains 15,387 1370 
cells, 8,347 genes and 175 regulons. The clusters derived from SNN clustering 1371 
with Seurat on the topic-cell matrix ('Seurat_res_1.2') are given as metadata. 1372 

§ EAD_scATAC_AggSignedImportancePredictiveDistribution_Gene_Topics: 1373 
Loom file containing the cisTopic cell-Topic tSNE coordinates, gene activity 1374 
scores based on the aggregation of region probabilities based on the enhancer-1375 
to-gene links (multiplied by 108) and topic enrichment. This data set contains 1376 
15,387 cells, 8,347 genes and 49 topics. The clusters derived from SNN 1377 
clustering with Seurat on the topic-cell matrix ('Seurat_res_1.2') are given as 1378 
metadata. 1379 

 1380 
o Janelia 1381 

§ EAD_scATAC_AggSumPredictiveDistribution_JaneliaRegions_Topics: 1382 
Loom file containing the cisTopic cell-Topic tSNE coordinates, Janelia region 1383 
probabilities based on the aggregation of the probabilities of the ctx regions 1384 
that overlap with the Janelia enhancer (multiplied by 106) and topic 1385 
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enrichment. This data set contains 15,387 cells, 740 Janelia regions and 49 1386 
topics. The labels transferred from the 10X scRNA-seq data ('RNA labels') and 1387 
the clusters derived from SNN clustering with Seurat on the topic-cell matrix 1388 
('Seurat_res_1.2') are given as metadata. 1389 

o Ctx Regions 1390 
§ EAD_scATAC_PredictiveDistribution_CtxRegions_Topics: Loom file 1391 

containing the cisTopic cell-Topic tSNE coordinates, ctx region probabilities 1392 
(multiplied by 106) and topic enrichment. This data set contains 15,387 cells, 1393 
129,553 ctx regions and 49 topics. The labels transferred from the 10X scRNA-1394 
seq data ('RNA labels') and the clusters derived from SNN clustering with 1395 
Seurat on the topic-cell matrix ('Seurat_res_1.2') are given as metadata. 1396 

 1397 
• scRNA-seq - 3531 cells 1398 

o EAD_scRNAseq_LinkBasedandSeurat: Loom file containing dimensionality 1399 
reductions (based on analysis with Seurat and based on pySCENIC regulons), gene 1400 
expression and link-based regulon enrichment (regulons formed by performing the 1401 
motif enrichment step of the SCENIC44 workflow on the regions linked to each gene). 1402 
This data set contains 3,531 cells, 8,744 genes and 161 regulons. The labels given by 1403 
cell clustering with Seurat ('Seurat_res_1.2') and the experimental run ('Experiment 1404 
run') are given as metadata. 1405 

o EAD_scRNAseq_SCENICandSeurat: Loom file containing dimensionality reductions 1406 
(based on analysis with Seurat and based on pySCENIC regulons), gene expression 1407 
and pySCENIC regulon enrichment (motif and ChIP-seq based). This data set contains 1408 
3,531 cells, 8,744 genes and 175 regulons. The labels given by cell clustering with 1409 
Seurat ('Seurat_res_1.2'), the experimental run ('Experiment run'), the labels transferred 1410 
from Ariss et al. ('Ariss labels'), and the labels transferred from the scATAC-seq data 1411 
('ATAC labels') are given as metadata. 1412 

o EAD_scRNAseq_SCENICandSeurat_regulonsfromAriss: Loom file containing 1413 
dimensionality reductions (based on analysis with Seurat and based on pySCENIC 1414 
regulons), gene expression and pySCENIC regulon enrichment (using the regulons 1415 
derived from Ariss et al.). This data set contains 3,531 cells, 8,744 genes and 140 1416 
regulons. The labels given by cell clustering with Seurat ('Seurat_res_1.2'), the 1417 
experimental run ('Experiment run'), the labels transferred from Ariss et al. ('Ariss 1418 
labels'), and the labels transferred from the scATAC-seq data ('ATAC labels') are given 1419 
as metadata. 1420 

 1421 
 1422 
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• Virtual EAD - 5370 cells 1423 
o Janelia 1424 

§ Janelia_Accessibility_AggSumProb: Loom file containing the virtual eye-1425 
antennal disc coordinates and the Janelia region probabilities based on the 1426 
aggregation of the probabilities of the ctx regions that overlap with the Janelia 1427 
enhancer (multiplied by 106). This data set contains 5,526 cells and 740 Janelia 1428 
regions. The labelling of the cells in the virtual eye-antennal disc ('Zone') are 1429 
given as metadata. 1430 

§ Janelia_Functionality_ImageRegistration: Loom file containing the virtual 1431 
eye-antennal disc coordinates and the Janelia enhancer activity patterns 1432 
mapped from the images into the virtual eye-antennal disc. This data set 1433 
contains 5,058 cells and 454 Janelia mapped images (corresponding to 390 1434 
Janelia enhancers). The labelling of the cells in the virtual eye-antennal disc 1435 
('Zone') are given as metadata. 1436 

o ATAC 1437 
§ Pseudotime-based_ATAC_VE_CtxRegions+Topics: Loom file containing the 1438 

virtual eye-antennal disc coordinates, the ctx region probabilities (multiplied 1439 
by 106) and the topic enrichment. This data set contains 5,526 cells, 129,553 1440 
ctx regions and 49 topics. The labelling of the cells in the virtual eye-antennal 1441 
disc ('Zone') and the cell type labels based on the scATAC-seq data ('Cell type') 1442 
are given as metadata. 1443 

o  RNA 1444 
§ Pseudotime-based_RNA_VE: Loom file containing the virtual eye-antennal 1445 

disc coordinates, gene expression and the pySCENIC regulon enrichment 1446 
(derived from the 10X scRNA-seq data). This data set contains 5,370 cells, 1447 
8,744 genes and 175 regulons. The labelling of the cells in the virtual eye-1448 
antennal disc ('Zone'), the cell type labels based on the scRNA-seq data ('Cell 1449 
type'), the labels transferred from Ariss et al. ('Ariss labels') and from the 1450 
scATAC-seq data ('ATAC labels') are given as metadata. 1451 

 1452 
UCSC 1453 
 1454 

• Custom tracks 1455 
o Bulk ATAC DGRP regions: Bed file containing the 38,179 regions found accessible 1456 

across the 50 bulk ATAC-seq profiles from Drosophila inbred lines. 1457 
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o Color - Standarized R2G Coor+Genie3 50Kb: BigInteract track containing links 1458 
between enhancers and target genes. The track is colored by the sign of the link, which 1459 
can be positive (green) or negative (red). Default threshold: 0. 1460 

o Ctx_regions: Bed file containing the 129,553 ctx regions accessible in the eye-antennal 1461 
disc in the Drosophila genome. 1462 

o Janelia lines: Bed file containing the coordinates of the enhancers tested by the Janelia 1463 
FlyLight Project (with Janelia line ID). 1464 

o Optix-GFPVSRest_logFC1: Bed file containing the regions differentially accessible in 1465 
the Optix-GFP+cells compared to the Optix-GFP- cells (with p-value < 0.05 and logFC 1466 
> 1) 1467 

o RedFly (BED): Bed file containing the coordinates of the enhancers contained in the 1468 
Redfly database109. 1469 

o Score - Standarized R2G Coor+Genie3 50Kb: BigInteract track containing links 1470 
between enhancers and target genes. The transparency of the links represents the 1471 
Random Forest importance of the enhancer-to-gene link. Default threshold: 0. 1472 

o So ChIPseq peaks: Sine oculis (so) ChIP-seq peaks determined by MACS2 peak calling 1473 
after remapping the data from Jusiak et al.110 to the 3rd 2017 FlyBase release 1474 
(D. melanogaster r6.16) genome.  1475 

• Eye-Antennal Disc Hub (Bravo et al, 2019) @ aertslab.org 1476 
o 10X topics: Topic bigwig files representing the region-topic scores obtained from the 1477 

analysis of the 10X scATAC-seq with cisTopic20 (v0.2.2). 1478 
o Aggregate scATAC - Cell sorting: Aggregate profiles from the FAC-sorted Optix-1479 

GFP+ and sens-GFP+ cells as normalized bigwig files. 1480 
o ATAC DGRP - Eye disc: Bulk ATAC-seq profiles from the 50 DGRP lines used in 1481 

this study as normalized bigwig files. 1482 
o ATAC Aggr EAD Clusters: Cell-type specific (based on clustering on the topic-cell 1483 

matrix) aggregate profiles from the 10X scATAC-seq analysis as normalized bigwig 1484 
files. 1485 

o Bulk ATAC - Cell sorting: Bulk ATAC-seq profiles from the FAC-sorted Optix-GFP+ 1486 
and sens-GFP+ cells as normalized bigwig files. 1487 

o ENCODE ChIP-seq: Normalized bigwigs from the ChIP-seq experiments of Prospero, 1488 
Nerfin-1 and l(3)neo38 (and controls) retrieved from ENCODE. 1489 

o ENCODE Normalized ChIPseq: Control normalized bigwig files from the ChIP-seq 1490 
experiments of Prospero, Nerfin-1 and l(3)neo38 retrieved from ENCODE. 1491 

o Grh ChIP-seq: Normalized bigwigs from the Grainyhead ChIP-seq experiments 1492 
performed by Jacobs et al.12 after remapping to the 3rd 2017 FlyBase release 1493 
(D. melanogaster r6.16) genome.  1494 
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o Predictive accessibility: Barchart track representing the region-cell probabilities 1495 
(multiplied by 106) per cell type for each region. 1496 

o RNA Aggr EAD Clusters: Cell type specific (based on Seurat clustering) normalized 1497 
bigwigs containing 10X scRNA-seq reads. 1498 

o scRNA Gene expression gene: Barchart track representing the normalized UMI counts 1499 
per cell type for each gene. 1500 

o scRNA Gene expression transcript: Barchart track representing the normalized UMI 1501 
counts (multiplied by 102) per cell type for each transcript. 1502 

o so ChIP-seq: Normalized bigwigs from the Grainyhead ChIP-seq experiments 1503 
performed by Jusiak et al.110 after remapping to the 3rd 2017 FlyBase release 1504 
(D. melanogaster r6.16) genome.  1505 

o TF perturbations: Bulk ATAC-seq profiles from the GMR-GAL4 UAS-TF (and 1506 
control) lines included in the genetic screen. 1507 

Data availability 1508 

 1509 
The data generated for this study have been deposited in NCBI's Gene Expression Omnibus and are 1510 
accessible through GEO Series accession number GSE141590. We also provide a SCope session at 1511 
http://scope.aertslab.org/#/Bravo_et_al_EyeAntennalDisc with the processed single-cell data and a 1512 
UCSC hub (http://ucsctracks.aertslab.org/papers/Bravo_et_al_EyeAntennalDisc/hub.txt) and session at 1513 
http://genome.ucsc.edu/s/cbravo/Bravo_et_al_EyeAntennalDisc with the processed aggregate and bulk 1514 
ATAC-seq profiles, enhancer-to-gene links and ChIP-seq tracks, among others. 1515 
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