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Abstract

Eukaryotes make up a large fraction of micro-
bial biodiversity. However, the field of metage-
nomics has been heavily biased towards the
study of just the prokaryotic fraction. This
focus has driven the necessary methodolog-
ical developments to enable the recovery
of prokaryotic genomes from metagenomes,
which has reliably yielded genomes from
thousands of novel species. More recently, mi-
crobial eukaryotes have gained more atten-
tion, but there is yet to be a parallel explo-
sion in the number of eukaryotic genomes re-
covered from metagenomic samples. One of
the current deficiencies is the lack of a uni-
versally applicable and reliable tool for the es-
timation of eukaryote genome quality. To ad-
dress this need, we have developed EukCC, a
tool for estimating the quality of eukaryotic
genomes based on the dynamic selection of
single copy marker gene sets, with the aim
of applying it to metagenomics datasets. We
demonstrate that our method outperforms cur-
rent genome quality estimators and have ap-
plied EukCC to datasets from two different
biomes to enable the identification of novel
genomes, including a eukaryote found on the
human skin and a Bathycoccus species ob-
tained from a marine sample.

Introduction

The past two decades have seen a dramatic
advancement in our understanding of the mi-
croscopic organisms present in environments
(known as microbiomes) such as oceans, soil and
host-associated sites, like the human gut. Most
of this knowledge has come from the applica-
tion of modern DNA sequencing techniques to
the collective genetic material of the microorgan-
isms, using methods such as metabarcoding (am-
plification of marker genes) or metagenomics
(shotgun sequencing). Based on the analysis of
such sequence data, it is thought that up to 99 %
of all microorganisms are yet to be cultured
(Rinke et al. 2013).

To date, the overwhelming number of
metabarcoding and metagenomics studies have
focused on the bacteria that are present within
a sample. However, viruses and eukaryotes are
also important members of the microbial com-
munity, both in terms of number and function
(Paez-Espino et al. 2016; Carradec et al. 2018;
Olm et al. 2019; Karin et al. 2019). Indeed, the
unicellular protists and fungi are estimated to
account for about ∼17 % of the global microbial
biomass. Within the microbial eukaryotic
biomass, the genetically diverse unicellular
organisms known as protists account for as
much as ∼25 % (Bar-On et al. 2018). Today,
the increasing number of completed genomes
has revealed that the “protists” classification
encompasses a number of divergent sub-clades:
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animals and some protists are encompassed
in the Opisthokonta clade; others are grouped
into the Amoebozoa or (T)SAR ((Telonemids),
Stramenopiles, Alveolates, and Rhizaria) clades,
or into further groups. However, the exact root
of the overall eukaryotic tree and the number
of primary clades remains a topic of discussion
(Baldauf 2003; Burki 2014; Burki et al. 2019).

Despite the increase in the number of com-
plete and near complete genomes, metabarcod-
ing and metagenomic approaches that have in-
cluded the analysis of microbial eukaryotes have
demonstrated that the true diversity of protists
is far greater than that currently reflected in
the genomic reference databases (such as Ref-
Seq or ENA). For example, a recent estimate
based on metabarcoding sequencing suggests
that 150,000 eukaryotic species exist in the
oceans alone (Vargas et al. 2015), but only 4,551
representative species have an entry in GenBank
(15. Nov 2019). Thus, if the functional role of a
microbiome is to be completely understood, we
need to know what these as yet uncharacterised
organisms are and the functional roles they are
performing.

Currently, one of the best approaches for un-
derstanding microbiome function is through
the assembly of shotgun reads (usually 200-
500 bp long) to obtain longer contigs (typi-
cally in the range of 2000-500,000 bp). These
contigs provide access to complete proteins,
which may then be interpreted within the
context of surrounding genes. In the last
few years, it has become commonplace to ex-
tend this type of analysis to recover puta-
tive genomes, termed metagenome assembled
genomes (MAGs). MAGs are generated by group-
ing contigs into sets that are believed to have
come from a single organism – a process known
as binning. However, even after binning MAGs,
they vary in their completeness and can be
fragmented, due to a combination of biologi-
cal (e.g. abundance of microbes), experimental
(e.g. depth of sequencing) and technical (e.g. al-
gorithmic) reasons. Furthermore, the computa-
tional methods used for binning the contigs can
sometimes fail to distinguish between contigs
that have come from different organisms, lead-
ing to a chimeric genome (termed contamina-
tion). As highlighted above, reference databases

are incomplete, so estimating the quality of a
MAG in terms of completeness and contamina-
tion can not rely on genomic comparisons. In
the absence of a reference genome, quality es-
timates for MAGs have used universal single
copy marker genes (SCMGs) (Parra et al. 2007;
Mende et al. 2013; Simão et al. 2015; Parks et al.
2015). As these genes are expected to only oc-
cur once within a genome, comparing the num-
ber of SCMGs found within a binned genome to
the number of expected marker genes provides
an estimation of completeness, while additional
copies of a marker gene can be used as an indi-
cator of contamination. After such evaluations,
binned genomes achieving a certain quality can
be classified as either medium or high quality
(Bowers et al. 2017).

Due to biases in sampling and extraction
methods, the majority of MAGs produced to
date correspond to prokaryotic organisms. For
prokaryotic MAGs, CheckM (Parks et al. 2015)
is the most widely used tool to estimate com-
pleteness and contamination, although other ap-
proaches have also been used (Pasolli et al. 2019)
and individual sets of prokaryotic SCMGs are
also provided by BUSCO (Simão et al. 2015; Wa-
terhouse et al. 2018) as well as by anvi’o (Eren et
al. 2015). However, even with size fractionation
of samples to enrich for prokaryotes prior to li-
brary preparation, eukaryotic cells frequently re-
main in the samples, with some eukaryotic DNA
recovered as MAGs (Delmont et al. 2018; West
et al. 2018), while others use size fractionation
specifically to enrich for eukaryotes(Karsenti et
al. 2011; Carradec et al. 2018).

As with the quality estimation of bacterial
MAGs, SCMGs have been used to assess eu-
karyotic isolate genomes. CEGMA (Parra et al.
2007) used 240 universal single copy marker
genes identified from six model organisms to es-
timate genome completeness, which was then
superseded by BUSCO. The major advance of
BUSCO compared to CEGMA, was the provi-
sion of curated sets of marker genes for sev-
eral eukaryotic and prokaryotic clades, in addi-
tion to the single universal eukaryotic marker
gene set. While BUSCO (version 3) provides sets
to estimate completeness of eukaryota, protists,
plants and fungi, it remains up to the user to
select which is the most suitable set when as-
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sessing genome quality. Although BUSCO has
been used for quality metric calculation of eu-
karyotic MAGs (West et al. 2018), this manual
selection can be challenging, especially when
dealing with large numbers of genomes from
unknown species. Besides these more univer-
sal approaches, others have focused on certain
clades of Eukaryotes: FGMP (Cissé and Stajich
2019) estimates genome quality of Fungal iso-
late genomes for which it utilises both SCMGs
and also highly conserved regions found within
fungal genomes. For protists, anvi’o provides a
reduced number of profiles from the BUSCO
‘protist’ set to estimate the genome quality of
eukaryotic MAGs (unpublished).

Here we investigate the performance of cur-
rent approaches across different eukaryotic
clades and describe EukCC, an unsupervised
method for the estimation of eukaryotic genome
quality in terms of completion and contamina-
tion, with a particular view of applying this tool
to eukaryotic MAGs.

Results

Evaluation of BUSCO across different
eukaryotic clades

To determine the applicability of BUSCO for
evaluating the quality of eukaryotic MAGs, we
first tested how the more general eukaryotic
BUSCO set performed in terms of assessing the
completeness and contamination for a range
of eukaryotic isolate genomes. Briefly, fungal
and protist genomes were downloaded from the
NCBI Reference Sequence Database (RefSeq)
and estimated using BUSCO in ‘genome mode’,
which employs AUGUSTUS for gene prediction
(Keller et al. 2011), with the eukaryota SCMG set
(‘eukaryota_odb9’). Fungi and protist genomes
were additionally estimated using the fungal
(‘fungi_odb9’) and protist (‘protists_ensembl’)
set respectively. As these genomes are of high
quality and manually curated, it was anticipated
that they should have very high levels of com-
pleteness and minimal levels of contamination.

To understand the overlap between the eu-
karyotic BUSCO set and the selected genomes,
we counted the number of matched BUSCOs
in each taxonomic clade containing at least 3

reference genomes. While BUSCO reports com-
plete, fragmented and duplicated BUSCOs, for
the sake of simplicity we summarized all these
as ‘matched’ BUSCOs (Figure 1 A). One of the
main applications of BUSCO has been the as-
sessment of fungal genomes, which also repre-
sent the most numerous eukaryotic genomes
in the reference databases. Thus, it was unsur-
prising that > 95% of the 303 eukaryotic BUS-
COs were matched in genomes coming from
Ascomycota, Mucoromycota and Basidiomycota.
However, BUSCO performed less well on eu-
karyotic genomes arising from other taxonomic
groups. Notably, the numbers of BUSCOs found
in Amoebozoa genomes varied greatly, with a
median of 88.78 %, but ranging between 69.6 %
for Entamoebidae (number of species, n = 4) to
94.9 % for the four further Amoebozoa families
(n = 6). More surprising was that the Ciliophora
genomes (n = 4) rarely matched BUSCO eukary-
otic marker genes, with a median of 1.16 % of
BUSCOs matched.

We also evaluated the BUSCO protist set in
the same way. Somewhat counterintuitively, us-
ing this more specific set the mean proportion of
matched BUSCOs in Amoebozoa dropped from
88.78 % to 78.37 %, yet increased for Apicom-
plexa from 61.72 % to 68.37 %. In other taxa,
such as Stramenopiles, the range of missing BUS-
COs increased (Figure S1). This suggests that the
use of a more specific BUSCO set can improve
predictions, but does not resolve the problem
of inaccurate estimation of completeness in spe-
cific clades.

To determine if the underestimation in clades
other than fungi is random or caused by sys-
tematic biases, we created a matrix containing
all found, missing, fragmented or complete BUS-
COs in all analysed reference genomes, exclud-
ing Basidiomycota, Mucoromycota and Ascomy-
cota (Figure 1 B, see Methods). We arranged
the columns based on the NCBI taxonomy and
rows using k-modes clustering. Within certain
clades, such as Cryptophyta, Micosporida and
Apicomplexa, the same BUSCOs were often
missing across a large number of species. For
each BUSCO, we evaluated whether it was miss-
ing in at least half the species of a given clade.
Subsequently, when disregarding any BUSCO
missing in at least three clades, the number of
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Figure 1: A) We downloaded eukaryotic RefSeq genomes excluding bilateria and vascular plants,
and ran BUSCO in ‘genome mode’ using the ‘eukaryota_odb9’ set. For each clade we
summarized the number of BUSCO markers matched. For Fungal clades, such as As-
comycota, Mucoromycota and Basidiomycota, most BUSCOs matched a single target –
suggesting 100 % completeness of the reference genomes. However, in other clades a sub-
stantial fraction of BUSCOs were frequently not matched (Apicomplexa, for example).
B) For species not belonging to Fungal clades, we created a matrix using the detailed
BUSCO results. Genomes are sorted taxonomically (using the assigned NCBI taxonomy)
in columns and the result for each BUSCO in rows. The matrix is coloured according to
the BUSCO result, which reports complete, duplicated, fragmented and missing marker
genes. Fragmented hits are reported if only part of the BUSCO was detected. Above
is shown the percentage of duplicated BUSCOs, the number of the RefSeq transcripts
for each genome, the genome size and the GC content. In some clades, there is a clear
relationship between the genome taxonomy and missing and BUSCOs. In the case of
Micosporida and Apicomplexa, but also for Euglenozoa, this relationship is especially
strong.

BUSCOs in the eukaryota set was reduced from
303 to 86.

Taken together, this shows that the BUSCO eu-
karyota set does not perform uniformly across
all eukaryotic clades. Others have observed
similar issues when investigating individual
species or clades (Benites et al. 2019; Hackl et
al. 2019). We also investigated whether factors,
such as genome size, GC content or proteome
size, could account for the bias in matching BUS-
COs, but taxonomic lineage represented the sin-
gle strongest signal.

Influence of Gene Prediction on BUSCO
matches

To understand whether issues with de novo gene
prediction could be the cause of the missing
BUSCO matches, we additionally ran BUSCO
in ‘protein mode’ on the genome protein anno-
tations provided by RefSeq and proteins pre-

dicted using GeneMark-ES (Ter-Hovhannisyan
et al. 2008; Figure S1 C). When running BUSCO
in this mode against RefSeq protein annotations,
the number of matched BUSCOs increased over-
all, indicating that de novo prediction methods
do account for some of the loss of sensitivity.
However, the general pattern of missing markers
across clades remained. Taking Ciliophora as an
extreme example, the median of matched mark-
ers was 1.2 % in ‘genome mode’, which was in-
creased to 76.2 % using RefSeq annotations. For
other clades the differences were less substan-
tial but still observable. For example, in Apicom-
plexa 61.7 % of BUSCOs were matched using
AUGUSTUS, rising to 73.9 % using GeneMark-
ES and 74.2 % with RefSeq annotations. Notably,
GeneMark-ES failed to run on several genomes
of the Cryptophyta and Ciliophora clades, as
well as for the single Rhizaria genome, which
BUSCO estimated in ‘genome mode’ to have close
to 100 % missing markers. The primary reason
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GeneMark-ES did not work for a genome was a
lack of suitable training data: out of six failed an-
notation attempts, five had four or less contigs
included in the training phase of GeneMark-ES.

Establishing specific single copy
marker gene libraries

To more accurately compute quality estimates
for novel genomes, we wanted to define sets of
SCMGs that were comprehensive for microbial
eukaryotes, as well as being both sensitive and
specific. As shown above, BUSCO produces sets
of SCMGs for specific clades which can be more
precise in quality estimation. Building on this
observation, we aimed at defining multiple sets
of SCMGs covering a large range of protists and
fungi. We anticipate that a key use case of the
marker gene library will be the application of
it to poorly characterised genomes, and as such,
the genes are likely to be identified by de novo
prediction. We therefore chose to (re-)annotate
all eukaryotic RefSeq species (not belonging to
bilateria or vascular plants) using GeneMark-ES
generated gene predictions to closely represent
the use case. In addition, this ensures that only
proteins predicted using de novo approaches are
used as marker genes. GeneMark-ES was ap-
plied, as we previously demonstrated that the
tool works well across a large range of species
and generally performs closer to the RefSeq an-
notation benchmark. Additionally, we added all
species that are used as references in UniProtKB.
The resulting proteins were then annotated with
the family-level profile HMMs from PANTHER
14.1 using hmmer (version 3.2). We choose PAN-
THER, as among tested databases it has been
shown to have the largest coverage of the anal-
ysed proteins (Mitchell et al. 2019), and because
the PANTHER profile HMMs model full-length
protein families rather than their constituent
globular domains.

In order to increase paralog separation and
minimise local matches caused by common do-
mains, we aimed to define profile specific bit
score thresholds. To achieve this, we relied on
a taxonomically balanced set of species, across
which, for each profile we identified the bit score
threshold leading to the highest number of sin-
gle copy matches (see Methods).

Thereafter, to define clade specific SCMGs, we
first constructed a reference tree for the given
genomes using 55 widely occurring SCMGs
(from here on termed “reference set”) (see Meth-
ods). In each clade of the tree we checked for
SCMGs with a prevalence of at least 98 %. A set
of marker genes was then defined whenever we
found 20 or more PANTHER families in a clade
matching the aforementioned prevalence thresh-
old. Using this approach, we were able to define
477 SCMG sets across the entire tree. In con-
trast to BUSCO and CEGMA, we were not able
to identify SCMGs applicable to the entire eu-
karyotic kingdom, but found sets applicable to
many subclades. While this is desirable for speci-
ficity, the obvious drawback is knowing which is
the most appropriate set to use – it would be im-
practical to manually assign the most appropri-
ate set (especially if a large number of different
genomes were to be assessed). Thus, we devel-
oped EukCC, a software package to select the
most appropriate SCMGs, and use these to esti-
mate genome quality.

Automatically selecting the appropriate
single copy marker gene set

To select the most specific set of SCMGs for a
novel genome of unknown taxonomic lineage,
EukCC performs an initial taxonomic classifi-
cation by annotating the de novo predicted pro-
teins using the 55 widely occurring SCMGs ref-
erence set. Pplacer (Matsen et al. 2010) is then
applied to phylogenetically contextualise each
match within the reference tree. Tracing each
placement in the tree, EukCC determines the
lowest common ancestor (LCA) node for which
an SCMG set is defined in the database.

As may be expected, while pplacer often
places all sequences in a simple, narrow region
of the reference tree, occasional placements oc-
cur within inconsistent, distantly related clades.
In such cases, no single set of SCMGs may en-
compass all locations. To overcome this, in these
cases, the SCMG set that encapsulates the largest
fraction of the placements is located. While this
process overcomes cases where outlying place-
ments occur due to incorrect or inconsistent
placements, this approach may select an incor-
rect SCMG set if the matches to the reference
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SCMGs from a novel genome can not reliably be
placed in the tree. To help control for this, Eu-
kCC always reports how many profiles are cov-
ered in a set and provides the option of plotting
the placement locations (Figure S5). Thus, in a
situation where a set was chosen that only en-
compasses a fraction of the reference SCMGs, a
more in-depth analysis of this MAG could, and
should, be carried out.

After the initial placement, EukCC assesses
the completeness and contamination in a second
step by annotating all proteins with the profiles
that are expected to be single copy within the
assigned clade. EukCC then reports the fraction
of single copy markers found and the fraction of
duplicated marker genes, corresponding to the
completeness and contamination score, as pro-
vided for prokaryotes by CheckM. Additionally,
EukCC uses the inferred placement to give a sim-
ple phylogenetic lineage estimation based on the
consensus NCBI taxonomy of the species used
to construct the chosen evaluation set.

Comparison of BUSCO to EukCC quality
estimates

Having established new sets of SGMGs and hav-
ing developed EukCC for their selection, we next
evaluated the accuracy of our approach for es-
timating completeness and contamination. To
do so, we used both EukCC and BUSCO to es-
timate the completeness and contamination of
21 RefSeq genomes, from 7 different clades, that
were not used to establish the EukCC SCMGs.
As these were complete genomes, we simulated
varying amounts of completeness and contam-
ination (see Methods). Furthermore, to make
the comparison balanced, we used the taxon-
omy assigned to each genome to select the most
specific BUSCO sets, while letting the EukCC
algorithm dynamically select the SCMGs set
from our library of clade specific SCMGs. As we
showed earlier that the de novo gene prediction
can have an influence on the BUSCO results, we
ran BUSCO using AUGUSTUS as well as in ‘pro-
tein mode’ on GeneMark-ES predicted proteins,
which are also used by EukCC.

When estimating completeness across simu-
lated genomes with no added contamination,
EukCC performed better than BUSCO using ei-

ther AUGUSTUS or GeneMark-ES. BUSCOs es-
timates for simulated genomes with more than
95 % completeness and no contamination were
better when relying on GeneMark-ES, but under-
estimated completeness with a median of 21.0 %
compared to 2.5 % for EukCC (Figure 2 A). It is
worth noting that while the completeness esti-
mates of BUSCO can deviate strongly from the
expected value, the degree of error varied across
different taxonomic groups. For example within
fungi, estimates deviate below 2 % from the ex-
pected value (Figure S2). Across all tested clades
EukCCs completeness estimates are closer to
the expected value than BUSCOs. EukCC per-
formed best for fungi and Alveolates, but under-
estimates completeness for simulated genomes
(≥ 95% completeness, ≤ 5% contamination) of
Amoebozoa and Viridiplantae by 14.2 % and
7.7 % respectively.

To demonstrate EukCCs performance in esti-
mating contamination, we also assessed the con-
tamination estimates against the known contam-
ination rate at increasing levels of genome com-
pleteness (Figure 2 B, Figure S2). Contamina-
tion estimates were most accurate for fungi and
Alvolates in genomes with completeness > 90%
and simulated contamination < 5%, where Eu-
kCC deviates from the expected contamination
estimate by less than 2 %. Overall, EukCC tends
to more frequently overestimate contamination
compared to BUSCO. At lower levels of com-
pleteness (60-80 %), EukCCs contamination es-
timates are less accurate, but as completeness
increases (> 90%), the accuracy of contamina-
tion estimation increases, with a median error of
< 2% for MAGs with contamination below 10 %.
Overall, as genomes include increasing amounts
of contamination, EukCC begins to overestimate
completeness, e.g. by ∼ 5% for Fungal MAGs
with expected completeness 60% < x < 70% and
a contamination of 10% < x < 15% (Figure S2).
This is somewhat to be expected, as there is a
greater chance of finding an expected marker
gene in the contaminating contigs, leading to
inflated completeness. To investigate this, we
added contamination in the form of random
DNA to the MAGs and again estimated the com-
pleteness and contamination. In this case the
contamination estimate is not affected by the
added contamination, confirming the hypothe-
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Figure 2: We compared EukCC to BUSCO using a set of 21 genomes from RefSeq belonging to
alveolates, amoebozoa, apusozoa, fungi, rhizaria, stramenopiles and viridiplantae. We
fragmented the genomes and added varying amounts of contamination from another
genome in the same clade. We then ran BUSCO and EukCC to estimate completeness
and contamination. The red line highlights zero percent deviation from the ground truth.
A) We defined completeness in BUSCO as 100 % minus missing BUSCOs. For genomes
with a contamination between 0-5 %, EukCC underestimated completeness with a me-
dian of 2.5 %, while BUSCO underestimates the completeness across all genomes with a
median above 20 %. With increasing amounts of contamination, EukCC underestimates
more rarely. Only when genome completeness falls below 50 % and/or contamination
exceeds 15 % does EukCC consistently overestimate completeness. B) To evaluate con-
tamination we counted the number of duplicated BUSCOs or marker genes (in the case of
EukCC). For genomes with 0-5 % contamination and high completeness (> 90%) EukCC
overestimates contamination by below 5 %. With increasing amounts of contamination,
EukCC tends to underestimate contamination, but outperforms BUSCO, which consis-
tently underestimates contamination by a larger fraction.

sis as to the source of the overestimate.

To demonstrate that the EukCC SCMGs
within this evaluation are distributed evenly
across the entire genome, we randomly sampled
5 kb fragments and computed the Pearson cor-
relation between the sampled size and the re-
covered marker genes for all species used within
this benchmark. All sets used in this test showed
linearity with a Pearson correlation coefficient of

at least 0.95, indicating a uniform distribution
of the marker genes across the genome.

As we could see a difference between BUSCO’s
performance when using GeneMark-ES com-
pared to AUGUSTUS, we investigated how well
the GeneMark-ES predicted proteins overlap
with annotations from RefSeq. For a taxonom-
ically balanced subset of 89 eukaryotic genomes,
we predicted proteins de novo using GeneMark-
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ES and cross referenced SCMGs used by EukCC
against RefSeq annotated sequences from the
same species using DIAMOND (Buchfink et al.
2015; (see Methods). We then generated a pair-
wise alignment between the predicted (query)
protein and the best hit from the reference set
and counted the gaps (irrespective of length)
in both the reference and the query. Pairwise
alignments with few gaps generally involve pro-
teins of the same length. In the relatively few
cases where there were a larger number of gaps
(>10 gaps), these were introduced because the
GeneMark-ES proteins were smaller compared
to RefSeq, suggesting that GeneMark-ES does
miss a small subset of exons. Despite this, the
assigned RefSeq proteins and the corresponding
GeneMark-ES proteins were found to have a gen-
erally similar length distribution. Together this
suggests that the SCMGs chosen by EukCC and
predicted by GeneMark-ES are similar to the an-
notations in RefSeq (Figure S4).

Across all simulated genomes, EukCC could
estimate genome quality starting from a com-
pleteness of around 50 percent. Genomes less
complete than this, were often not able to
be processed using the self training mode of
GeneMark-ES. In addition, GeneMark-ES failed
to predict proteins for two Cryptophyta species,
which were excluded from the benchmark.
BUSCO with AUGUSTUS predicted an overall
completeness of 3 and 3.6 % for these genomes.

In this benchmark we found that BUSCO
tends to underestimate contamination in
genomes of high completeness (Figure S2) and
underestimates completeness across all tested
clades, except fungi. Meanwhile, EukCC tends
to underestimate completeness and overesti-
mate contamination (albeit at low rates), which
leads to more conservative, yet more accurate
genome quality estimates.

Application of EukCC for the evaluation
of MAG quality

Having established the utility of EukCC on the
simulated benchmark, we applied it to metage-
nomic datasets. As a first example, we investi-
gated samples from the skin microbiome, a rela-
tively well characterised microbiome, where the
community has low diversity and is known to

include many Fungal species, many of which
have been isolated and their genomes sequenced
(Byrd et al. 2018; Wu et al. 2015). These fea-
tures provided the best chance of producing de
novo assembled eukaryotic MAGs for which we
could estimate the quality using EukCC and in-
dependently verify their quality using reference
genomes. Furthermore, given that BUSCO per-
forms well for fungal genomes, this would pro-
vide additional validation of the EukCC results.

We retrieved the sequencing data for the
largest publicly available human skin micro-
biome study (accession PRJNA46333, Oh et al.
2014; Oh et al. 2016), which comprises ∼ 4,000
individual sequencing runs, from which 1483
runs can be assigned to 15 individuals. Fol-
lowing assembly with metaSPAdes (Nurk et al.
2017) and binning with CONCOCT (Alneberg
et al. 2014; see Methods), 1573 of the assembled
runs produced bins, generating 33,879 bins in
total. As these bins were expected to be a mix-
ture of bacterial and eukaryotic genomes (Find-
ley et al. 2013; Tsai et al. 2016), a top level classi-
fication was performed of all bins using EukRep
(West et al. 2018) to identify any bin containing
at least 1 Mb of predicted eukaryotic DNA, re-
ducing the number of bins from 33,879 to 279
(with the bins hereafter referred to as a MAG).

Using EukCC we could predict the MAG qual-
ity for 109 out of the 279 MAGs. We then as-
signed reference genomes to as many MAGs as
possible, by finding the closest GenBank entry
for each based on Mash distances (Ondov et
al. 2016; (see Methods). 95.4 % of the MAGs
(104 out of 109) could be assigned to a fun-
gal reference genome with a Mash distance <
0.1, corresponding to average nucleotide iden-
tity (ANI) of ∼ 90% or above. We compared
the alignment fraction of the reference to the
predicted completeness of EukCC for all MAGs.
For those MAGs that could be aligned to a ref-
erence genome with an ANI > 95% and had a
predicted contamination below 5 % and a com-
pleteness > 50%, the median difference between
alignment fraction and predicted completeness
was 3.6 % (Figure S3 B).

We then computed completeness estimates
for all MAGs using BUSCO (fungi set) and
FGMP (another Fungal genome quality estima-
tor) (Cissé and Stajich 2019). Using the genome
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based completeness estimation from the genome
alignments, described earlier, as a true estimate
of completeness for each MAG, we compared
this to the corresponding completeness esti-
mates from each of the three tools. BUSCO and
EukCC assigned similar values of completeness
to each MAG, while FGMP had a wider spread:
FGMP overestimated completeness with a me-
dian of 16.2 %, BUSCO underestimated com-
pleteness with a median of 8.5 %, while Eu-
kCC showed the lowest deviation, underesti-
mating completeness with a median of 3.1 %
(Figure S3 D).

Next, we removed the redundancy between
the MAGs (based on the assignment to the same
reference genomes and retaining the most com-
plete MAG, with a contamination < 5%), This
yielded a non-redundant set of 5 MAGs, corre-
sponding to Malassezia restricta (with a EukCC
reported completeness of 92.84 % and a con-
tamination of 1.38 %), M. globosa (completeness
83.43 % and contamination 2.25 %), M. sympodi-
alis (completeness 85.56 % and contamination
0.79 %), the unclassified M. sp. (completeness
83.05 % and contamination 2.23 %) and M. sloof-
fiae (completeness 81.21 % and contamination
2.37 %). The average nucleotide identity (ANI)
to the respective reference genome was above
98 % for all MAGs but M. sp. (ANI 93.9 %).

We found two additional MAGs that we could
not assign to any known Malassezia species, but
were identified by EukCC as likely to belong to
the Malasazzia genus. We computed the mash
distance between both MAGs and determined
that they belong to the same unknown species
(mash distance of 0.004). After dereplication,
the representative MAG was estimated to have
a completeness of 87.71 % and a contamina-
tion of 1.18 %. Wu et al. (2015) reported that
Malassezia, in contrast to other Basidiomycetes,
should contain the gene family that matches the
Pfam entry DUF1214 (Pfam accession PF06742).
We could verify the presence of this gene fam-
ily in all reference Malassezia genomes except
M. japonica and M. obtusa. We could also find
this gene family in the MAGs assigned to M.
restricta, M. globosa, M. sloofia and M. sympo-
dialis, but not in the MAG lacking a species
match nor in the MAG assigned to M. sp.. As
both MAGs are predicted to be incomplete, this

protein family could be missing by chance or
due to misclassification of the MAGs. To ver-
ify if the lineage estimation from EukCC, as-
signing all MAGs to Malassezia genus, as well
as the mash assignment, we identified SCMGs
present in all Malassezia as well as in Saccha-
romyces cerevisiae, Piloderma croceum and Usti-
lago maydis. We used members of these pro-
tein families to build a tree that included all
recovered non-redundant MAGs and all repre-
sentative genomes from the Malassezia clade,
as well as the aforementioned fungi. In the re-
sulting tree, all MAGs cluster next to or close
to their assigned reference genome. The tree re-
capitulates the three cluster structure first de-
scribed by Wu et al. (2015). The MAG repre-
senting an unknown species is located within
the Malassezia clade, and might be a member of
clade B, confirming the taxonomic assignment
by Mash and EukCC (Figure 3 A).

To investigate the prevalence of the five recov-
ered MAGs, we aligned the reads from 1483 skin
metagenomes belonging to 15 individuals to the
MAGs and computed the Reads Per Kilobase of
transcript per Million mapped reads (RPKM) of
unique reads for samples if 30 % of the target
MAG was covered. Using this approach, we iden-
tified M. globosa, M. sp. and M. restricta in all
individuals of this study (n = 15). The novel
Malassezia species was present in 4 different
individuals, which was more prevalent than M.
sloofia (n = 2) and close to the prevalence of M.
sympodialis (n = 6) (Figure 3 B).

We then inspected the potentially novel
Malassezia species genome using anvi’o refine
(Eren et al. 2015) and identified three contig
clusters (Figure 3 C). Each subcluster was tax-
onomically analysed using matches to Uniref90
and could be associated to the genus Malassezia
with a majority vote of at least 60 % of the sam-
pled proteins (see Methods). We also looked at
the density of marker genes in each subclus-
ter. With a density of 14.8 % completeness per
Mb DNA, subcluster C contributes 72.8 % of
absolute completeness and is the most marker
gene rich cluster, compared to B (8 %/Mb) and
A (5 %/Mb). While cluster A contigs have a
lower GC content than the other anvi’o clusters
and a lower density of marker genes, the taxo-
nomic profile still suggests that it belongs to the
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Figure 3: We assembled 1573 metagenomes and could recover almost complete MAGs of M. glo-
bosa, M. restricta, M. sp., M. sloofiae and M. sympholidalis. Additionally we recovered a
Malassezia MAG with no known matching species. A) Using four genes occurring in
single copy in all representative Malassezia species, in the recovered MAGs as well as in
S. cerevisiae and two species of Basidiomycota, we constructed a phylogenetic tree with
MAFFT and FastTree2. The tree recapitulates the clustering suggested by Wu et al. (2015),
consisting of three clusters A, B and C. All recovered MAGs cluster next or close to their
assigned species (bold). The MAG representing the unknown species (green) is clustered
within the Malassezia clade, confirming the previous annotation. B) For each MAG we
counted the RPKM if more than 30 % of the genome was present in a sample. Using
this approach, we could detect M. globosa, M. restricta and M. sp. across all individual
subjects. The less prevalent M. sloofiae and M. sympholidalis could only be found in 2
and 6 individuals, respectively. The novel MAG could be found in four subjects. C) We
analysed the MAG using anvi’o’s refine method. The clustering suggests a splitting into
two main clusters A+B and C. While A has a lower GC content than the other clusters,
all three clusters could be annotated as Malasezzia using UniRef90.

genus Malassezia. Despite the differences in GC
content and gene density, we decided to keep
cluster A in the final MAG based on the consis-
tency of the taxonomic assignments. However
this cluster only contributes to 3.7 % of the to-
tal completeness of the genome, so if it were to
be omitted this would still represent a largely
complete genome.

Applying EukCC to a Bathycoccus MAG
from TARA Ocean data

Having established that EukCC quality esti-
mates were accurate in a well characterized com-
munity, we then tested it on samples in which
we expect a diverse range of eukaryotes, beyond
fungi. To do so, we focussed on the eukaryotic
enriched samples (size fractionated samples in
the range 0.5 µm to 2 mm (Protists size frac-

tion, study: PRJEB4352)) from the TARA Oceans
project (Carradec et al. 2018). As a prelude to in-
vestigating eukaryotes from this biome we ran-
domly selected 10 out of the 912 available runs.

We assembled the samples using metaSPAdes
and binned the resulting contigs using CON-
COCT. After screening for eukaryotic bins us-
ing EukRep, we ran EukCC in default mode.
Among the bins associated with ERR1726523,
we identified a 13 Mb bin that EukCC estimated
to have a completeness of 87.62 % with a con-
tamination of 0.32 %. EukCC inferred a taxo-
nomic placement in the order Mamiellales (green
algae). We compared this MAG to eukaryotic
genomes in GenBank using Mash, and found
the closest match to Bathycoccus sp. TOSAG39-
1 (GCA_900128745.1, 10 Mb), with a Mash dis-
tance of 0.04. The taxonomy of this genome con-
firmed the EukCC inferred lineage and chosen
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SCMG set. We then aligned the MAG to this ref-
erence using dnadiff: in a pairwise alignment
52.01 % of the MAG covered 78.97 % of the refer-
ence genome with an ANI of 96.08 %. The identi-
fied reference genome was published by Vannier
et al. (2016) by merging four single-cell ampli-
fied genomes (SAGs). Vannier et al. (2016) esti-
mated their SAG to be 64 % complete using eu-
karyotic core genes from CEGMA. Using BUS-
COs chlorophyta set we estimated the SAG to
be 47.4 % complete, with 4.8 % marker genes
duplicated. EukCC estimates the SAG to be
59.65 % complete, slightly lower than the orig-
inal estimation but higher than that suggested
by BUSCO. However, EukCC indicated 14.04 %
contamination, which may have resulted from
the merging of the SAGs.

The reported MAG has a scaffold N50 of
18.534 KB (contig N50: 10,754) and a scaffold
size of 13.1 MB (1,097 scaffolds, 1,703 contigs).
This compares favorably against TOSAG39-1
which has a N50 of 14,082 (contig N50: 13,604)
and a scaffold size of 10.1 Mb (2,118 scaffolds,
2,398 contigs). We evaluated the new MAG us-
ing BUSCOs chlorophyta set, which suggested
the MAG to be 65.6 % complete with only 4
BUSCOs duplicated (0.2 %). While this estimate
is 22 % lower than EukCCs proposed complete-
ness of 87.62 %, it still shows an improvement of
at least 10 % and a notable reduction in contam-
ination compared to the published TOSAG39-1
genome. To check for assembly and binning er-
rors, we again analysed the MAG using the bin
refinement method in anvi’o (Figure S5) : the
anvi’o clustering divides the bin into two main
clusters. Both clusters share similar GC content
and coverage. From each cluster we inferred
the taxonomic annotation by comparing a sub-
sample of up to 200 proteins against Uniref90.
For all analysed clusters the consensus lineage
ended at the genus Bathycoccaceae, indicating a
consistent MAG with no significant contamina-
tion.

Discussion

Microbial eukaryotes represent a largely unex-
plored area of biodiversity. The use of modern
genomic and metagenomic approaches are be-

ginning to provide access to the genetic com-
position of these hitherto unknown organisms.
However, in this study we have demonstrated
that widely used tools for estimating eukaryotic
genome quality (completeness and contamina-
tion) do not work uniformly across all microbial
eukaryotes, which limits their application – for
example within metagenomic pipelines.

Our results also highlight that the quality of
the gene prediction step influences the quality
estimates given by BUSCO – using NCBI Ref-
Seq annotations instead of AUGUSTUS gene pre-
dictions raised the predicted average quality of
the tested genomes. However, regardless of the
gene annotations used, BUSCOs eukaryota set
consistently underestimated genome complete-
ness within certain clades. This within-clade er-
ror can not be explained by low quality reference
genomes, but rather is indicative of a subopti-
mal eukaryota set. Thus, we showed that using
a more specific marker gene set can lead to a bet-
ter estimate, but BUSCOs protist set still did not
lead to desirable results.

To overcome many of these limitations, we
have developed EukCC, a novel tool to esti-
mate microbial eukaryotic genome quality. Eu-
kCC uses a reference database to dynamically
select the most appropriate out of 477 single
copy marker genes sets. This set is then used
to report genome completeness and contami-
nation, as well as a taxonomic placement. Us-
ing simulated data, we showed that EukCC esti-
mates genome quality across several taxonomic
clades and performs on a par with, or better
than, BUSCO. We showed that EukCC typically
underestimates completeness and overestimates
contamination. This conservative approach en-
sures that MAGs confirmed by EukCC are likely
to be of high quality. EukCC also works inde-
pendently of user input and can thus be used
to analyse potential eukaryotic genomes from
unknown species.

Nevertheless, we see a connection between
the number of known species in a taxonomic
group and the performance of EukCC. Some eu-
karyotic clades have very few high quality refer-
ence genomes. For example, at the time of writ-
ing, Apusozoa, Rhizaria, Cryptophyta as well as
Rhodophyta, each have less than 10 reference
genomes. While the current version of EukCC
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is known to perform better for more deeply
sampled clades, we have demonstrated that the
general framework can deliver consistent and
high quality estimates across a broad taxonomic
range. Thus, we aim to update the database reg-
ularly in order to build on growing public data
and improve our performance across all clades.

Using EukCC, we are now able to system-
atically screen large libraries of previously ig-
nored or unanalysed bins from published shot-
gun metagenomes. We showed that reanalysing
published skin metagenomes we could find a
novel species prevalent in ∼ 25% of the anal-
ysed subjects. The novel species belongs to the
well sampled Malassezia genus and could prove
interesting in the context of understanding the
skin microbiome. We have additionally demon-
strated that current metagenomic techniques are
also able to recover large fractions of eukaryotic
genomes from more complex biomes, such as
marine environment.

Conclusion

With EukCC, we present an easy to use tool to
estimate genome quality metrics for microbial
eukaryotes and have demonstrated a substan-
tial improvement in the applicability of EukCC
compared to other tools. While this tool was de-
veloped with application to MAGs in mind, we
do not see any limitation within EukCC to pre-
vent it from being applied to SAGs, or even iso-
late genomes. To demonstrate the applicability
of EukCC, we have identified two novel eukary-
otic genomes from metagenomic samples, and
have subsequently verified the quality of these
genomes using a variety of approaches. EukCC
provides the first step of many to assess the qual-
ity of MAGs and offers a way to select those that
are likely to represent high quality MAGs.

Methods

Evaluation of BUSCO results

To evaluate BUSCO, we downloaded genomes
and corresponding annotations for 418 eukary-
otic reference species from RefSeq (Sep 26th
2019), excluding those belonging to bilateria

or vascular plants. Each genome was annotated
using GeneMark-ES (parameters: ‘-v -fungus

-ES -cores 8 -min_contig 5000 -sequence

input.fa’). We then ran BUSCO (version 3.1)
in using the ‘eukaryota_odb9’ BUSCO set in
‘genome mode’ using AUGUSTUS (version
3.3.2) as well as in ‘protein mode’ for both
the RefSeq annotated proteomes as well as the
GeneMark-ES predicted proteins. This proce-
dure was then repeated for the ‘protist_esemble’
BUSCO set. To compare the BUSCO results
to EukCC, we defined completeness as 100%
minus the fraction of missing BUSCOs, and
contamination as the fraction of duplicated
BUSCOs. For Figure 1B, all reported BUSCOs
in all analysed genomes were displayed using
ComplexHeatmap (Gu et al. 2016) in R 3.5.1 (R
Core Team 2018) and clustered the rows using
‘klaR’ (Weihs et al. 2005).

GeneMark-ES de novo protein
prediction comparison

Following this, we compared RefSeq pro-
vided annotation and proteins predicted from
GeneMark-ES (parameters: ‘-v -fungus -ES

-cores 8 -min_contig 5000 -sequence in-

put.fa’). For each genome, we ran the BLASTp
option from DIAMOND (Buchfink et al. 2015)
on the proteins used by EukCC to estimate
genome quality matching against the RefSeq
annotated proteome of the same species. For
the best hit, we aligned both sequences using
MAFFT (Katoh et al. 2002). Subsequently, we
compared the length distributions between
GeneMark-ES and RefSeq annotated sequences.
Additionally, we counted the number of gaps
within the alignment occurring in either the
reference or the query sequence. Analyses
were performed using R 3.5.1 and plots were
generated using ggplot (Wickham 2016).

EukCC reference database creation

To build EukCC’s database we downloaded the
genomes of 754 eukaryotic species from NCBI
GenBank and RefSeq, all of which were either
marked as representative genomes (August 1st
2019) or used as UniProt reference proteomes
(May 28th 2019) (“UniProt” 2019) excluding
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those belonging to bilateria or vascular plants
(Table S1). Following this, we predicted the pro-
teome of each genome using GeneMark-ES and
annotated the resulting proteins using PAN-
THER families 14.1 with hmmer 3.2.1 (Figure
S6 A)). During this process 20 genomes were
excluded due to GeneMark-ES failing to pro-
duce an output, reducing the number of species
to 734. The failure was mostly caused by frag-
mented reference genomes, making it impossi-
ble for GeneMark-ES to pass the training step.

Subsequently, using the annotated proteins
of a taxonomically balanced subset of species,
we defined bit score gathering thresholds for
each PANTHER profile HMM. For this, we chose
at most 30 genomes per major sub-clade of eu-
karyota (e.g. Opisthokonta, Amoebozoa, Alveo-
lata) and sampled evenly across all phyla below.
Within these species, we identified the bit score
value maximizing the number of single hits for
each profile HMM.

After applying the bit score thresholds across
all annotated species, we searched for profiles
covering all species as single copy markers. As
no single copy markers spanning all species
could be found, we used a greedy algorithm to
define a reference set of overlapping single copy
marker genes. The resulting reference set con-
tained 55 profiles, covering each species within
the training set as a single copy marker between
3 and 34 times. The single copy proteins belong-
ing to each profile HMM within the reference
set were aligned using MAFFT and horizontally
concatenated. Consequently we used this align-
ment to build a reference tree using FastTree2
with default settings (Price et al. 2010).

Following this, we identified 477 sets of single
copy genes with a single copy prevalence cut-off
of 98 % in each clade of at least 3 species.

Overview of the EukCC algorithm

As a first step, EukCC uses Genemark-ES to pre-
dict proteins in the input genome (Figure S6 B).
The EukCC pipeline then performs a two stage
analysis to determine the best set of SCMGs for
downstream analysis. The first stage uses the
reference set to define a first approximate tax-
onomic classification of the MAG to enable the
placement in the precomputed reference tree us-

ing pplacer version v1.1.alpha19 (Matsen et al.
2010). For each protein, the best placement as
indicated by the posterior likelihood is chosen.
Using these placements, EukCC relies on ete3 to
compute the lowest common ancestor (LCA) or
the highest possible ancestor (HPA) for which a
set of single marker genes exist (Huerta-Cepas et
al. 2016). In a second stage, the HMMs defined
in the chosen SCMG set are scanned against
the predicted proteome using hmmer. The frac-
tion of existing profiles is reported as complete-
ness, and the fraction of duplicated markers is
reported as contamination. Finally, EukCC re-
ports a lowest common ancestor lineage of the
input genome, based on the species within the
marker set.

Evaluation data creation

In order to benchmark EukCC and BUSCO with
known data, we created in silico fragmented
and contaminated genomes. For this we chose
RefSeq genomes across all relevant taxonomic
clades, which were not included in the initial
training data. From each clade we selected up
to 4 species to evaluate completeness and con-
tamination. If a selection of species could be
made, we first included species from a rank not
included in the training set, prioritising novel
phyla over novel order and so forth. We then cre-
ated fragments by stepping along chromosomes
with step size chosen from a Poisson distribu-
tion (rpois(n,λ = 100) × 1000) and a minimum
step size of 2000. Fragments were rejected or in-
cluded at random to create a genome of a target
size fraction. Contaminating contigs were sam-
pled from different species from the same clade
and were fragmented in the same way and com-
bined to make a test genome.

Benchmark and comparison of EukCC
to BUSCO

Following the creation of the benchmark data,
we ran BUSCO (version 3.1) in ‘genome mode’
using the AUGUSTUS gene predictor (version
3.3.2) on the simulated genomes. For each
genome we used the most suitable set of BUS-
COs for the data. For example, when assessing a
protist genome, we used the ‘protists_ensembl’
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set, and for fungi we used the universal
‘fungi_odb9’ set. Notably, we used the protist
set to evaluate the alveolata species, as BUSCOs
performance decreased when using the more
specific ‘alveolata_stramenophiles_ensembl’ set.
We then used the ‘short_summary_*‘ files
from which we extracted the percentage of
missing and duplicated marker genes. We de-
fined completeness as 100 % minus the per-
centage of missing BUSCOs, thus also includ-
ing fragmented BUSCOs in the completeness
score. Additionally, we ran BUSCO in protein
mode using proteins predicted by GeneMark-
ES (parameters: ‘-v -fungus -ES -cores 8 -

min_contig 5000 -sequence input.fa’). Eu-
kCC was used with default parameters and
database version 1. We discarded any simulated
MAG from the benchmark for which not all
three methods could produce a quality estimate.
Finally we obtained 678 results per evaluated
algorithm, which were aggregated with R using
dplyr and plotted using ggplot.

Assembly and binning of skin
metagenomic datasets

We downloaded 3,963 shotgun metagenomic
datasets from the skin metagenome study PR-
JNA46333. Each dataset as assembled using
metaSPAdes (version 3.12, default parameters in
metagenomics mode [-meta]) (Nurk et al. 2017)
and binned using CONCOCT (version 1.0) (Al-
neberg et al. 2014) as part of the metaWRAP
(version 1.1) (Uritskiy et al. 2018). Subsequently,
we estimated the genomic composition in each
bin using EukRep (version 0.6.5) and bins with
more than 1 Mb eukaryotic DNA were selected
for further analysis. Selected ‘eukaryotic’ bins
were then analysed using EukCC and compared
to RefSeq and GenBank (both retrieved Sep.
26 2019) entries by comparing Mash distances
(version 2.2.2 default parameters) (Ondov et
al. 2019) and subsequently using dnadiff (from
the mummer package, version 3.23) (Kurtz et al.
2004) for the top hit, if the Mash distance was
below 0.1.

Tree building and analysis of skin MAGs

To construct a phylogenetic tree for the 6
selected skin MAGs, 19 reference genomes
of 16 Malasezzia species and Saccharomyces
cerevisiae, Ustilago maydis and the GenBank
entry of Piloderma croceum, we identified
4 SCMGs genes used by EukCC found
in all genomes: PTHR10383, PTHR11377,
PTHR12555, PTHR15680. Using MAFFT, in
einsi mode, we aligned the protein sequences
for each PANTHER entry before building a
concatenated alignment file, which was used
as input to FastTree2 to build the tree, using
default settings. We visualized and rooted the
tree using S. cerevisiae as an outgroup with
iTOL v5 (Letunic and Bork 2016). Using hmmer
3.2.1 (hmmscan -cut_ga) we searched for the
Pfam (El-Gebali et al. 2018) entry DUF1214
(Pfam accession PF06742, Pfam version 32)
in the 6 MAGs and the 19 reference genomes.
To further verify the quality of the MAG, we
clustered the contigs using anvi’o’s refine mod-
ule and sampled up to 200 proteins from each
cluster. Each protein was compared against the
UniRef90 database using DIAMOND (parame-
ters: blastp -threads 10). Using the majority
voted consensus lineage of up to three hits
per protein (e-value threshold of 1e-20) with a
majority threshold of 60 % and a subsequent
global majority vote using the same threshold,
we assigned taxonomic lineages to each cluster.

Analysis of TARA Ocean data

We assembled and analysed metagenomes from
the TARA Ocean study PRJEB4352 using the
same protocol as for the skin metagenomic
data. We assembled and binned reads from
ERR1700893, ERR1726523, ERR1726543,
ERR1726560, ERR1726561, ERR1726573,
ERR1726589, ERR1726593, ERR1726609,
ERR1726612. The study we selected has 912
runs associated, and we chose this subset of
runs at random as we were limited by the large
amount of memory and CPU time required
for each assembly ( for example, assembling
ERR1726589 required 942 Gb of RAM).
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Availability of data and materials

The EukCC code is available through Github
(https://github.com/Finn-Lab/EukCC). Doc-
umentation can be found at readthedocs
(https://eukcc.readthedocs.io/en/latest). The
EukCC database can be downloaded from
http://ftp.ebi.ac.uk/pub/databases/metageno-
mics/eukcc_db_v1.tar.gz. All MAGs have
been submitted into ENA under the accession
PRJEB35744.
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Figure S1: A)Corresponding to the analysis in Figure 1 we used the BUSCO protist set to analyse a
set of non Fungal genomes. In a number of protist clades, e.g. Apicomplexa and Amoe-
bozoa, not all BUSCOs can be found. B) Matrix showing the breakdown of missing BUS-
COs across different taxonomic groups. C) Running BUSCO using the ‘eukaryota_odb9’
set in genome mode, using GeneMark-ES, or using the NCBI RefSeq annotations, the
number of found BUSCOs across these three gene callers is similar for Fungal clades,
but increases when using GeneMark-ES or RefSeq for Euglenzoa and Apicomplexa.
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Figure S2: A) For simulated genomes with a contamination below 5 % we split the panel 1 into
the taxonomic clades (number of species per clade indicated by n). For the fungal
clade both EukCC and BUSCO, independent on the gene caller, perform close to the
expected value across a large range of simulated completeness. For Alveolates, Amoe-
bozoa and Viridiplantae EukCC consistently performs better than BUSCO. Within the
Stramenopiles EukCC both methods show a large variability in their performance. B)
When looking at contamination estimated for highly complete genomes, BUSCO and
EukCC perform best for low contamination ratios (<5 %). For Alveolata EukCC per-
forms well across a large range of contamination. In the fungal clade both BUSCO and
EukCC perform better for low contamination ratio and start to underestimate contami-
nation with increasing amount of contamination. Within Amoebozoa and Viridiplantae
EukCC, in contrast to BUSCO, tends to overestimate contamination by aprox 5 % for
genomes with 0-5 % contamination.
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Figure S3: A) Bins recovered from skin metagenomes were assigned to a reference genome and
then estimated using EukCC in terms of completeness and contamination. Bins could
be assigned to five different species of Malassezia. B+C) For bins that could be assigned
to a reference we compared predicted completeness to how much of the reference could
be aligned to the bin. For most bins EukCCs prediction is close to the aligned fragment.
We see no signal when comparing the prediction of EukCC to the average nucleotide
identity (ANI) between the MAG and the assigned reference genome neither when
color coded by assigned species. D) We thus also checked completeness using BUSCO
and FGMP: BUSCO and EukCC performed comparable, both slightly underestimating
completeness. FGMP overestimated completeness in almost all bins. Bins clearly over-
estimated by EukCC or BUSCO were also the most contaminated bins, which explains
this behavior. E) When color coding bins by their percentage which could be aligned to
the reference (Fraction of MAG aligned), well aligned bins are close to the diagonal and
bins with a lower fraction of aligned DNA are commonly below the diagonal, which is
in good agreement with the contamination estimate.
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Figure S4: Proteins predicted with GeneMark-ES that occured in a single copy in representative
genomes across the eukaryotic genome (see Table S2 for used genomes) were blasted
against their RefSeq proteome. For each protein the best hit (judged by e-value) with
a maximal e-value cutoff of 1e-5 was chosen as the corresponding true protein. A)
Each protein was aligned to its reference protein using MAFFT and gaps were counted.
With increasing number of gaps the predicted proteins are shorter than their reference,
suggesting that GeneMark-ES seems to miss some introns. B) We could not find a sys-
tematic bias between the protein length of UniProt or GeneMark-ES predicted proteins.
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Figure S5: A) Using EukCC to estimate the quality of the reported Bathycoccus MAG, pplacer
placed the found marker proteins from the reference set mostly within a small range of
the phylogenetic tree. Some outliers were ignored by EukCC while choosing the LCA
set (green). B) The recovered Bathycoccus MAG from the TARA Ocean data was checked
for quality issues using anvi’o. While the GC content and the coverage across all contigs
is very uniform, anvi’o could form two large clusters. We taxonomically analysed both
clusters and the indicated subclusters. All groups could be assigned the same taxonomic
lineage, suggesting low amounts of contamination.
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Figure S6: A) EukCCs database is created by predicting proteomes using GeneMark-ES first. Pro-
teomes are annotated using hmmer with PANTHER 14.1 families. A predefined subset
of proteomes (green) are then used to learn bitscore thresholds for all profile hmms,
maximizing the singleton prevalence across this set. Annotations are then filtered using
the thresholds. By choosing widely present single copy genes to cover the entire genome
space several times, we build a tree by first aligning proteins independently and then
concatenating the alignments. B) EukCC searches for the widely defined marker genes
to used pplacer to place a novel MAGs proteins into the reference tree. Choosing the
lowest common ancestor set quality is computed.
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Table S1: Genomes used to train the database. Genomes were excluded because of GeneMark-ES
failure (labeled: gmes), because of long branches in the tree (tree) or because of problems during
the set creation (set).

Table S2: Genomes used to evaluate EukCC. Each simulated MAG was based on a single RefSeq
entry with added fragments from the contaminant. The specified BUSCO set was used to evaluate
and the clade used to group results for Figure S2.

Table S3: Looking at the novel MAG in anvi’o, we saw several clusters (Figure 3). For each cluster
we calculated the size and the contribution in completeness as well as the average marker density.
Cluster A has the lowest contribution as well as the lowest marker density. Cluster C1, C2 and C2
are similar in density and comprise the largest percentage of the MAG. Cluster B is between A and
C in all measures.
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