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Abstract. In this paper we study the graph of ranked phylogenetic trees
where the adjacency relation is given by a local rearrangement of the tree struc-
ture. Our work is motivated by tree inference algorithms, such as maximum
likelihood and Markov Chain Monte Carlo methods, where the geometry of the
search space plays a central role for efficiency and practicality of the optim-
isation. We hence focus on understanding the geometry of the space (graph)
of ranked trees, the so-called ranked nearest neighbour interchange (RNNI)
graph. For example, we find the radius and diameter of the space exactly,
improving the best previously known estimates. Since the RNNI graph is a
generalisation of the classical nearest neighbour interchange (NNI) graph to
ranked phylogenetic trees, we compare geometric and algorithmic properties of
the two graphs. Surprisingly, we discover that both geometric and algorithmic
properties of RNNI and NNI are quite different. For example, we establish
convexity of certain natural subspaces in RNNI, which are not convex is NNI.
Furthermore, our results suggest that the complexity of computing distances
in the two graphs is different.

The nearest neighbour interchange (NNI) graph, defined on the set of phylogen-
etic trees with adjacency relation given by the interchange operation of two sister
clades (subtrees), has been known in mathematical biology literature for nearly 50
years (Robinson 1971; Moore, Goodman and Barnabas 1973). Considered with the
metric given by the length of a shortest path (graph-distance), this graph becomes
a metric space. Its geometry has been extensively studied (Dasgupta et al. 2000;
Li, Tromp and Zhang 1996; Gordon, Ford and St John 2013; Jong, McLeod and
Steel 2016). An important property of the NNI graph is that computing distances
is NP-hard (Dasgupta et al. 2000). As a result no algorithm exists to compute
the distance in practical time. A consequence is that tree search and sampling
algorithms pose a significant challenge even for moderately sized trees (Whidden
and Matsen 2016).

More recent advances in computational phylogenetics introduce various classes
of molecular clock models (Yoder and Yang 2000; Drummond, Ho et al. 2006;
Drummond and Suchard 2010) and made computational inference of phylogenetic
time-trees possible (Ronquist and Huelsenbeck 2003; Bouckaert et al. 2018; Hadfield
et al. 2018). However, mathematical challenges that come with this seemingly
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2 RANKED NEAREST NEIGHBOUR INTARCHANGE

inessential change in parametrisation (genomic distance VS time distance) of trees
have only recently been brought to attention (Gavryushkin and Drummond 2016).
These differences motivated Gavryushkin, Whidden and Matsen (2018) to propose
an extension of the NNI graph to the class of discrete time-trees. The simplest
such extension introduces the RNNI graph on the set of ranked phylogenetic trees.
Considered with the graph-distance RNNI becomes a metric space and inherits the
geometric and algorithmic challenges that the NNI space has been traditionally
facing. Surprisingly, most of them cannot be settled by directly translating results
or applying techniques developed for NNI (Gavryushkin, Whidden and Matsen
2018).

In this paper, we consider the RNNI space on ranked phylogenetic trees with all
taxa being of equal rank. An example of such a tree is depicted in Figure 1. In the
terminology of (Gavryushkin, Whidden and Matsen 2018), the space considered in
this paper is the space of ranked ultrametric phylogenetic trees (RNNIu in their
notations). We postpone accurate definitions until later in this section.

1 2 3 4 5 6

Figure 1. A ranked tree with 6 taxa.

In line with the research programme proposed in (Gavryushkin, Whidden and
Matsen 2018), we investigate the geometry and algorithmic complexity of the RNNI
space. Specifically, in this paper we establish the exact radius and diameter of the
space (Section 2.2). We also show that the subset of caterpillar trees is convex in
RNNI (Section 2.1), thus settling one of the open problems proposed in (Gavry-
ushkin, Whidden and Matsen 2018). For establishing these geometric properties
we are using algorithms that will be introduced in Section 1. We will in particular
provide an approximate algorithm that computes exact distances for small trees.
The question of whether there exists a polynomial algorithm for computing the
RNNI distance remains an open problem.

In the rest of this chapter we formally introduce the terminology used in this
paper.

A ranked phylogenetic tree is a pair consisting of a rooted binary phylogenetic
tree T on the set X = {1, . . . , n} of taxa for n ∈ N, and a (total) rank function
that maps all leaves of T to 0, all internal nodes of T onto elements of the set
{1, . . . , n− 1}, and respects the partial order on the nodes given by the tree. The
latter means that if u and v are two internal nodes of T such that there exists a
path from a taxon x ∈ X to the root which first passes through u and then through
v then rank(u) < rank(v). Ranked trees (T1, rank1) and (T2, rank2) are different if
trees T1 and T2 are different or T1 = T2 and rank1 6= rank2. Since all trees in this
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RANKED NEAREST NEIGHBOUR INTARCHANGE 3

paper are ranked trees, we will abuse the notation and drop the rank function from
the notation. We will also simply say trees to mean ranked phylogenetic trees. For
a tree T , we will use rankT to refer to its ranking. A ranked tree T without its leaf
labels will be called tree topology.

Our definition of a ranked tree implies a natural notion of edge length – we call
|rankT (v)− rankT (u)| the length of an edge (u, v). We assume that edges of trees
are undirected, so (u, v) = (v, u).

Now we are ready to introduce the tree space which is the subject of study in
this paper, the RNNI graph.

The vertex set of the RNNI graph is the set of all ranked trees on n taxa.
We introduce two types of operation (RNNI moves) on trees (see Figure 2) and
say that two trees are adjacent in the RNNI graph if they are connected by an
operation of either type. The first type of operation is called a rank move and
defined by swapping the ranks of two internal nodes that are not adjacent in the
tree. Formally, if u and v are nodes of a tree T such that |rankT (u)− rankT (v)| = 1
and (u, v) is not an edge in T then the tree R obtained from T by only changing
rankR(u) = rankT (v) and rankR(v) = rankT (u) is said to be obtained by a rank
move. The second type of operation is called an NNI move and defined in the
usual way, that is, two trees T and R are said to be connected by an NNI move if
there exist internal edges e in T and f in R both of length one such that the trees
obtained by shrinking e and f to internal nodes coincide.

We use the notation d(T,R) throughout the paper to denote the graph distance
between trees in RNNI, that is, d(T,R) is the length of a shortest RNNI path
between tree T and R.

rank NNI

NNINNI

1 2 3 4 5 1 2 3 4 5 1 23 4 5

123 4 5

Figure 2. Two types of operation that define edges of the RNNI
graph. The rank move swaps the rank of the two highlighted nodes
and the NNI moves are performed on the blue edges.

The rest of this paper is organised as follows. In Section 1 we introduce three
algorithms for exploring the RNNI graph. We use these algorithms in Section 2
to establish several geometrical properties of this graph, such as its diameter and
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4 RANKED NEAREST NEIGHBOUR INTARCHANGE

radius. Furthermore, we will establish in Section 2.1 that a certain subspace of
RNNI is convex and design a polynomial-time algorithm for computing RNNI-
distances in that subspace. This result suggests that the complexity of computing
distances in RNNI is different from that in the classical NNI space. We will discuss
this further in Section 2.3, where we disprove a conjecture of Gavryushkin, Whidden
and Matsen (2018) and suggest its weaker versions a plausible alternatives. We will
finish the paper with a discussion and open problems.

1. Algorithms

In this section we introduce three algorithms, FindPath (Section 1.1),
Caterpillar Sort (Section 1.2), and MDTree (Section 1.3). FindPath com-
putes an RNNI path between trees. Caterpillar Sort computes a shortest RNNI
path between caterpillar trees (also known as ladder trees, see later in this section
for accurate definitions). MDTree maximises the dissimilarity to find a remote
tree given an arbitrary RNNI tree. While these algorithms are interesting on their
own (e.g. in simulation studies), they will also form an important ingredient to study
the geometry of the RNNI space later in this paper. For example, MDTree will
be an important tool for finding the radius of the RNNI graph, as the algorithms
computes a tree with maximum distance if the input tree is a caterpillar tree. We
will prove this fact in Section 2.2.

The algorithm FindPath can be used to approximate the RNNI distance. We
will study the accuracy of this approximation by computing the exact RNNI dis-
tance for small trees. Specifically, we will use the algorithm for computing the
complete RNNI graph that is given in (Gavryushkin, Whidden and Matsen 2018,
Section 3.3). After pre-computing the graph, we use Seidel’s algorithm (Seidel
1995) for computing distances. However, the large number of vertices in RNNI is
an obstacle when it comes to computing distances for larger trees. Since there are
n!(n−1)!
2n−1 vertices in the RNNI graph (Gavryushkin, Whidden and Matsen 2018), we

compute the RNNI graph on up to seven taxa for our analyses. This computational
result will also be used later in the paper to support Conjecture 10, a modification
of Conjecture 9 in (Gavryushkin, Whidden and Matsen 2018), which we prove to
be false in this paper.

Note that RNNI space on trees with seven taxa is a challenging goal to achieve
computationally. For example, Whidden and Matsen (2016) were able to achieve up
to seven taxa in the much smaller RNNI space, when it required considering pairs
of trees. We have implemented all our algorithms in a combination of Python and
C, and the source code is available at (Collienne, Elmes and Gavryushkin 2019).

1.1. FindPath. In this section we present FindPath, an efficient algorithm for
computing paths, and therefore approximating distances, between trees in RNNI.

Before introducing the algorithm we need the following definitions. Each node
v of a tree defines a cluster C, which is the set of taxa descending from v. We
then say that v induces C. All trees on n leaves share trivial clusters, which are
those induced by leaves and the root, so we exclude them from consideration and
say cluster to mean a non-trivial cluster. A tree is unambiguously defined by the
list of its clusters sorted according to the rank of the inducing nodes. We will refer
to this list of n− 2 clusters for a given tree on n taxa as a cluster representation of
the tree (Gavryushkin, Whidden and Matsen 2018; Gavryushkin and Drummond
2016; Semple and Steel 2003).
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RANKED NEAREST NEIGHBOUR INTARCHANGE 5

Let T and R be arbitrary trees and [C1, . . . , Cn−2] be the cluster representation
of R (the “destination” tree). Then Ci is induced by the node of rank i for i =
1, . . . , n − 2. FindPath computes a path by iteratively extending a sequence p of
trees starting from T . The algorithm terminates when p is an RNNI path from T to
R. At step k = 1, . . . , n−2 of FindPath we consider the cluster Ck and extend path
p as follows. We search for a node in the last tree T ′ of p from the previous step that
induces the smallest cluster containing all elements of Ck. This node is denoted by
mrcaT ′(Ck) (short for most recent common ancestor). We then extend p by adding
the tree obtained from T ′ by performing the RNNI move that decreases the rank of
mrcaT ′(Ck). We continue extending p in this way by repeatedly performing RNNI
moves until the rank of mrcaT ′(Ck) = k, thus completing step k.

Algorithm 1 FindPath(T,R)

1: T ′ := T , p := [T ′], [C1, . . . , Cn−2] := R
2: for k = 1, . . . , n− 2 do
3: while rankT ′(mrcaT ′(Ck)) > k do
4: Update T ′: Decrease rankT ′(mrcaT ′(Ck)) by an RNNI move
5: p = p+ T ′

6: return p

Proposition 1. FindPath is a correct deterministic algorithm.

Proof. It suffices to show that the update operation (line 4) is well-defined, that is
the RNNI move that decreases the rank of mrcaT ′(Ck) is unique.

Case k = 1. In this case Ck is a consists of two taxa {x, y}. The node v =
mrcaT ′(x, y) has rankT ′(v) = r > 1. Consider the node w preceding v in T ′, that
is, rankT ′(w) = r − 1. If a rank move that swaps v and w is possible then this is
the only move on T ′ that can decrease the rank of mrca(x, y). If the rank move
is impossible then there is an edge in T ′ connecting v and w. The only way to
decrease the rank of mrca(x, y) then is to perform an NNI move on that edge. It is
not hard to see that out of two possible NNI moves only one decreases the rank of
mrca.

Case k > 1.
(1) Ck = Ci ∪ Cj for i, j < k. Suppress Ci and Cj in both T ′ and R to new

taxa ci and cj respectively and proceed as in Case k = 1.
(2) Ck = Ci ∪ x, where x is a taxon not present in C1, . . . , Ck. Suppress Ci in

both T ′ and R to a new taxon ci and proceed as in Case k = 1.
(3) Ck = {x, y} where both x and y are not in C1, . . . , Ck. Proceed as in Case

k = 1.
�

Clearly, the worst-case complexity of FindPath is quadratic in the number of
taxa.

Because the algorithm returns a path between pairs of trees in RNNI, the length
of the path approximates the RNNI distance from above. A natural question then
is how accurate this approximation is. We have computationally shown that the
algorithm FindPath finds the correct distance for trees up to seven taxa (Collienne,
Elmes and Gavryushkin 2019).
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6 RANKED NEAREST NEIGHBOUR INTARCHANGE

1.2. Caterpillar Sort. In this section we introduce an algorithm to compute
paths between caterpillar trees, which are trees where each internal node is adjacent
to at least one leaf. As a result caterpillar trees have only one cherry, which is a
pair of taxa that share their parent. A path between two caterpillar trees that
only consists of caterpillar trees is called a caterpillar path. We can identify a
caterpillar tree T = [{x1, x2}, {x1, x2, x3}, . . . , {x1, . . . , xn}] with the list of its taxa
[x1, x2, . . . , xn], assuming that x1 < x2 as natural numbers (recall that the set of
taxa is {1, . . . , n}).

The algorithm Caterpillar Sort (Algorithm 2) is a modification of the clas-
sical Bubble Sort algorithm (Knuth 1997). A path p from T to R = [x1, . . . , xn]
is computed iteratively so that after k steps the last k taxa of T and R coincide.
Specifically, in step k (k = n, . . . , 3) the parent of taxon xk is moved up by NNI
moves to the position it has in R. Notice that there might be more than just one
such move per step, which means that p can be extended by more than one tree in
each step.

Algorithm 2 Caterpillar Sort(T,R)

1: [x1, x2, . . . , xn] := R, T ′ := T , p = [T ′]
2: for k = n, . . . , 3 do
3: for i = 1, . . . , k do
4: if T ′[i] = xk then
5: Update T ′: swap T ′[i] and T ′[i+ 1]
6: p = p+ T ′

7: return p

The running time of Caterpillar Sort is quadratic in n.
The path p returned by Caterpillar Sort is a shortest caterpillar path because

every tree modification on p reduces the number of inversions of taxa in T and R.
Indeed, no RNNI move on caterpillar trees can reduce the number of taxa inversions
by more than one, assuming that inversions with both taxa of a cherry are counted
only once, that is, if both pairs of taxa (x, z) and (y, z) appear in opposite orders
in T and R and (x, y) is a cherry then they are counted as one inversion. Hence
any caterpillar path every move along which reduced the number of inversions is a
shortest caterpillar path.

It is not obvious that the path between T and R returned by Caterpillar Sort
has the least possible length among all RNNI paths (not only caterpillar paths),
that is, the length of d(T,R). This fact will be established in Theorem 5.

Our Python implementation of this algorithm can be accessed at (Collienne,
Elmes and Gavryushkin 2019).

1.3. MDTree. The idea behind this algorithm is to efficiently return a tree as
far away from a given tree as possible. As we will see in Section 2.2, MDTree
achieves this goal exactly for caterpillar trees.

MDTree (Algorithm 3) works as follows. Given an arbitrary tree T , order its
taxa in a list L = [l1, . . . , ln] so that the ranks of their parents are non-decreasing
with respect to this order. Note that this list is not uniquely determined by the
tree. MDTree constructs an output tree R as follows: Initially, R only consists of
two taxa l1 and l2, the most recent common ancestor of which will eventually be
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RANKED NEAREST NEIGHBOUR INTARCHANGE 7

of rank n− 1. The remaining taxa are iteratively added to R in the reversed order
of L starting from ln. At every iteration, the taxon is attached to a new internal
node created on one of the existing branches in R so that this new attachment node
has rank one. Note that R is not uniquely determined due to the non-deterministic
choice of the attachment edge.

Algorithm 3 MDTree(T )

1: Construct list L = [l1, . . . , ln] of all taxa ordered with respect to the ranks of
their parents in T

2: Build tree R with two taxa l1, l2 that are children of the root
3: for i = 3, . . . , n do
4: Extend R by attaching li to a newly created node of rank 1 on an arbitrarily

chosen edge
5: return R

Note that the list computed in Line 1 of MDTree, as well as the attachment
edge of the new taxon in Line 4 are not uniquely determined. Therefore, this
algorithm is non-deterministic, which is an important observation that we will use
for finding the radius of RNNI in Section 2.2.

2. Geometry of RNNI

The study of shortest paths in the RNNI graph in this section is motivated by
our aim to understand the geometry of RNNI as a metric space. We will employ the
algorithms developed in the previous section to aid our analysis of shortest paths.
Those algorithms will, for example, enable us to prove that every pair of caterpillar
trees T and R is connected by a caterpillar path of length d(T,R) (Theorem 5
in Section 2.1). In other words, the set of caterpillar trees is convex in RNNI.
In Section 2.2 we will investigate the diameter and radius of the RNNI space.
Interestingly, the diameter of RNNI, that is the maximum distance ∆(RNNI) =
max{d(T,R) | T,R ∈ RNNI} between any two trees in the graph, equals its radius
defined as min

T
max
R

d(T,R). Next, we will consider the so-called Split Theorem

(Gavryushkin, Whidden and Matsen 2018), which states that every shared split of
taxa is maintained along every shortest path. Recall that a split is a bipartition of
the set of taxa obtained by deleting an edge of the tree T , splits are denoted by
A|B. We will give a counterexample to the Split Theorem in RNNI and consider
a variant of the Weak Split Theorem, which states that every shared split of taxa
is maintained along a shortest path. We will also consider the so-called Clade
Theorem as another weak version of the Split Theorem (see Conjecture 10).

We start with the following auxiliary results.

Lemma 2. ∆(RNNI) ≤ (n−1)(n−2)
2 for n ≥ 3.

Proof. Since the diameter is bounded from above by the maximum length of a path
computed by FindPath, it is enough to find this maximum. Let us assume that T
and R = [C1, . . . , Cn−2] are trees for which FindPath computes a path of maximum
length. It follows that in each step of FindPath the most recent common ancestor
of the cluster Ck considered in that step is the root. Thus, there are n−1−k RNNI
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8 RANKED NEAREST NEIGHBOUR INTARCHANGE

operations necessary to move Ck to its correct position. Hence, the maximum length

of a path computed by FindPath is bounded by
n−2∑
i=1

(n− 1− i) = (n−2)(n−1)
2 . �

The following lemma relates distances between trees on n and n+ 1 taxa and is
an important tool for inductive arguments. We use the notion parentT (x) to refer
to the node adjacent to taxon x in tree T . T

∣∣
n
denotes the restriction of tree T to

the set of taxa {1, . . . , n}. In particular if T is a tree on taxa {1, . . . , n+ 1} the tree
T
∣∣
n
is obtained by deleting taxon n+ 1 and suppressing the thereby created node

of degree two.

Lemma 3. Let T and R be two trees on taxa {1, . . . , n+ 1}. Then d(T
∣∣
n
, R
∣∣
n
) ≤

d(T,R)− δ, where δ = |rankT (parentT (n+ 1))− rankR(parentR(n+ 1))|.

Proof. First observe that the rank of the internal node parentT (n+ 1) can only be
changed by performing a rank move that involves parentT (n+ 1) or an NNI move
on an edge adjacent to parentT (n + 1). Second observe that any RNNI move can
change the rank of parentT (n+ 1) by at most one. Hence an RNNI move on T can
decrease the rank of parentT (n+ 1) by at most one.

Let p be a shortest path from T to R and p
∣∣
n
the path resulting from deleting

taxon n + 1 from all trees on p. Then p
∣∣
n

is a path from T
∣∣
n

to R
∣∣
n
. Recall

that δ is the difference in ranks between the parents of taxon n + 1 in T and R.
Combining this with the observations above, we conclude that |p

∣∣
n
| ≤ |p|−δ. Since

d(T
∣∣
n
, R
∣∣
n
) ≤ |p

∣∣
n
| and |p| = d(T,R), the desired inequality follows. �

2.1. The set of caterpillar trees. In this section we restrict our attention to
the set of caterpillar trees. These trees are of particular interest because they are
used to prove that computing the NNI distance is an NP-hard problem. As we
will see below, shortest paths between caterpillar trees in RNNI differ from those
in the classical NNI space. We will show later in this section that RNNI distances
between caterpillar trees can be computed in polynomial time. Throughout this
section we use the list representation of trees described in Section 1.2.

Recall (Gavryushkin, Whidden and Matsen 2018) that computing a shortest
path between two caterpillar trees in NNI sometimes requires first building a clade
and then moving the clade around the tree (see Figure 3). In RNNI however, the
necessity of additional rank moves invalidates this strategy. This is due to the fact
that NNI moves in RNNI are only allowed on edges of length one.
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1 2 3 4 5 6 1 2 34 5 6 1 2 34 5 6

1 2 34 5 6
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T R

1 1

1

3 3

3 3

Figure 3. Paths between caterpillar trees T and R: Solid arrows
indicate paths in RNNI, the dashed arrow is a move only possible
in NNI. The bottom path is a shortest RNNI path.

These observations motivate the following general result. Every pair of trees
T,R in RNNI are connected by a caterpillar path of length d(T,R), that is, the set
of caterpillar trees is convex in RNNI (Theorem 5). Note that this is not true in
the NNI space (Figure 3).

We need the following lemma. Recall that (n−1)(n−2)
2 is the upper bound of the

diameter of RNNI by Lemma 2.

Lemma 4. Let T and R be two caterpillar trees. Then d(T,R) = (n−1)(n−2)
2 if and

only if dc(T,R) = (n−1)(n−2)
2 , where dc is the length of a shortest caterpillar path.

Proof. First note that d(T,R) = (n−1)(n−2)
2 implies dc(T,R) = (n−1)(n−2)

2 . Indeed,
in each step i = 0, . . . , n− 3 of Caterpillar Sort at most n− 2− i pairs of taxa
swap positions, as in the worst case the taxon considered in step k is moved from
the cherry of the tree up to the position n− k. It follows that the maximum length
of a path computed by Caterpillar Sort is

(1)
n−3∑
i=0

n− 2− i =
(n− 1)(n− 2)

2
.

For proving the other direction of the statement, assume that dc(T,R) =
(n−1)(n−2)

2 . We prove that d(T,R) = (n−1)(n−2)
2 by induction on the number of

taxa n. The induction basis for n = 3 taxa is trivial as the RNNI graph is a
triangle on three caterpillar trees in that case.

For the induction step we assume without loss of generality that T is the cater-
pillar tree [1, . . . , n + 1] and R is a caterpillar tree such that dc(T,R) = n(n−1)

2 .
Consider the path p = Caterpillar Sort(T,R) of this length. Note that in this
case taxon n + 1 has to be in the cherry of R, as otherwise Caterpillar Sort
would find a path between T and R of length strictly less than n(n−1)

2 , which can
be shown by counting the number of moves as in (1) above.
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10 RANKED NEAREST NEIGHBOUR INTARCHANGE

Let us now consider the path p
∣∣
n
from T

∣∣
n
to R

∣∣
n
, which is obtained by re-

stricting every tree on p to taxa 1, . . . , n and removing identical trees. Observe
that this path is shorter than p by the number of moves that involve taxon
n + 1. Since this taxon is adjacent to the root in T and part of the cherry in R,
Caterpillar Sort requires n−1 such moves. Hence, dc(T

∣∣
n
, R
∣∣
n
) = n(n−1)

2 −(n−
1) = (n−1)(n−2)

2 = d(T
∣∣
n
, R
∣∣
n
), by induction. Lemma 3 implies that d(T

∣∣
n
, R
∣∣
n
) ≤

d(T,R) − |rankT (parentT (n + 1)) − rankR(parentR(n + 1))| = d(T,R) − (n − 1).
So (n−1)(n−2)

2 ≤ d(T,R) − (n − 1), which implies that d(T,R) ≥ n(n−1)
2 . Thus

d(T,R) = n(n−1)
2 . �

Theorem 5. The set of caterpillar trees is convex in RNNI.

Proof. Note that it is suffice to prove that dc(T,R) = d(T,R) for an arbitrary pair
of caterpillar trees T and R. Lemma 4 implies that if T and R are at the maximal
possible distance, that is, dc(T,R) = (n−1)(n−2)

2 . Denote the latter number by D.
Assume now that dc(T,R) = D − 1. If we apply Caterpillar Sort(T,R) in

this case, there must be a step in the algorithm where the taxon that is moved up
is not part of the cherry (of T ′) at the beginning of this step. Let x be the first
taxon that has this property and is considered at step k. Then there must be a
taxon y that is immediately preceding x in the tree at the beginning of step k.
Since k is the first such step, y must be preceding x in tree T as well. Consider a
tree T̂ that is obtained from T by exchanging x and y. Note that the caterpillar
path from T̂ to R computed by Caterpillar Sort passes T and coincides with
the path Caterpillar Sort(T,R) from there on. Clearly, dc(T̂ , R) = D.

Assuming dc(T,R) < D, we can iterate the construction above to find
a tree T̂ such that dc(T̂ , R) = D and the caterpillar path from T̂ to
R computed by Caterpillar Sort passes T and coincides with the path
Caterpillar Sort(T,R) from there on. Lemma 4 implies that d(T̂ , R) = D.

Assume that d(T,R) < dc(T,R) and let p be a path from T toR of length d(T,R).
Consider a path q obtained by concatenating paths Caterpillar Sort(T̂ , T )

and p. Note that q is a path from T̂ to R which is shorter than
Caterpillar Sort(T̂ , R). Indeed, the two paths coincide between T̂ and T and q
is shorter between T and R. Since dc(T̂ , R) = D, the existence of q is a contradiction
to Lemma 4. �

2.2. Diameter and radius. Gavryushkin, Whidden and Matsen (2018, The-
orem 7) gave an upper bound for the diameter of RNNI space, which we recall
is denoted by ∆(RNNI). They showed that ∆(RNNI) = n2 − 3n − 5/8. In this
section we improve that result and calculate the exact diameter and radius of the
RNNI space.

Theorem 6. ∆(RNNI) = (n−1)(n−2)
2 .

Proof. Since dc([1 . . . , n], [n−1, n, n−2, n−3, . . . , 1]) = (n−1)(n−2)
2 , the claim follows

directly from from Theorem 5 and Lemma 2. �

We show in the rest of this section that the radius of RNNI space coincides with
its diameter. The main tool to establish this result is the algorithm MDTree from
Section 1.3. Recall that MDTree is a non-deterministic algorithm, which implies
that the output tree is not uniquely defined by the input to the algorithm.
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Lemma 7. Let T be a caterpillar tree. Then d(T,R) = ∆(RNNI) for every tree R
such that R = MDTree(T ).

Proof. We prove the lemma by induction on the number of taxa n. The induction
basis for n = 3 is trivial.

Assume now that T = [1, . . . , n+ 1]. In this case, the parent of taxon n+ 1 has
rank n in T and rank 1 in R. Lemma 3 then implies that

(2) d(T
∣∣
n
, R
∣∣
n
) ≤ d(T,R)− (n− 1).

Note that R
∣∣
n

= MDTree(T
∣∣
n
) for an appropriate choice of attachment points in

the execution of MDTree. By induction hypothesis and Theorem 6, d(T
∣∣
n
, R
∣∣
n
) =

(n−1)(n−2)
2 . So inequality (2) becomes d(T,R) ≥ (n−1)(n−2)

2 +n−1 = n(n−1)
2 , which

with Theorem 6 gives the desired equality. �

The non-determinism of MDTree can be exploited to investigate what trees are
at the maximal possible from a given caterpillar tree. In fact, those trees can have
an arbitrary (non-ranked) topology! This is because in each step of the algorithm
the next taxon can be added on any edge incident to a leaf in the running tree.
Therefore, if the input tree is a caterpillar tree, MDTree can be used to find a
tree of pre-defined topology that is at the maximal possible distance from the input
tree. Because the distance between trees is invariant under permutations of taxa
labels, we conclude that for every tree R on n taxa there exists a caterpillar tree T
such that d(T,R) = ∆(RNNI) = (n−1)(n−2)

2 . This proves the following Theorem 8.

Theorem 8. The radius and diameter of the RNNI space coincide and are equal
to (n−1)(n−2)

2 .

2.3. Cluster Theorem. In this section we discuss the so-called Split Theorem,
which states that every split shared between two trees is maintained along shortest
paths between the trees. For example, Split Theorem is true in the SPR space
and false in NNI (Li, Tromp and Zhang 1996). Specifically, in NNI there exist two
trees T and R, which share a split A|B, such that every tree on every shortest path
between T and R does not have A|B.

To construct this example, Li, Tromp and Zhang (1996) used the idea illustrated
in Figure 4 and showed that for an appropriate permutation of the taxa in the two
caterpillar subtrees of both T andR, it is strictly shorter to merge the two caterpillar
subtrees first, then sort them simultaneously, and then split back to two caterpillar
subtrees, rather the two caterpillar subtrees independently.

The reason this example cannot be transferred to RNNI is that additional rank
moves are necessary to merge and then split the two caterpillar subtrees. Similarly
to the example in Figure 3, adding rank moves to the shortest NNI path from T
to R results in a path that is no longer a shortest RNNI path. Sorting the two
caterpillar subtrees of T and R independently results in a shorter path in RNNI.
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merge

sort

split

T

T
′

R

R
′

Figure 4. Example of a shortest path between two trees T and
R in NNI. In (Li, Tromp and Zhang 1996) it is proven that there
is a labelling that ensures that there is no shortest path in NNI
where the clusters (dots vs. squares) shared between T and R are
preserved. Instead, the depicted path where n

2 cherries are built
and then sorted before being resolved is a shortest path

This argument motivated Gavryushkin, Whidden and Matsen (2018, Conjec-
ture 9) to conjecture that every split shared between trees in RNNI is maintained
along every shortest path.

The following example in Figure 5 shows that this form of the Split Theorem
does not hold.

1 2 3 4 5

12 3 4 5 12 3 4 5 12 3 4 5 123 4 5 123 4 5

1234 5

1 2 3 4 5 1 2 3 4 5 4 5 3 1 2 4 5 31 2 4 5 3 12

T R

Figure 5. The split 123|45 is present in T and R, but the path
at the top is a shortest path (computed by Caterpillar Sort)
where none of the trees contains this split. On the path at the
bottom, which is a shortest path as well, this split is maintained.
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Hence not every shortest path between trees in RNNI has to maintain every
shared split of taxa. However, there exists still another shortest path connecting
the two trees, along which every shared split is maintained. This motivates the
study of the following Weak Split Theorem in RNNI.

Conjecture 9 (Weak Split Theorem). If a split of taxa A|B is shared by two trees
T and R in RNNI then there exists a shortest path p between T and R such that
all trees on p share the split A|B.

Another interesting property of our counterexample in Figure 5 is that the set
of taxa {1, 2, 3}, which is a part of the split in both T and R, does not form a
cluster in R, that is, there is no single node in the tree all descended taxa of which
are exactly 1, 2, and 3. Importantly, rooted phylogenetic trees can be uniquely
represented by sets of clusters (Steel 2016), but not by sets of splits as splits cannot
define the position of the root. For example, trees T and R in Figure 5 induce the
same set of splits, but share no cluster.

Furthermore, all our methods in this paper for computing shortest paths in
special subspaces of RNNI demonstrate that shared clusters are maintained along
shortest paths.

These considerations motivate us to conjecture the following strong version of
the Cluster Theorem.

Conjecture 10 (Cluster Theorem). Let T and R be trees in RNNI that share a
cluster C. Then C is present as a cluster in every tree on every shortest path
between T and R.

We have computationally checked that this conjecture is true in RNNI spaces
with up to seven taxa (n = 2, . . . , 7). Specifically, we computed subgraphs of RNNI
containing only trees with shared clusters and compared distances in this subgraph
with distances in the whole RNNI graph. We computed these graphs according
to the algorithm from (Gavryushkin, Whidden and Matsen 2018) as discussed in
Section 1. The source code of all these implementations can be openly accessed at
(Collienne, Elmes and Gavryushkin 2019).

3. Discussion

The problem of computing distances in all common phylogenetic graphs, includ-
ing NNI (Dasgupta et al. 2000), SPR (Bordewich and Semple 2005), and TBR
(Allen and Steel 2001), is NP-hard. Although NP-hardness does not necessarily
imply practical impossibility, this so far has been the case for these phylogenetic
algorithms with extremely few major advances (Whidden, Beiko and Zeh 2010).
NNI is especially known for its algorithmic hardness (Whidden and Matsen 2018).

Our results suggest a surprising advance in this field of NP-problems – adding
ranking information to trees simplifies some of the algorithms and makes some un-
intuitive counterexamples impossible. We hence continued the investigation of the
RNNI graph on ranked phylogenetic trees in this paper. We have taken the route of
comparing the classic NNI with the RNNI graph, so have mostly been concentrating
on questions that are settled in NNI. Specifically, we have considered a number of
geometric properties, including the diameter, radius, convexity of caterpillar trees,
and the Split Theorem. We have also justified that the technique of Dasgupta et al.
(2000) to prove that distances in NNI are NP-hard to compute cannot be directly
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applied in RNNI. This led us to the Cluster Theorem, a statement that does not
hold in NNI. All our algorithms and methods developed in this paper witness in
favour of the Cluster Theorem being true in RNNI. For example, we have checked
the statement computationally for up to seven taxa (Collienne, Elmes and Gavry-
ushkin 2019). Although the Split Theorem is true in SPR, it is still NP-hard to
compute distances in that graph. Hence Cluster Theorem alone cannot be used as
an argument in favour of the distance problem having an efficient solution in RNNI.
But the greedy nature of all our algorithms for computing shortest paths in RNNI
developed in this paper does provide such an argument.

The algorithms we developed and implemented in this paper have served as a
main ingredient for our study of the geometry of RNNI space. These algorithms
are of interest on their own as well. For example, our FindPath algorithm gives a
good approximation of the RNNI distance, performing exactly on small trees. We
are not aware of the minimal number of taxa where this algorithm fails to return
the correct distance. The MDTree algorithm produces trees as far away from a
given tree as possible, a task of importance in simulation and model comparison
studies. The Caterpillar Sort algorithm efficiently computes the RNNI distance
and shortest paths between caterpillar trees exactly. To the best of our knowledge
no such algorithm exists for NNI. This implies that the algorithmic complexity of
computing distances in NNI is higher than in RNNI.

The question of whether computing RNNI distances is NP-hard is still open.
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