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Abstract
Bacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of uncertainty. This hedging
strategy, which we term cellular hedging, is remarkably similar to financial hedging where diversifying an investment port-
folio protects against economic uncertainty. In this work, we provide a new foundation for understanding cellular hedging
by unifying the study of biological population dynamics and the mathematics of financial risk management. Our approach
explicitly incorporates environmental volatility as a stochastic process, and we seek to find the persister strategy that maxi-
mizes the expected per-capita growth rate by formulating a stochastic optimal control problem. The analysis demonstrates
that investing in persister production is only advantageous in the presence of environmental volatility, suggesting a stochas-
tic model is essential to elucidate the phenomenon. Analytical and simulation results probe the optimal persister strategy,
revealing results that are consistent with experimental observations and suggest new opportunities for experimental inves-
tigation. Overall, we provide a new way of modeling cellular decision making by unifying previously disparate theory from
mathematical biology and finance.
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Shortly after the clinical introduction of penicillin, Bigger
noticed a resistance in a small subpopulation of Staphy-

lococcal pyogenes [1]. The resistant cells, termed persisters,
are a genetically identical, slow-growing, phenotypic variant.
Bacteria invest in persisters to ensure survival: persisters are
less proliferative than regular cells in a nutrient rich environ-
ment but can withstand adversity [2]. These strategies are
akin to financial hedging, where diversifying an investment
portfolio protects against economic uncertainty [3–5]. This
type of strategy in biology and ecology is commonly referred
to as bet-hedging [6].

Bacterial persistence poses a significant clinical challenge
and is highly advantageous to bacteria. For example, persis-
ters can be resistant to antibiotic treatment [7,8], are unde-
tectable in routine clinical tests [9], and are thought to be
responsible for the incurability of many infections [10]. An-
timicrobial treatments will, therefore, benefit from an under-
standing of how persisters arise and function [11]. The sim-
ilarity between bacterial persistence and financial strategies
suggests a new pathway to investigate persister dynamics.
In this study, we provide a novel, quantitive understanding
of persister strategies using techniques from financial mathe-
matics and stochastic optimal control theory. Persister pro-
duction is known to depend on the environment [7, 12, 13]
and our mathematical modeling approach allows us to un-
earth how various optimal persister strategies depend upon
environmental volatility.

Persisters can be revealed experimentally by disinfecting a
population of Escherichia coli (E. coli) with ampicillin, which
targets proliferative cells [7]. The initially rapid reduction in
colony size eventually slows, revealing a small subpopulation
that is less sensitive to the treatment. Experimental investi-
gations are complicated by the extreme scarcity of persister
cells: typically less than 1 in 105 cells are persisters in wild
type E. coli [14]. For subpopulations of this size, stochastic
effects are significant [15,16].
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In producing persisters, bacteria allocate resources to
hedge against environmental volatility for the purpose of sur-
vival. Our hypothesis is that these processes occur in much
the same way that a financial investor hedges a portfolio
to protect from, and take advantage of, economic volatility.
The archetypal example of portfolio diversification is Mer-
ton’s portfolio problem (MPP) [3]. Here, an investor allo-
cates a fraction of their wealth in a high-yield volatile asset,
such as stocks; and a low-yield stable asset, such as govern-
ment bonds. Stochastic optimal control theory [17] is used
to maximize the investors wealth by modeling the proportion
allocated to each asset as a control. Merton’s work reveals
that it is not advantageous to possess the low-yield asset in
the absence of uncertainty, or when the growth of the high-
yield asset is deterministic. MPP revolutionized the field of
mathematical finance, and many of the ideas in MPP formed
the basis of Merton’s later work on options pricing [18, 19]
that led to the the 1997 Nobel Prize in Economics.

In this work, we develop a new framework for studying
cellular hedging by unifying two previously disparate fields:
biological population dynamics and financial mathematics.
We describe bacteria growth using a stochastic model that
explicitly incorporates environmental volatility. Previous
mathematical studies have successfully explained why organ-
isms that employ bet-hedging strategies like bacterial persis-
tence have an advantage over those that do not [4–6, 20].
We apply stochastic optimal control theory [17,21] to probe
the persister strategy that maximizes the per-capita growth
of a bacteria colony under various types of stochastic envi-
ronment. A fundamental result of our study indicates that
investing in persisters is only advantageous in the presence of
environmental volatility, suggesting study of bacterial per-
sistence warrants a stochastic model. Our new model and
approach leads to mathematical results that are consistent
with observations from several key experimental studies, and
provides new insights into bacteria dynamics in the face of
environmental volatility.
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Fig. 1. Schematic of the bacteria growth model with regular cells,
rt, and persisters, pt. Switching from persister to regular cells is
constant, v. Switching from regular cells to persisters is taken to
be the sum of a constant rate, u, and a variable rate, ϕt, that
depends upon environmental volatility.

Stochastic model of bacteria growth
To capture intrinsic noise associated with small subpopula-
tion sizes, we model bacteria dynamics with a system of Itô
stochastic differential equations (SDEs) driven by Wiener
noise [16, 17]. This choice of model can be thought of as a
bridge between discrete Markov models [15], and continuous
ordinary differential equation (ODE) models [7]. In addition,
we model the dynamics of bacteria in a volatile environment
by coupling the growth rate to a stochastic process repre-
senting the environment [22].

We model the population of regular (non-persister) cells,
rt, and persisters, pt. Here, a subscript t indicates that each
stochastic processes depends on time, t. The growth of regu-
lar cells is described by an Itô SDE such that the net growth
rate, µt, is subject to stochastic fluctuations characterized
by a Wiener process scaled by an intensity σ [16]. The qui-
escence of persisters manifests slow metabolic activity, so we
assume the growth rate of persisters is some small propor-
tion, ε < 1, that of regular cells. The net persister growth
rate is subject to stochastic fluctuations characterized by a
Wiener process scaled by an intensity η = εσ.

The current literature classifies two types persister produc-
tion in a population: variable and environment dependent,
commonly referred to as Type I; or constant, commonly re-
ferred to as Type II [7] (Fig. 1). It is understood that con-
stant production of persisters, which results in an approx-
imately constant proportion in a growing population, may
be regulated by stochastic gene fluctuation on a single cell
level [23–25]. In addition, a growth feedback mechanism [26]
— possibly regulated by quorum sensing [27] and intracellu-
lar signalling [28] — may enable cells to respond and vary the
persister production rate. In our model, regular cells switch
to persisters at a rate of u+ϕt, where: u ≥ 0 is the constant
rate [7]; and ϕt > 0 is the variable, environment-dependent,
rate. Persisters revert to regular cells at a constant rate
v ≥ 0. Cells in our model, therefore, may use both Type I
and Type II strategies.

These dynamics give rise to a system of Itô SDEs

drt = µtrt dt+ σrt dW
(1)
t −

[
(u+ ϕt)rt − vpt

]
dt , (1a)

dpt = εµtpt dt+ ηpt dW
(2)
t︸ ︷︷ ︸

Subpopulation growth

+
[
(u+ ϕt)rt − vpt

]
dt︸ ︷︷ ︸

Phenotype switching

. (1b)

Here, W (1)
t and W

(2)
t are two independent Wiener processes

that satisfy W
(i)
t+h − W

(i)
t ∼ N (0, h), h > 0, i = 1, 2 where

N (0, h) denotes a normal distribution with mean zero and
variance h. Such a system of equations is said to be in the
form of multiplicative Wiener noise [21]. We note that in
removing variability from the model by setting σ = η = 0,
we recover the ODE model of Balaban et al. [7].

We find it natural to consider the variable transformation

nt = rt + pt, θt = pt / nt, (2)
such that nt represents the colony size and θt represents
the proportion of persisters. Following Itô’s lemma [17], the

transformed state equations are
dnt =

[
1− θt(1− ε)

]
µtnt dt (3a)

+ σnt(1− θt) dW
(1)
t + ηntθt dW

(2)
t ,

dθt =
[
(1− θt)(u+ ϕt)− θtv − (1− θt)θt

(
(1− ε)µt (3b)

− σ2(1− θt) + η2θt
)]

dt

− (1− θt)θtσ dW
(1)
t + η(1− θt)θt dW

(2)
t ,

revealing that the dynamics of the persister proportion, θt,
are independent of the colony size, nt.

Stochastic model environmental volatility. We model
environmental volatility by assuming µt = m(ζt), where ζt is
a stochastic process that represents a volatile environment.
There are many appropriate choices for m(·) and ζt, but we
focus our analysis on three environments, samples paths of
each shown in Fig. 2a–c. These are

1. Constant. (Fig. 2a) We set m(ζ) ∈ {µG, µS}, such
that µt is constant. Here µG represents a colony dur-
ing growth; and µS represents a colony under stress or
specifically, antimicrobial treatment. For numerical re-
sults, we choose µG = 2h−1 and µS = −2 h−1 to match
experimental data for E. coli during growth and ampi-
cillin treatment [7].

2. Monod. (Fig. 2b) Monod kinetics are commonly used to
model the growth of bacteria [29–31], and feature dy-
namics with an asymptotic upper bound on the growth
rate, but no lower bound. We describe this environment
by a mean-reverting Ornstein-Uhlenbeck process [17]
and couple the growth rate using a Monod equation [29],

m(ζt) =
µmaxζt
Kζ + ζt

− δ, (4a)

dζt = ξ(Kζ − ζt) dt+ κdW
(3)
t , (4b)

where dW
(3)
t is a Wiener process independent of both

dW
(1)
t and dW

(2)
t . Here, ζt experiences fluctuations pro-

portional to κ and a reversion force to the state ζt = Kζ

of strength proportional to ξ. The Monod coupling fea-
tures an asymptotic upper-bound on the growth rate of
µt = µmax and no lower bound. In effect, unfavourable
environmental changes have a larger effect on the growth
rate than those that are favorable, and the growth rate
experiences reversion to a growth rate µt = µmax/2− δ,
where δ represents the natural death rate. For numer-
ical results, we choose ξ = 0.1 h−1, Kζ = 1, ζ0 = 1,
κ = 0.3, µmax = 8h−1 and δ = 2h−1. To deal with the
discontinuity at ζ = −Kζ , we truncate Eq. 4a so that
m(ζ) = m(−0.5) for ζ < −0.5.

3. Poisson. (Fig. 2c) Kussell et al. [15] model environ-
mental variability by assuming alternating periods of
growth and stress, of durations τG and τS , respectively.
We reproduce this type of environment in a stochastic
model by assuming that the environment switches be-
tween growth and stress according to a Poisson process.
We consider that m(ζ) = µG for ζ ≥ 0; m(ζ) = µS

for ζ < 0; and model the environment as the Poisson
process

dζt = ρ(ζt) dPt , dPt ∼ Po(dt λ(ζt)), (5a)

where ρ(ζt) =

{
−2, ζt = +1,

+2, ζt = −1,
(5b)

and λ(ζt) =

{
1/τG, ζt = +1,

1/τS , ζt = −1.
(5c)
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Fig. 2. Optimal persister production in cell populations under various types of environment. (a)-(c) Growth rates, µt, sampled from
each environment to simulate bacteria growth in the rest of the figure. Also shown are and five additional, independent, realisations
(light grey); (d)-(f) The variable persister production rate, ϕ∗

t , for a single realisation of the model. (g)-(i) The population, nt, (blue,
left scale) and persister proportion, θt, (red, right scale), for a single realisation of the model. The seeds used to generate the Wiener
processes W (1) and W (2) are identical for all environments.

This formulation allows for a mean time of τG in the
growth phase, where µt = µG, and a mean time of τS in
the stress phase, where µt = µS . For numerical results
in this study, we choose τG = 9.5 h, τS = 0.5 h, ζ0 = 1,
µG = 2h−1 and µS = −2 h−1.

These choices represent environments in which changes
happen gradually (Monod environment) or abruptly (Pois-
son environment), as demonstrated in Fig. 2b and Fig. 2c,
respectively. For comparative purposes we choose similar re-
alizations of each environment and choose the initial condi-
tion for all environments such that µ0 = µG = 2h−1. In the
supporting material, we explore results for two other models
of environmental volatility: (4) an Ornstein-Uhlenbeck pro-
cess without a Monod coupling (Fig. S1d) and, (5) a Duffing
oscillator (Fig. S1e).

Optimal persister production strategies

Our ideas of cellular hedging suggest that a cell population
chooses a persister production strategy S = {u, v, ϕt} that is
optimal in some way. Mathematically, we define optimality
as the strategy that maximizes some fitness measure, which
we now construct. We assume that there is no explicit cost
to producing persisters with constant rates u and v; but that
there is a quadratic running cost to produce persisters with a
variable rate ϕt. The cost of applying a non-zero ϕt accounts
for the sensing mechanisms that cells must use to respond to
the environment.

We choose a fitness measure, commonly referred to as a

payoff in optimal control theory, as

JS = E
[ ∫ T

0

αϕ2
t dt︸ ︷︷ ︸

Sensing

+ loge(nT )︸ ︷︷ ︸
Growth

]
, α < 0. (6)

Here T denotes a terminal time, so that the maximization
is carried out on the interval t ∈ [0, T ]; and, α character-
izes a trade-off between growth and operating the sensing
mechanisms required to vary the persister production rate.
Maximizing the logarithmic term in Eq. 6 can be interpreted
as cells maximizing their per-capita growth rate over the in-
terval t ∈ [0, T ], since

loge(nT ) = loge(n0) +

∫ T

0

1

nt

dnt

dt
dt ,

and loge(n0) is constant [32]. Our choice of fitness mea-
sure corresponds to evolutionary mechanisms that perpetu-
ate highly productive populations [15].

Together with the state equations (Eq. 3), maximizing
Eq. 6 corresponds to an optimal control problem. We now
review essential elements of Hamilton-Jacobi-Bellman (HJB)
optimal control theory.

Optimal control theory. A stochastic control problem may
be stated as

max
ωt∈U

E
(∫ T

0

L(xt, ωt, t) dt+Φ(xT )

)
, (7)

where ωt is the control from the set of allowable controls, U .
The state equations are given by the q-dimensional stochastic
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process, xt, governed by

dxt = M(xt, ωt, t) dt+Σ(xt, ωt, t) dWt , (8)

where M ∈ Rq gives the drift of the process; dWt ∈ Rq is a
Wiener process of the same dimension as xt with independent
constituants; and, ΣΣtr ∈ Rq×q describes the covariance of
the Wiener process (superscript tr denotes the matrix trans-
pose). In this study, we also study a form of xt that includes
Poisson jump noise, and we include the derivation of the HJB
equations for this case in the supporting material.

To solve the optimal control problem we define the value
function, V (x, s), as the optimal payoff obtainable starting
at x at time s and continuing to terminal time T . That is,

V (x, s) = max
ωt∈U

E
(∫ T

s

L(xt, ωt, t) dt+Φ(xT )

)
,

subject to xs = x.
(9)

Hamilton-Jacobi-Bellman (HJB) theory describes V as the
solution of a partial differential equation (PDE) [17,21], given
by

0 = max
ωt∈U

(AV + L(xt, ωt, t)) , (10)

where A is the stochastic generator for the process govern-
ing xt. For the q-dimensional system given by Eq. 8, the
stochastic generator is given by

AV =
∂V

∂s
+

q∑
i=1

(
Mi

∂V

∂xi
+

1

2

q∑
j=1

(ΣΣtr)ij
∂2V

∂xi∂xj

)
(11)

where Mi denotes the ith element of M(xt, ωt, t), and
(ΣΣtr)ij denotes the element in the ith row and jth col-
umn of ΣΣtr, for Σ = Σ(xt, ωt, t). Substituting the termi-
nal time s = T into Eq. 9 provides the terminal condition
V (x, T ) = Φ(xT ).

In certain cases, the argmax(AV +L) term in Eq. 10 may
be found analytically through differentiation. This yields
both an expression for the optimal control, ω∗

t ; and a q-
dimensional, non-linear, PDE coupled to a terminal con-
dition. In the case of MPP, Eq. 10 has an analytical so-
lution [3], however in most cases we are required to solve
Eq. 10 numerically. To obtain an optimal trajectory starting
at state x0, we solve the state equations (Eq. 8), coupled to
the solution of the HJB PDE (Eq. 10), forward in time using
the Euler-Maruyama algorithm [33]. Full details of the nu-
merical techniques and code used in this work are provided
as supporting material.

Constant persister production. We first examine a cell
colony that can only produce persisters at a constant rate, so
we fix the variable rate, ϕt = 0. In this case, we only assume
the constant environment so µt = µG.

As u and v only appear in the optimal control problem
linearly, the solution is not finite unless a bound is enforced
on u and v [34]. The unbounded problem corresponds to
a cell population that is able to move itself instantaneously
to anywhere in the state space. To address this, we assume
that the constant switching rates u and v are chosen by the
population to control the steady-state persister proportion,
which we denote θ̂t ∈ [0, 1]. Taking the drift term in the
state equation for θt (Eq. 3b) to be zero, we see that u and
v are related to θ̂t by

u = θ̂t

(
v

1− θ̂t
+ η2θ̂t − (1− θ̂t)σ

2 + (1− ε)µG

)
. (12)

At this point, we note that Eq. 12 is only consistent if θ̂t is
constant, and we address this shortly.

Allowing θ̂t to be a control, the state equation for nt

(Eq. 3a) becomes

dnt

nt
= (1−θ̂t(1−ε))µG dt+

√
(1− θ̂t)2σ2 + θ̂2t η

2 dWt , (13)

since a dW
(1)
t + b dW

(2)
t can be considered as

√
a2 + b2 dWt.

Assuming that θ̂t is chosen to maximize the fitness measure
(Eq. 6) reveals a problem closely related to MPP [3]. The
problems differ intrinsically in that an investor is able to
reallocate their portfolio instantaneously and without cost
— though variations of MPP address this — whereas the cell
colony consists of finitely many cells that act heterogeneously
using finite switching rates to produce persisters.

We apply stochastic optimal control theory [17,21] and ex-
ploit the similarity between this formulation of the persister
problem and MPP [3] to obtain an analytical solution, in
which the optimal control, denoted θ̂∗t ∈ [0, 1], is given by

θ̂∗t = max

[
0,min

(
1,

σ2 − (1− ε)µG

η2 + σ2

)]
. (14)

Full details of this analytical solution are given in the sup-
porting material. As is the case with MPP, θ̂∗t is constant,
so the strategy is independent of both the time and sys-
tem state. Solving Eqs. 12 and 14 simultaneously gives
θ̂∗t = 1.19 × 10−5 with σ = 1.414222 which matches ex-
perimental observations for wild type E. coli bacteria where
µG = 2h−1, ε = 0, η = εσ = 0, u = 1.2× 10−6 h−1 and
v = 0.1 h−1 [7]. For numerical results in the rest of this
study, we fix σ, ε, η, u and v to these values, and set the
initial persister proportion θ0 = 1.19× 10−5.

Variable persister production. We now consider a cell
colony that is able vary persister production in response to
their environment. In this case, ϕt ∈ R+, can be thought of
as a Markovian control [17], or a control that is chosen based
on information that includes the current state and time, but
does not carry a memory about the past state. For numerical
stability, we place an upper-bound on the control such that
ϕt ≤ 0.1 h−1.

To solve the control problem, we define the value function,
V , by

V (x, y, z, s) = max
ϕt

E
[∫ T

s

αϕ2
t dt+ loge(nT )

]
, (15a)

where (ns, θs, ζs) = (x, y, z). (15b)

HJB optimal control theory describes V by the PDE, given
by Eq. 10. In our case, we can express the PDE as

0 = max
ϕt

(
αϕ2

t +
∂V

∂y
ϕt +H⋆

)
, (16)

where H⋆ represents a collection of terms independent of the
control ϕt. As Eq. 16 is quadratic in ϕt, we can carry out
the maximization by setting the derivative to zero to find the
optimal control, denoted ϕ∗

t ∈ [0, 0.1], as

ϕ∗
t = max

[
0,min

(
0.1,− 1

2α

∂V

∂y
(1− y)

)]
. (17)

Here, y = θt is the current persister proportion. Since
y ∈ [0, 1], an interpretation of Eq. 17 is that the population
uses ϕ∗

t to steer the population toward the optimal persis-
ter proportion, where ∂V/∂y = 0. As environmental triggers
only create persisters (the quiescent state of persisters means
they are unable to react to the environment), ϕ∗

t > 0, and
so ϕ∗

t is only active if the current proportion is less than the
optimal proportion. Finally, ϕ∗

t → 0 as α → −∞, which
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represents the sensing mechanisms becoming prohibitively
expensive.

Substituting Eq. 17 into the HJB equation leads to a non-
linear PDE for V that must be solved backward in time. Full
details of this equation are given in the supporting material.
In summary, the variable transformation x → loge(x) re-
moves all terms containing the independent variable x from
the equation. Therefore, we find that the ansatz

V (x, y, z, s) = Ψ(y, z, s) + loge(x), (18)
is consistent with the system. This result reveals that the
optimal control (Eq. 17) is independent of colony size since
∂V/∂y = ∂Ψ/∂y. This gives an optimal strategy of the form
ϕ∗
t = ϕ∗(θt, ζt), which the cells may implement using only

information about the proportion of persisters (through, for
example, quorum-sensing [27] or intracellular signalling [28]),
and the environment (through, for example, a growth feed-
back mechanism [26]).

In Fig. 2 we show dynamics for cell colonies in all three
environments, for α = −100 h. For these results, we solve
for Ψ numerically. As expected, we find that unfavorable en-
vironments trigger variable persister production (Fig. 2e,f ),
without any additional persister production for the constant
environment (Fig. 2d). This suggests that a constant per-
sister production strategy is sufficient for an environment
with a constant expected growth rate. On the other hand,
additional persister production is seen in response to envi-
ronmental cues for more volatile environments (Fig. 2e,f ).
An interesting result in Fig. 2e is that the peak variable pro-
duction rate under the Monod environment lies before the
minimum growth rate. This suggests that the model im-
plicitly incorporates mechanisms such that cells understand
the environment to the extent that they can anticipate envi-
ronmental changes, perhaps based on past events or sudden
changes in the environment.

Behaviour under unfamiliar environments and an-
timicrobial treatment. By assuming that cells monitor
their growth rate, µt, we can explore how a persister strategy
that is optimal under one type of environment behaves under
another, unfamiliar environment. We couple the growth rate
to the optimal control by considering ϕ∗

t = ϕ∗(θt, ζt) where
ζt = m−1(·) denotes the inverse of the growth rate coupling
function m(ζ). In other words, the cells measure the current
environment state using the growth rate.

Persisters are revealed experimentally by exposing the
population to antibiotics and monitoring the number of vi-
able cells [7]. We simulate this process to examine how
cells which have evolved under each environment behave
when continuously exposed to a constant expected decay
rate. Simulation results in Fig. 3a, for a population that
can only produce persisters at a constant rate, are similar
to experimental results for wild-type E. coli [7]. In compar-
ison, we find that colonies that implement a strategy opti-
mal under a more volatile environment, such as the Poisson
and Monod environments, produce persisters using the vari-
able rate (Fig. 3c) reach saturation of persisters more quickly
(Fig. 3b) and have a higher long term population (Fig. 3a).

Discussion
In this work, we model persister dynamics using a stochas-
tic model and introduce the idea of cellular hedging to study
an optimal persister production strategy. By applying cross-
disciplinary ideas from mathematical finance to the persister
problem, we provide several analytical and simulation re-
sults to elucidate bacterial persistence under different forms
of environmental volatility.
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Fig. 3. Single realizations of the model showing the behaviour of
a cell population under antibiotic treatment. (a) Shows the pop-
ulation, nt; (b) shows the persister proportion, θt; and, (c) shows
the variable persister production rate, ϕ∗

t . In all cases, the cells ex-
perience a growth rate µt = −2 h−1 and implement: the variable
strategy optimal under either the Monod environment (green) or
the Poisson environment (red); constant switching only optimal
under the constant environment (black); or do not produce per-
sisters (grey).

Our model suggests that it is detrimental to produce per-
sisters in the absence of volatility. In examining the opti-
mal strategy for constant persister production, we reveal the
proportion of persisters that can be maintained to maximize
the expected growth of the population (Eq. 14). Removing
volatility from the model by using constant expected growth
rate and setting σ = 0, recovers the deterministic model of
Balaban et al. [7] and reveals an optimal persister proportion
of zero. Therefore, our model predicts that producing persis-
ters in the absence of environmental volatility is suboptimal
and, therefore, leads to a lower expected per-capita growth
rate. In contrast, our straightforward assumption of Wiener
noise in the growth rate reveals a small proportion of persis-
ters (approximately 1 in 105) — consistent with experimen-
tal observations of Balaban et al. [7] — that maximizes the
expected per-capita growth rate. This result contrasts with
previous mathematical studies that assume external factors,
such as antibiotic treatment, to explain persistence [15].

Compared to financial hedging, cellular hedging differs sig-
nificantly in the complexity of the strategy that can be im-
plemented. A key result is our direct comparison of bacte-
rial persistence and MPP revealing a constant optimal pro-
portion of persisters that should be maintained in an envi-
ronment with a constant expected growth rate. This result
is significant for the persister problem as, unlike in MPP,
the cell population cannot directly control the proportion
of persisters. However, the population can maintain a con-
stant expected population, regulated by constant switching
propensities, u and v.

The mechanisms that enable cells to implement cellular
hedging strategies that respond to the environment are un-
known [35], but they must come at a cost to the cells in
terms of additional genetic machinery and rely on limited
information available to individual cells. Our study reveals
an optimal variable persister production strategy that de-
pends only on the time, persister proportion and the envi-
ronment, but not on the colony size. Additional results in the
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supporting material (Fig. S6) also indicate that these strate-
gies become time-independent far from the terminal time T .
Furthermore, the strategy itself is not complex. Rather, cells
increase persisters production when the persister proportion
for a given growth rate is less than optimal. These results
are surprising as optimal control theory only provides the
strategy that maximizes the payoff, and does not necessar-
ily enforce any level of complexity in the cellular hedging
strategy.

We demonstrate the distinct advantage persisters afford
bacteria against antimicrobial treatment (Fig. 3) [7, 9, 11].
Our stochastic model of persister production could be used
to improve the efficacy of antimicrobial treatments using op-
timal control from an optimal treatment perspective [34,36].
Results from our modeling framework imply new ways to de-
sign treatment strategies that could be verified experimen-
tally. Additional results (Fig. S6) suggest that ϕt decreases
monotonically with the growth rate, for all environments
considered. Temporarily exposing the cell colony to favor-
able conditions may decrease the variable persister produc-
tion rate predicted by the model, lowering the proportion of
persisters and thereby making the population more suscep-
tible to antibiotics. This is consistent with experimental ob-
servations where exposing a colony to a fresh growth medium
before applying antibiotics decreases persistence [37].

Rapid evolution of cellular hedging strategies is experi-
mentally reproducible [38]: Van den Bergh et al. [9] found
that exposing E. coli to daily antibiotic treatments increased
survival by between three and 300-fold after just three treat-
ments, and Rodriguez-Beltran et al. [39] study induced evo-
lutionary changes in bacteria behaviour through repeated
application of antibiotics. Our modeling framework offers
an opportunity to investigate an emergent persister strategy
from repeated exposure of bacteria to a fluctuating environ-
ment. Additionally, financial mathematics techniques may
be applied to study the evolutionary process as it occurs. For
example, policy adjustment models [40] quantify the cost of
strategy change, and can be compared to mutation costs in
a rapidly-evolving cell colony.

Conclusions
We provide new insight into cellular hedging by unifying the
study of biological population dynamics and the mathemat-
ics of financial risk management. A fundamental result of
our study is that investing in persisters is only advantageous
in the presence of environmental volatility, suggesting that
the study of this phenomenon must take a stochastic per-
spective. We present a new stochastic model of bacteria
growth in a volatile environment and apply optimal control
theory to probe the persister strategy that maximizes the
per-capita growth rate. The framework we develop offers
an opportunity for future generalizations to explore cellular
decision making in a broader context. Many seemingly com-
plex cellular phenomena from bet-hedging in cancers [20,41],
herpes viruses [42] and HIV [43] to decision making in the
epithelial-mesenchymal transition [44] could be modeled us-
ing ideas from cellular hedging and mathematical finance.

Materials and Methods
We integrate the SDE models using the Euler-Maruyama algorithm
[33] with time step h = 2 × 10−3. To compare results between envi-
ronments, we fix the seeds used to generate the Weiner processes W

(1)
t

and W
(2)
t when simulating different models.

Code used to produce the numerical results is available on GitHub
at github.com/ap-browning/persisters. Full details of the numerical

methods, and the full form of the HJB equation for each environment,
are given in the supporting material.
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