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Abstract

Bacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of uncertainty. This hedging
strategy is remarkably similar to financial hedging, where diversifying an investment portfolio protects against economic
uncertainty. We provide a new theoretical foundation for understanding cellular hedging by unifying the study of biological
population dynamics and the mathematics of financial risk management through optimal control theory. Motivated by
the widely accepted role of volatility in the emergence of persistence, we consider several novel models of environmental
volatility described by continuous-time stochastic processes. This allows us to study an emergent cellular hedging strategy
that maximizes the expected per-capita growth rate of the population. Analytical and simulation results probe the optimal
persister strategy, revealing results that are consistent with experimental observations and suggest at new opportunities for
experimental investigation and design. Overall, we provide a new way of conceptualising and modelling cellular decision-
making in volatile environments by explicitly unifying theory from mathematical biology and finance.
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Introduction

Shortly after the clinical introduction of penicillin, Bigger
noticed a resistance in a small subpopulation of Staphylococ-
cal pyogenes (1). The resistant cells, termed persisters, are a
genetically identical, slow-growing, phenotypic variant. Bac-
teria invest in persisters to ensure survival: persisters are less
proliferative than regular cells in a nutrient rich environment
but can withstand adversity (2). These strategies are akin to
financial hedging, where diversifying an investment portfolio
protects against economic uncertainty (3–6). This similar-
ity is widely acknowledged: parts of the biology and ecology
literature refer to this phenomena as bet-hedging (2, 5, 7–
9). In this work, we introduce the concept of cellular hedg-
ing, where we explicitly model bacterial persistence using
techniques from mathematical finance, including stochastic
differential equations (SDEs) and stochastic optimal control
theory.

Bacterial persistence poses a significant clinical challenge
and is highly advantageous to bacteria. For example, per-
sisters are less sensitive to antibiotic treatment (10–13), are
undetectable in routine clinical tests (14), and are thought
to be responsible for the formation (15) and incurability (16)
of many infections. Antimicrobial treatments will, therefore,
benefit from an understanding of how persisters arise and
function (17). The similarity between bacterial persistence
and financial hedging strategies suggests a new pathway to
investigate persister dynamics. In this study, we provide a
novel, quantitive understanding of persister strategies using
techniques from financial mathematics and stochastic opti-
mal control theory. Persister production is known to depend
on the environment (10, 18, 19) and our mathematical mod-
elling approach allows us to unearth how various optimal
persister strategies depend upon environmental volatility.

∗Corresponding author. E-mail: ap.browning@qut.edu.au

Persisters can be revealed experimentally by disinfecting
a population of Escherichia coli (E. coli) with ampicillin,
which targets proliferative cells (10). The initially rapid re-
duction in population size eventually slows, revealing a small
subpopulation that is less sensitive to the treatment. Ex-
perimental investigations are complicated by the extreme
scarcity of persister cells: typically less than 1 in 105 cells
are persisters in wild type E. coli (20). For subpopulations
of this size, stochastic effects are significant (21, 22).

In producing persisters, bacteria allocate resources to
hedge against environmental volatility for the purpose of sur-
vival. We assume that these processes occur in much the
same way that a financial investor hedges a portfolio to pro-
tect from, and take advantage of, economic volatility (23).
The archetypal example of portfolio diversification in finance
is Merton’s portfolio problem (MPP) (3). Here, an investor
allocates a fraction of their wealth in a high-yield volatile
asset, such as stocks; and a low-yield stable asset, such as
government bonds. Analogously, we suppose that bacteria
have evolved mechanisms to regulate an allocation of their
total population as proliferative although susceptible, and
some as persisters. In the finance problem, market volatility
is modelled such that the underlying price of each asset can
be described as an Itô SDE driven by Wiener noise (3, 24),
similar to models of noisy exponential growth proposed for
biological problems (25). More complicated models of mar-
ket volatility have been extensively explored in the finance
literature, such as those that incorporate Poisson jump noise
to describe market shocks (26). In Merton’s original work,
stochastic optimal control theory (24) is used to maximize
the investors wealth by modelling the proportion allocated
to each asset as a control. Merton revealed that it is not
advantageous to possess the low-yield asset in the absence
of uncertainty, or when the growth of the high-yield asset is
deterministic. MPP revolutionized the field of mathemati-
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cal finance, and many of the ideas in MPP formed the basis
of Merton’s later work on options pricing with Black and
Scholes (27, 28) that led to the the 1997 Nobel Prize in Eco-
nomics.

Current mathematical models of persistence typically de-
scribe environmental volatility with a growth rate that tran-
sitions through finitely many states (such as a growth and
stress state). Transitions between these states are assumed
to occur either periodically (8, 21, 29) or stochastically
(4, 5, 30). Many existing studies maximize some measure
of the long-term growth rate of the population and probe
the environmental conditions under which persistence is ad-
vantageous using, for example, Lyapunov exponents (30).
A limitation of these existing modelling approaches is their
inability to capture more general models of environmental
volatility. We leverage an explicit connection with mathe-
matical finance to study optimal cellular hedging strategies
using stochastic optimal control theory (24, 31). This ap-
proach has several advantages. First, we can probe cellular
hedging strategies under more complex models of environ-
mental volatility. Second, we can model the emergence of an
environment-dependent persister strategy.

In our study, we first model persistence in a population
where the growth rate is subject to continuous stochastic
fluctuations in the form of Wiener noise (22, 24, 32). We
posit that, in many cases, this is a more appropriate model
of environmental volatility than the discrete transitions, or
shocks, that are currently commonplace in mathematical
models of persistence (8, 21, 29, 30). Through this model,
we draw a direct connection with mathematical finance and
demonstrate how MPP can be applied directly to the bio-
logical problem. Next, we expand on this simplistic model
through an environment-dependent hedging strategy under
more complex models of environmental volatility. We include
in our analysis a model that uses Poisson jump noise (31), to
capture the aforementioned existing models of environmental
volatility (4, 5, 8, 21, 30) where transitions in the growth rate
occur due to, for example, shocks. Our modelling framework
is readily extensible to any form of environmental volatility
that can be described using an Itô SDE.

Our goal is to develop a new framework for studying cel-
lular hedging in response to environmental volatility by uni-
fying the study of biological population dynamics with tech-
niques financial mathematics. It is for this reason we use
the term cellular hedging, instead of the term bet-hedging
(2, 5, 7–9). Despite the established importance of volatility
in elucidating bacterial persistence, we find there is currently
a scarcity of methods available to describe cellular hedging
strategies under environmental volatility. Our mathemati-
cal framework demonstrates the importance of considering
more complex models of environmental volatility, and we
lay theory to complement future experimental studies that
probe emergent persister strategies in response to continu-
ously varying stochastic environments. Our new model and
approach leads to mathematical results that are consistent
with observations from several existing experimental studies,
and provides new insights into bacteria dynamics in the face
of environmental volatility.

Methods

Stochastic model of bacteria growth

We describe population-level bacteria dynamics in a volatile
environment with a system of SDEs driven by Wiener noise
(22, 25, 32). This choice of model can be thought of as a
bridge between discrete Markov models (21, 23), and deter-

u + ϕt

v
rt ptμt εμt

Fig. 1. Schematic of the bacteria growth model with regular cells,
rt, and persisters, pt. Switching from persisters to regular cells is
constant, v. Switching from regular cells to persisters is taken to
be the sum of a constant rate, u, and a variable rate, φt, that
depends upon environmental volatility.

ministic ordinary differential equation (ODE) models (10).
In addition, our population-level model of bacterial persis-
tence complements stochastic gene expression models that
describe the regulation of persister strategies (6, 33). Fur-
ther, our modelling approach can be generalized to can cap-
ture many other forms of environmental noise. For example,
we model the dynamics of bacteria in a volatile environment
by coupling the growth rate to a stochastic process repre-
senting the environment (34).

We model exponential growth in a population composed of
regular (non-persister) cells, rt, and persisters, pt. Here, a
subscript t indicates that each stochastic processes depends
on time. The net growth rate of regular cells is a stochastic
process with expectation µt and amplitude σ. The quies-
cence of persisters manifests as slow metabolic activity, so
we assume the expected growth rate of persisters is some
small proportion, ε � 1, of regular cells. The net persister
growth rate is, therefore, a stochastic process with expecta-
tion εµt and amplitude η = εσ. In the absence of subpop-
ulation switching, these dynamics give rise to the system of
differential equations (25, 32)

drt
dt

=
(
µt + σξ

(1)
t

)
rt, (1a)

dpt
dt

=
(
εµt + ηξ

(2)
t

)
pt. (1b)

Here, ξ
(1)
t and ξ

(2)
t are independent Gaussian white noise

processes. The expected growth rate of regular cells is given
by µt, which may be constant, or itself a stochastic process.
We interpret Equation 1 in the Itô sense for two reasons.
First, the properties of the Itô integral make it well suited to
models in population biology (25, 35). Second, Itô SDEs are
widely applied in mathematical finance, including in MPP
(3), where the property E

[∫
xt dWt

]
= 0, in the Itô sense, is

vital.

The current literature classifies two types persister produc-
tion in a population: variable and environment dependent,
commonly referred to as Type I; or constant, commonly re-
ferred to as Type II (10) (Fig. 1). It is understood that
constant production of persisters, which results in an approx-
imately constant proportion in a growing population, may be
regulated by stochastic gene fluctuation on a single cell level
(36–38). In addition, a growth feedback mechanism (39) —
possibly regulated by quorum sensing (40) and intercellular
signalling (41) — may enable cells to respond and vary the
persister production rate. In our model, regular cells switch
to persisters at a rate of u+φt, where: u ≥ 0 is the constant
rate (10); and φt ≥ 0 is the variable, environment-dependent,
rate. Persisters revert to regular cells at a constant rate
v ≥ 0. Our model can, therefore, describe both Type I and
Type II strategies.

Incorporating subpopulation switching into the growth
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equations (Eqs. 1) yields

drt =

︷ ︸︸ ︷
µtrt dt+ σrt dW

(1)
t −

︷ ︸︸ ︷[
(u+ φt)rt − vpt

]
dt, (2a)

dpt = εµtpt dt+ ηpt dW
(2)
t︸ ︷︷ ︸

Subpopulation growth

+
[
(u+ φt)rt − vpt

]
dt︸ ︷︷ ︸

Phenotype switching

. (2b)

Such a system of equations is said to be in the form of multi-
plicative Wiener noise (31). We note that in removing vari-
ability from the model by setting σ = η = 0, we recover the
ODE model of Balaban et al. (10). Many other choices for
a stochastic population dynamics model exist (22), such as
models that consider intrinsic noise caused by subpopulation
switching (42).However, the focus of the current work is on
fluctuations in the environment and growth rate, which we
assume to be independent of the population size.

We find it natural to consider the variable transformation

nt = rt + pt, θt =
pt
nt
, (3)

such that nt represents the population size and θt represents
the proportion of persisters. Following Itô’s lemma (24), the
transformed state equations are

dnt =
[
1− θt(1− ε)

]
µtnt dt (4a)

+ σnt(1− θt) dW
(1)
t + ηntθt dW

(2)
t ,

dθt =
[
(1− θt)(u+ φt)− θtv − (1− θt)θt

(
(1− ε)µt (4b)

− σ2(1− θt) + η2θt
)]

dt

− (1− θt)θtσ dW
(1)
t + η(1− θt)θt dW

(2)
t ,

revealing that the dynamics of the persister proportion, θt,
are independent of the population size, nt.

Stochastic model environmental volatility

We model environmental volatility by assuming µt = m(ζt),
where ζt is a stochastic process that represents a volatile
environment. There are many appropriate choices for m(·)
and ζt, but we focus our analysis on three environments,
samples paths of each shown in Fig. 2a–c. These are

1. Constant. (Fig. 2a) We set m(ζ) ∈ {µG, µS}, such
that µt is constant. Here µG represents a colony during
growth; and µS represents a colony under stress or an-
timicrobial treatment. For numerical results, we choose
µG = 2 h−1 and µS = −2 h−1 to match experimental
data for E. coli during growth and ampicillin treatment
(10).

2. Monod. (Fig. 2b) Monod kinetics are commonly used to
model the growth of bacteria (43–45), and feature dy-
namics with an asymptotic upper bound on the growth
rate, but no lower bound. We describe this environ-
ment by a mean-reverting Ornstein-Uhlenbeck process
(24) and couple the growth rate using a Monod equa-
tion (43),

m(ζt) =
µmaxζt
Kζ + ζt

− δ, (5a)

dζt = γ(Kζ − ζt) dt+ κ dW
(3)
t , (5b)

where W
(3)
t is a Wiener process independent of both

W
(1)
t and W

(2)
t . Here, ζt experiences fluctuations pro-

portional to κ and a reversion force to the state ζt = Kζ

of strength proportional to γ. The Monod coupling fea-
tures an asymptotic upper-bound on the growth rate

of µt = µmax and no lower bound. Unfavourable en-
vironmental changes have, therefore, a larger effect on
the growth rate than those that are favorable, and
the growth rate experiences reversion to a growth rate
µt = µmax/2 − δ, where δ represents the natural death
rate. For numerical results, we choose γ = 0.1 h−1,
Kζ = 1, ζ0 = 1, κ = 0.3, µmax = 8 h−1 and δ = 2 h−1.
For this choice of parameters the growth rate experi-
ences reversion to a growth rate of µG = 2 h−1, which
corresponds to the constant environment. To deal with
the discontinuity at ζ = −Kζ , we truncate Eq. 5a so
that m(ζ) = m(−0.5) for ζ < −0.5.

3. Poisson. (Fig. 2c) An existing class of mathematical
models describe environmental uncertainty using alter-
nating periods of growth and stress (4, 5, 8, 21, 30).
We reproduce this type of environment in a stochastic
model by assuming that the environment switches be-
tween growth and stress according to a Poisson process.
We consider that m(ζ) = µG for ζ ≥ 0; m(ζ) = µS
for ζ < 0; and model the environment as the jump or
telegraph process (31)

dζt = ρ(ζt) dPt , dPt ∼ Po(dt λ(ζt)), (6a)

where ρ(ζt) =

{
−2, ζt = +1,

+2, ζt = −1,
(6b)

and λ(ζt) =

{
1/τG, ζt = +1,

1/τS , ζt = −1.
(6c)

Here, Pt is a Poisson process with intensity λ(ζt). This
formulation allows for a mean time of τG in the growth
phase, where µt = µG, and a mean time of τS in the
stress phase, where µt = µS . For numerical results in
this study, we choose τG = 9.5 h, τS = 0.5 h, ζ0 = 1,
µG = 2 h−1 and µS = −2 h−1. This model of envi-
ronmental volatility can be readily extended to capture
more general forms of Poisson noise leading to discon-
tinuous fluctuations in the environment due to, for ex-
ample, shocks.

These choices represent environments in which changes
happen gradually (Monod environment) or abruptly (Pois-
son environment), as demonstrated in Fig. 2b and Fig. 2c,
respectively. For comparative purposes, we demonstrate re-
sults using realisations of each environment that are similar,
and choose the initial condition for all environments to cor-
respond to the initial growth rate µ0 = µG = 2 h−1. In the
supporting material, we explore results for two other models
of environmental volatility: (4) an Ornstein-Uhlenbeck pro-
cess without a Monod coupling (Fig. S1d) and, (5) a Duffing
oscillator (Fig. S1e).

Optimal persister production strategies

Our ideas of cellular hedging suggest that a cell population
has developed a persister production strategy S = {u, v, φt}
that is optimal in some way. Mathematically, we define opti-
mality as the strategy that maximizes some fitness measure,
which we now construct. We assume that there is no explicit
cost to producing persisters with constant rates u and v; but
that there is a quadratic running cost to produce persisters
with a variable rate φt. The cost of applying a non-zero φt
accounts for the sensing mechanisms that cells must use to
respond to the environment.

3

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2019.12.19.883645doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883645
http://creativecommons.org/licenses/by-nd/4.0/


E F

H I

B C

D

G

A Monod PoissonConstant
G

ro
w

th
 ra

te
 (/

h)
, μ

t

V
ar

ia
bl

e 
pe

rs
is

te
r

pr
od

uc
tio

n 
ra

te
 (/

h)
, ϕ

t
Po

pu
la

tio
n,

 n
t

Pe
rs

is
te

r p
ro

po
rti

on
, θ

t

0 108642
Time (h)

0 108642
Time (h)

0 108642
Time (h)

0.0

0.1

100

102

104

106

108

0

−2

2

10–6

10–4

10–2

100

Fig. 2. Optimal persister production in cell populations under various types of environment. (a)-(c) Growth rates, µt, sampled from
each environment to simulate bacteria growth in the rest of each column. (d)-(f) The optimal variable persister production rate, φ∗t .
(g)-(i) The population, nt, in multiples of the original population(blue, left scale) and persister proportion, θt, (red, right scale), for

a single realisation of the model. The seeds used to generate the Wiener processes W
(1)
t and W

(2)
t are identical for all environments.

Also shown are five additional, independent, realisations (semi-transparent).

We choose a fitness measure, commonly referred to as a
payoff in optimal control theory, as

JS = E
[ ∫ T

0

αφ2
t dt︸ ︷︷ ︸

Sensing

+ loge(nT )︸ ︷︷ ︸
Growth

]
, α < 0. (7)

Here T denotes a terminal time, so that the maximisation is
carried out on the interval t ∈ [0, T ]; α < 0 characterises a
trade-off between growth and operating the sensing mecha-
nisms required to vary the persister production rate; and the
expectation is taken with respect to the stochastic processes
governing subpopulation growth, nt, and the environment,
ζt.In this work, we consider a finite terminal time since we
model an exponentially growing population. It is not obvi-
ous how to incorporate stationary phase dynamics into the
stochastic environment model. Future work is needed to ex-
plore the infinite time-horizon problem in conjunction with
environmental volatility and a logistic growth term (25). We
interpret the terminal time, T , as either the duration of the
growth phase of the population (10), or the duration of an
experiment.Maximising the logarithmic term in Eq. 7 can be
interpreted as cells maximising their per-capita growth rate
over the interval t ∈ [0, T ], since

loge(nT ) = loge(n0) +

∫ T

0

1

nt

dnt
dt

dt ,

and loge(n0) is constant (46). Our choice of fitness mea-
sure corresponds to evolutionary mechanisms that perpetu-
ate highly productive populations (21), meaning cells that
implement the optimal strategy carry an evolutionary ad-
vantage over those that do not.There are many other choices

of fitness, such as resource allocation based on a maximum
entropy principle (47). We expect our methodology to carry
across to these more complicated choices of fitness measure.

Together with the state equations (Eq. 4), maximising
Eq. 7 corresponds to an optimal control problem. We ap-
ply Hamilton-Jacobi-Bellman (HJB) optimal control theory
(31, 48, 49) to reformulate the optimal control problem as a
partial differential equation (PDE) problem. We now review
essential elements of HJB optimal control theory.

Review of optimal control theory

A stochastic control problem may be stated as

max
ωt∈U

E
(∫ T

0

L(xt, ωt, t) dt+ Φ(xT )

)
︸ ︷︷ ︸

Payoff

, (8)

where ωt is a time-dependent control from the set of allowable
controls, U . The payoff contains terms L(xt, ωt, t), which
represents cumulative value (in our case, the sensing mech-
anisms), and Φ(xT ), which represents the terminal value (in
our case, the final population size). For a stochastic prob-
lem, the payoff involves an expectation, which is taken with
respect to the stochastic process xt, representing the sys-
tem state. The goal is to find the so-called optimal control,
denoted ω∗t , that maximizes the payoff.

The state equations are given by the three-dimensional
stochastic process, xt = (nt, θt, ζt), governed by the three-
dimensional Itô SDE

dxt = M(xt, ωt, t) dt+ Σ(xt, ωt, t) dWt , (9)
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where M ∈ R3 is a vector valued function containing the
drift for each state; dWt ∈ R3 is a Wiener process of the
same dimension as xt with independent constituents; and,
ΣΣtr ∈ R3×3 describes the covariance of the Wiener process
(superscript tr denotes the matrix transpose). In our study,
xt comprises the stochastic processes governing the growth
of the bacteria population, (nt, θt), in addition to the inde-
pendent stochastic process for the environment, ζt. We also
study a form of xt that includes Poisson jump noise, and
we include details of optimal control theory in this case as
supporting material.

To solve the optimal control problem we define a value
function, V (x, s), as the optimal payoff obtainable were the
system to be at state x at time s. That is,

V (x, s) = max
ωt∈U

E
(∫ T

s

L(xt, ωt, t) dt+ Φ(xT )

)
,

subject to xs = x.

(10)

HJB optimal control theory then describes the time-
evolution of V as the solution of a partial differential equation
(PDE) (48, 49), given by

0 = max
ωt∈U

(AV + L(xt, ωt, t)) , (11)

where A is the stochastic generator for the process governing
xt. For the three-dimensional system given by Eq. 9, the
stochastic generator is given by

AV =
∂V

∂s
+

3∑
i=1

(
Mi

∂V

∂xi
+

1

2

3∑
j=1

(ΣΣtr)ij
∂2V

∂xi∂xj

)
(12)

where Mi denotes the ith element of M(xt, ωt, t), and
(ΣΣtr)ij denotes the element in the ith row and jth col-
umn of ΣΣtr, for Σ = Σ(xt, ωt, t). Therefore, mixed partial
derivatives are only included in Eq. 12 in the case where
the stochastic processes are correlated. The idea behind
HJB optimal control theory is that V (x, s) is known at time
s = T . Therefore, Eq. 11 is coupled to the terminal condition
V (x, T ) = Φ(xT ), and solved backwards in time (50).

In certain cases, the argmax(AV +L) term in Eq. 11 may
be found analytically through differentiation. This yields
both an expression for the optimal control, ω∗t ; and a three-
dimensional, non-linear, PDE coupled to a terminal con-
dition. In the case of MPP, where the volatility appears
only as geometric Brownian motion in the state equations
for (nt, θt), and not in an independent equation for the envi-
ronment,Eq. 11 has an analytical solution (3). In most cases,
however, we are required to solve Eq. 11 numerically. To ob-
tain an optimal trajectory starting at state x0, we solve the
state equations (Eq. 9), coupled to the solution of the HJB
PDE (Eq. 11), forward in time using the Euler-Maruyama
algorithm (51). Full details of the numerical techniques are
provided in the supporting material.

Numerical methods to solve the SDEs

We integrate the SDE models using the Euler-Maruyama al-
gorithm (51) with time step h = 2×10−3. To compare results
between environments, we fix the seeds used to generate the
Wiener processes W

(1)
t and W

(2)
t when simulating different

models. Full details of the numerical method used to solve
the SDEs are given in the supporting material.

Constant persister production

We first examine a population that can only produce persis-
ters at a constant rate, so we fix the variable rate, φt = 0.

In this case, we only assume the constant environment so
µt = µG.

As u and v only appear in the optimal control problem
linearly, the solution is not finite unless a bound is enforced
on u and v (52). The unbounded problem corresponds to
a cell population that is able to move itself instantaneously
to anywhere in the state space. To address this, we assume
that the constant switching rates u and v are chosen by the
population to control the steady-state persister proportion,
which we denote θ̂t ∈ [0, 1]. Taking the drift term in the
state equation for θt (Eq. 4b) to be zero, we see that u and
v are related to θ̂t by

u = θ̂t

(
v

1− θ̂t
+ η2θ̂t − (1− θ̂t)σ2 + (1− ε)µG

)
. (13)

At this point, we note that Eq. 13 is only consistent if θ̂t is
constant, and we address this shortly.

Allowing θ̂t to be a control, the state equation for nt
(Eq. 4a) becomes

dnt
nt

= (1−θ̂t(1−ε))µG dt+

√
(1− θ̂t)2σ2 + θ̂2

t η
2 dWt , (14)

since a dW
(1)
t + b dW

(2)
t can be considered as

√
a2 + b2 dWt.

Assuming that θ̂t is chosen to maximize the fitness measure
(Eq. 7) reveals a problem closely related to MPP (3). The
problems differ intrinsically in that an investor is able to real-
locate assets within a financial portfolio instantaneously (23)
and without cost — though variations of MPP address this
— whereas the cell colony comprises finitely many cells that
act heterogeneously using finite switching rates to produce
persisters.

We apply stochastic optimal control theory (24, 31) and
exploit the similarity between this formulation of the persis-
ter problem and MPP (3) to obtain an analytical solution,
in which the optimal control, denoted θ̂∗t ∈ [0, 1], is given by

θ̂∗t = max

[
0,min

(
1,
σ2 − (1− ε)µG

η2 + σ2

)]
. (15)

Full details of this analytical solution are given in the sup-
porting material. As is the case with MPP, θ̂∗t is constant,
so the strategy is independent of the current time, the ter-
minal time, and the system state.Solving Eqs. 13 and 15
simultaneously gives θ̂∗t = 1.19 × 10−5 with σ = 1.414222
which matches experimental observations for wild type E.
coli bacteria where µG = 2 h−1, ε = 0, η = εσ = 0,
u = 1.2× 10−6 h−1 and v = 0.1 h−1 (10). Here, we note
that σ2 ≈ µG, since θ̂∗t � 1.

For numerical results in the rest of this study, we fix σ,
ε, η, u and v to the aforementioned values, and set the ini-
tial persister proportion θ0 = 1.19 × 10−5. We set n0 = 1,
such that the population is measured relative to the initial
population. In practise, these parameters would be obtained
by calibrating the stochastic model to experimental data,
where we expect σ, and, therefore, u and v, to depend upon
the stochastic environment induced by the experimental con-
ditions. Further, setting σ = η = 0 would recover a model in
which ζt is the only source of environmental volatility.

Variable persister production

We now consider a cell colony that is able vary persister
production in response to their environment. In this case,
φt ∈ R+, can be thought of as a Markovian control (24), or
a control that is chosen based on information that includes
the current state and time, but does not carry a memory
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about the past state. For numerical stability, we place an
upper-bound on the control such that φt ≤ 0.1 h−1.

To solve the control problem, we define the value function,
V , by

V (x, y, z, s) = max
φt

E
[∫ T

s

αφ2
t dt+ loge(nT )

]
, (16a)

where (ns, θs, ζs) = (x, y, z). (16b)

HJB optimal control theory describes V with a PDE, ex-
pressed in this case as

0 = max
φt

(
αφ2

t +
∂V

∂y
(1− y)φt +H?

)
, (17)

where H? represents a collection of terms independent of the
control, φt. As Eq. 17 is quadratic in φt, we can carry out
the maximisation by setting the derivative to zero to find the
optimal control, denoted φ∗t ∈ [0, 0.1], as

φ∗t = max

[
0,min

(
0.1,− 1

2α

∂V

∂y
(1− y)

)]
. (18)

Here, y = θt is the current persister proportion. Since
y ∈ [0, 1], an interpretation of Eq. 18 is that the population
uses φ∗t to steer the population toward the optimal persister
proportion, where ∂V/∂y = 0. As environmental triggers
only create persisters (we assume the quiescent state of per-
sisters means they are unable to react to the environment),
φ∗t > 0, and so φ∗t is only active if the current proportion
is less than the optimal proportion. Finally, φ∗t → 0 as
α → −∞, which represents the sensing mechanisms becom-
ing prohibitively expensive.

Substituting Eq. 18 into the HJB equation leads to a non-
linear PDE for V that must be solved backward in time.
Full details of this equation are given in the supporting ma-
terial. In summary, the variable transformation x→ loge(x)
removes all terms containing the independent variable x (rep-
resenting the current population size) from the equation.
Therefore, we find that the ansatz

V (x, y, z, s) = Ψ(y, z, s) + loge(x), (19)

is consistent with the system. This result reveals that the
optimal control (Eq. 18) is independent of the population
size since ∂V/∂y = ∂Ψ/∂y. This gives an optimal strategy
of the form φ∗t = φ∗(t, θt, ζt). These results suggest that
bacteria can implement an optimal variable persister strat-
egy using only information about the proportion of persisters
(through, for example, quorum-sensing (40) or intercellular
signalling (41)), and the environment (through, for example,
a growth feedback mechanism (39)). Therefore, the persister
strategy is dependent upon stochastic fluctuations in both
the proportion of persisters and the environment.

In Fig. 2 we show dynamics for cell colonies in all three
environments for α = −100 h. For these results, we solve
for Ψ numerically. As expected, we find that unfavorable en-
vironments trigger variable persister production (Fig. 2e,f ),
without any additional persister production for the constant
environment (Fig. 2d). This suggests that a constant per-
sister production strategy is sufficient for an environment
with a constant expected growth rate. On the other hand,
additional persister production is seen in response to envi-
ronmental cues for more volatile environments (Fig. 2e,f ).
An interesting result in Fig. 2e is that the peak variable pro-
duction rate under the Monod environment lies before the
minimum growth rate. This suggests that the model implic-
itly incorporates mechanisms that allow cells to respond to
features of the stochastic environment, to the extent that
they may be able to anticipate environmental changes based
upon their own current growth rate.
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Fig. 3. Single realisations of the model showing the behaviour
of a cell population under antibiotic treatment. (a) Shows the
population, nt,in multiples of the original population;(b) shows
the persister proportion, θt; and, (c) shows the variable persister
production rate, φ∗t . In all cases, the cells experience a growth
rate µt = −2 h−1 and implement: the variable strategy optimal
under either the Monod environment (green) or the Poisson envi-
ronment (red); constant switching only optimal under the constant
environment (black); or do not produce persisters (grey).

Behaviour under unfamiliar environments and an-
timicrobial treatment

By assuming that cells monitor their growth rate, µt, we can
explore how bacteria that are specialized to one environment
(i.e. implement the optimal persister strategy) behave un-
der an unfamiliar environment. We couple the growth rate
to the optimal control by considering φ∗t = φ∗(θt, ζt) where
ζt = m−1(·) denotes the inverse of the growth rate coupling
function m(ζ). In other words, the cells measure the current
environment state using the growth rate.

Persisters are revealed experimentally by exposing the
population to antibiotics and monitoring the population size
(10). We simulate this process to examine how bacteria spe-
cialized to each environment behave when exposed to a con-
stant expected decay rate. Simulation results in Fig. 3a,
for a population that can only produce persisters at a con-
stant rate, are similar to experimental results for wild-type
E. coli (10). In comparison, we find that colonies that imple-
ment a strategy optimal under a more volatile environment,
such as the Poisson and Monod environments, produce per-
sisters using the variable rate (Fig. 3c) reach saturation of
persisters more quickly (Fig. 3b) and have a higher long term
population (Fig. 3a). These qualitative observations suggest
that high persistence bacteria strains (10, 21) could arise in
response to highly volatile environments. In the supplemen-
tary material we apply the same methodology to simulate
bacteria specialized to each environment under other, unfa-
miliar, environments. These results demonstrate the poten-
tial of our work to model, for example, how an optimal per-
sister strategy interacts with therapeutic interventions such
as drug sequencing (53, 54).
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Discussion

We describe persister dynamics with a stochastic model and
introduce the idea of cellular hedging to study an optimal
persister production strategy. By applying cross-disciplinary
ideas from mathematical finance to the persister problem, we
provide several analytical and simulation results that eluci-
date bacterial persistence under several novel models of en-
vironmental volatility.

Our results conform to the consensus view that it is detri-
mental to produce persisters in the absence of volatility
(9, 21, 23, 55).In examining the optimal strategy for constant
persister production, we reveal the proportion of persisters
that must be maintained to maximize the expected growth of
the population (Eq. 15). Removing volatility from the model
by setting σ = 0 recovers the deterministic model of Bala-
ban et al. (10) and reveals an optimal persister proportion of
zero. Therefore, our model predicts that producing persisters
in the absence of environmental volatility is suboptimal and,
therefore, leads to a lower expected per-capita growth rate.
In contrast, the straightforward assumption of a growth rate
driven by Wiener noise reveals a small proportion of persis-
ters (approximately 1 in 105) — consistent with experimental
observations of Balaban et al. (10) — that maximizes the
expected per-capita growth rate. Our results contrast with
previous mathematical studies that assume external factors,
such as antibiotic treatment, to explain persistence (21).

Compared with hedging strategies in finance, that often
rely on complex, market-level information, a cellular hedg-
ing strategy must be limited in complexity. A key result
of the direct comparison between bacterial persistence and
MPP is to reveal a constant optimal proportion of persisters
that should be maintained in an environment with a constant
expected growth rate. This result is significant for the per-
sister problem as, unlike in MPP, the cell population cannot
directly control the proportion of persisters. This key differ-
ence between the biological and financial hedging problems is
widely understood in the literature (23). However, we show
how a population can maintain a constant expected propor-
tion of persisters, regulated by constant switching propensi-
ties, u and v.

The mechanisms that enable cells to implement
environment-dependent cellular hedging strategies are
unknown (56), but must come at a cost to the cells—in
terms of additional genetic machinery—and rely on the
limited information available to individual bacteria. Our
study reveals an optimal variable persister production
strategy that depends only on the time, persister proportion
and the environment, but not on the the population size.
Additional results in the supporting material (Fig. S6)
indicate that these strategies become time-independent far
from the terminal time, T . If an infinite terminal time
problem was studied, necessarily with a growth model that
incorporated crowding effects (such as logistic growth), we
expect the optimal strategy to be independent of time.
Furthermore, the optimal environment-dependent strategy
revealed in Eq. 18 is not complex. Analysis of Eq. 18
suggests that bacteria increase persister production when
the persister proportion for a given growth rate is less than
optimal. This kind of information could be genetically
encoded as an evolutionary adaptation to a particular
environment. The parameter α, therefore, specifies the rate
at which the population is able to respond to changes in
the environment: if variable switching is expensive (α� 1),
the population will respond more slowly than if variable
switching is relatively cheap.These results are surprising
as optimal control theory only provides the strategy that

maximizes the payoff, and does not necessarily enforce any
level of complexity in the cellular hedging strategy.

In Fig. 3, we simulate a persister producing bacteria colony
under antibiotic treatment, demonstrating the distinct ad-
vantage persisters afford bacteria (10, 14, 17). Our stochas-
tic model of persister production can be used to improve
the efficacy of antimicrobial therapies using optimal control
from an optimal treatment perspective (52, 57–59). Further-
more, recent experimental and mathematical work examines
the potential of so-called evolutionarily informed therapy or
drug sequencing (53, 54, 60), where a sequence of drugs is
administered to sequentially induce susceptibility and over-
come drug resistance. As demonstrated in Fig. 3 and Fig.
S2, our model allows simulation of how a population special-
ized to one environment could behave under another. There-
fore, our framework may naturally extend to predict how a
persister strategy optimal under one type of drug behaves
under another. Our results already suggest new ways to de-
sign treatment strategies. Supplementary results (Fig. S6)
suggest that, for all environments we model, persister pro-
duction decreases monotonically with the growth rate. Tem-
porarily exposing the cell colony to favorable conditions will
decrease variable persister production, lowering the propor-
tion of persisters, potentially making the population more
susceptible to antibiotics. This is consistent with existing
experimental observations where exposing a colony to a fresh
growth medium before applying antibiotics decreases persis-
tence (61), and is a simplistic example of drug sequencing.

We focus on a large, exponentially growing population in
a homogeneous, temporally fluctuating, environment. Our
framework is readily extensible to more complex growth
models (such as logistic growth); heterogeneous populations
containing more than two phenotypes; and the inclusion of
demographic noise. We have not, however, considered spatial
effects such as those corresponding to a spatially fluctuating
environment or local crowding effects. A stochastic partial
differential equation (SPDE) model would also allow for di-
rect modelling of the chemical signals that regulate quorum
sensing (62) allowing for population-level cooperation, how-
ever applying optimal control to these SPDE models is not
straightforward. Further work is needed to elucidate the ef-
fect of demographic or sensor noise on a population’s ability
to regulate the optimal persister proportion through sub-
population switching (23, 63). In large exponentially grow-
ing populations, we expect deterministic switching rates are
an appropriate model of subpopulation switching. For small
populations, our optimal control approach can be applied to
study the effects of demographic noise by incorporating in-
trinsic noise into the stochastic growth model through the
chemical Langevin equation.

Rapid evolution of cellular hedging strategies is experi-
mentally reproducible (64): Van den Bergh et al. (14) found
that exposing E. coli to daily antibiotic treatments increased
survival by between three and 300-fold after just three treat-
ments, and Rodriguez-Beltran et al. (65) study induced evo-
lutionary changes in bacteria behaviour through repeated ap-
plication of antibiotics. Evolutionary adaption of organisms
such as bacteria within a fitness landscape is an active area of
research (15), with an understanding that stochasticity plays
a vital role (54). Financial mathematics techniques and cel-
lular hedging can also be applied to study the evolutionary
process as it occurs. For example, policy adjustment models
(66) quantify the cost of strategy change, and can be com-
pared to mutation costs in a rapidly-evolving cell colony. Our
framework can be directly applied in this context to model
the adaption of a simple hedging strategy to an unfamiliar
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environment by modelling the time-derivative of the constant
switching rates as a control.

Our analysis suggests important experimental avenues to
further elucidate bacterial persistence. Alternating periods
of growth and stress is still a common model of environ-
mental volatility both (65) and in theoretical studies (9).
We provide a new theoretical foundation for studying any
Markovian model of environmental volatility. Supplemen-
tary results (Fig. S2) show a diversity in optimal responses
when a strategy optimal under one type of environment re-
acts to another. An experimental study where bacteria are
repeatedly exposed to a known volatile environment, poten-
tially based upon the novel models of environmental volatil-
ity that we study, will provide insight into how bacteria adapt
to a form of uncertainty that can be quantified. Our mod-
elling framework can then predict both the emergent strat-
egy, and how the population might behave when exposed to
interventions such as antibiotics. Furthermore, sensitivity
analysis on parameters in the environmental volatility model
can aid experimental design by revealing what features of an
environment have the largest effect on any optimal strategy.
We expect, for instance, different responses to environments
where changes happen continuously (for example, the Monod
environment), compared to where changes are due to shocks
(for example, the Poisson environment).

Conclusion

We provide new insight into cellular hedging through an ex-
plicit connection between the study of biological population
dynamics and the mathematics of financial risk management.
We present a new stochastic model of bacteria growth in
a volatile environment and apply optimal control theory to
probe the persister strategy that maximizes the per-capita
growth rate. A fundamental result of our study is to provide
a solid theoretical understanding of why persistence is only
advantageous in the presence of environmental volatility,
demonstrating that the study of bacterial persistence must
take a stochastic perspective.Our model of cellular hedging
has clinical significance and can be applied to improve the
efficacy of antimicrobial therapies. Furthermore, the frame-
work we develop can be applied to more complex models
of bacterial population dynamics, and offers an opportunity
for future generalisations to explore cellular decision mak-
ing in a broader context, including in cases where sensor or
demographic noise are significant.Many seemingly complex
cellular phenomena from bet-hedging in cancers (7, 67, 68),
herpes viruses (69) and HIV (70) to decision making in the
epithelial-mesenchymal transition (71) can be modelled using
ideas from cellular hedging and by furthering the unification
of mathematical finance and biology.
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