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Abstract1

Demographic inference using the site frequency spectrum (SFS) is a common way to understand2

historical events affecting genetic variation. However, most methods for estimating demography3

from the SFS assume random mating within populations, precluding these types of analyses in in-4

bred populations. To address this issue, we developed a model for the expected SFS that includes5

inbreeding by parameterizing individual genotypes using beta-binomial distributions. We then6

take the convolution of these genotype probabilities to calculate the expected frequency of bial-7

lelic variants in the population. Using simulations, we evaluated the model’s ability to co-estimate8

demography and inbreeding using one- and two-population models across a range of inbreeding9

levels. We also applied our method to two empirical examples, American pumas (Puma concolor)10

and domesticated cabbage (Brassica oleracea var. capitata), inferring models both with and with-11

out inbreeding to compare parameter estimates and model fit. Our simulations showed that we12

are able to accurately co-estimate demographic parameters and inbreeding even for highly inbred13

populations (F = 0.9). In contrast, failing to include inbreeding generally resulted in inaccurate14

parameter estimates in simulated data and led to poor model fit in our empirical analyses. These15

results show that inbreeding can have a strong effect on demographic inference, a pattern that was16

especially noticeable for parameters involving changes in population size. Given the importance17

of these estimates for informing practices in conservation, agriculture, and elsewhere, our method18

provides an important advancement for accurately estimating the demographic histories of these19

species.20
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Introduction22

Estimating the demographic history of closely related populations or species is an important first23

step in understanding the interplay of the evolutionary forces shaping genetic variation. Diver-24

gence, migration, changes in population size, and other historical events all contribute to pop-25

ulation allele frequency dynamics over time, a process that can be modeled using a variety of26

approaches. Connecting the expectations from these models with observed genomic data is of-27

ten achieved using the site frequency spectrum (SFS), a genome-wide summary of genetic poly-28

morphism within and between populations (Sawyer and Hartl 1992; Adams and Hudson 2004;29

Caicedo et al. 2007; Gutenkunst et al. 2009; Nielsen et al. 2009). The ease and affordability of col-30

lecting genomic SNP data make inferences of demography using the SFS especially appealing,31

highlighting their importance in gaining insights into the historical factors affecting neutral varia-32

tion in populations. Several recent analyses have also applied SFS-based methods to infer the fit-33

ness effects of mutations (Kim et al. 2017; Tataru et al. 2017; Fortier et al. 2019), allowing researchers34

to model patterns of selection while simultaneously controlling for demography (Williamson et al.35

2005).36

Generating the SFS from a demographic model is a well-studied problem with several possi-37

ble approaches, all based on different underlying methodologies, currently implemented [e.g., dif-38

fusion: Gutenkunst et al. (2009); spectral methods: Lukić and Hey (2012); the coalescent: Excoffier39

et al. (2013); and moment closure: Jouganous et al. (2017)]. However, these methods generally as-40

sume panmixia or random mating within populations, which may not be a realistic assumption41

for many groups of organisms that are inbred. The reason for this assumption is that the approxi-42

mations used by these approaches are all built on top of the Wright-Fisher model and rely on the43

simplicity of its binomial sampling scheme for deriving expectations. The excess of homozygos-44

ity caused by inbreeding deviates from binomial expectations, leading to changes in the observed45

SFS that cannot be captured by models assuming random mating that may affect estimates of46

demography. Generalizations of the standard Wright-Fisher model have been made to include47

inbreeding through partial self-fertilization (Wright 1951). Nevertheless, these modifications have48

yet to be implemented in SFS-based methods for demographic inference.49

Despite this lack of available SFS-based methods, previous approaches to infer demography50

from inbred samples have successfully used alternative representations of genomic data to capture51

the extent to which samples share blocks of their genome through non-random mating. This52

typically entails identifying parts of the genome that are identical by descent (IBD), or that contain53

runs of homozygosity (ROH), and using the length and distribution of these blocks to infer levels54

of inbreeding and past population size dynamics (Kirin et al. 2010; Kardos et al. 2017; Browning55

et al. 2018). Large IBD blocks are usually an indication of recent inbreeding, while the frequency56

and distribution of smaller IBD blocks, which are shared due to common ancestry rather than57

inbreeding, contain information about more long-term trends in population size (Kirin et al. 2010;58

Ceballos et al. 2018). However, these methods are generally only used to model size changes in59

single populations, which doesn’t allow them to estimate other important demographic events60

such as population divergence or rates of gene flow. Furthermore, the reliance of these methods61

on fully sequenced genomes prevents them from being used in systems that lack such resources.62

The ability to estimate demography in organisms that do not have a reference genome is a63

strength of SFS-based methods. This flexibility allows researchers using reduced representation64

methods (e.g., restriction enzyme-based approaches) to collect genomic data for demographic in-65
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ference. A large motivating factor for the work that we have conducted here is to understand66

demography in domesticated crop species, which are often highly inbred due to how they are67

bred and propagated (Gaut et al. 2018). Inbreeding is also of great concern in threatened and en-68

dangered species (Shafer et al. 2015; Xue et al. 2015; Robinson et al. 2016, 2019). For many of the69

most economically or ecologically important species in these categories, full genome sequences70

are typically available and can be used to guide estimates of genetic variation and past popula-71

tion dynamics that will help to inform breeding practices or management strategies, respectively.72

However, for less well-studied agricultural or threatened species, it is crucial to have tools avail-73

able that can also provide this essential information without necessarily needing to obtain a fully74

sequenced genome.75

In this paper we introduce a new method for including inbreeding in estimates of demogra-76

phy by modifying the sampling distribution used to generate the expected SFS for a given demo-77

graphic model. We have implemented the approach in the Python package ∂a∂i (Gutenkunst et al.78

2009), building on top of its existing machinery for estimating demography using the diffusion79

approximation. To assess our ability to co-estimate inbreeding and demography, we generated80

frequency spectra in both ∂a∂i and SLiM (Haller and Messer 2019) and used the new model to81

make inferences from these simulated data. We also used simulated frequency spectra from ∂a∂i82

to see how inbreeding affects estimates of demography when it is ignored. Finally, we used ge-83

nomic data from two empirical examples, American pumas (Puma concolor) and domesticated84

cabbage (Brassica oleracea var. capitata), and evaluated estimates of their demographic histories85

both with and without inbreeding. In general, our model is shown to be accurate even for highly86

inbred populations (F = 0.9). We also found that failing to account for inbreeding leads to inac-87

curate estimates of parameters and poor model fit. Taken together, the model we have developed88

provides a powerful tool to jointly estimate inbreeding and demography, and will help to facilitate89

evolutionary inferences in a wide-range of species.90

New Approaches91

We start with a brief overview of the SFS and describe its derivation from the population distri-92

bution of allele frequencies (DAF), which can be obtained using the diffusion approximation as93

described previously (Gutenkunst et al. 2009). We then propose a probability model for calcu-94

lating the number of derived mutations in an inbred population and provide an expression for95

the expected SFS incorporating this distribution. Using this expression for the expected SFS with96

inbreeding we can perform parameter inference with a composite likelihood assuming a Poisson97

Random Field model (Sawyer and Hartl 1992).98

The Site Frequency Spectrum99

The site frequency spectrum (SFS) is a multidimensional summary of genetic variation within100

and across populations that records how often derived biallelic variants of different frequencies101

are observed in a sample of individuals. For example, given a sample of 20 chromosomes (10102

diploid individuals) from three populations, the SFS entry at index [3,8,17] records how often we103

observe a variant in three, eight, and 17 out of the 20 chromosomes in populations one, two, and104

three, respectively. In general, for P populations with sample sizes n1, n2, . . . , nP, we index the105

SFS using [d1, d2, . . . , dP] to record how often we observe a variant with frequency d1, d2, . . . , dP in106

populations one through P.107
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Figure 1: Comparison of expected spectra for F = 0.5, 0.75, and 0.9 between ∂a∂i (blue) and SLiM (green)
for the equilibrium and bottleneck+growth models.

The observed SFS can be obtained from empirical data by tabulating derived SNP frequen-108

cies across sampled populations to generate the P-dimensional array described above. When a109

derived allele cannot be determined, we can instead record the frequency of the minor allele, ef-110

fectively “folding” the spectrum in half by only considering the variants with frequency less than111

0.5. Demographic inference can then be conducted by comparing the observed SFS with the SFS112

obtained from a demographic model (Sawyer and Hartl 1992).113

Given the P-dimensional distribution of allele frequencies obtained from a given demographic114

model, φ, the expected SFS can be obtained by calculating the probability of drawing d1, . . . , dP115

derived alleles while integrating across the distribution of allele frequencies in the populations.116

Within each population, the number of derived alleles has a binomial distribution under pan-117

mixia. We then integrate across all possible allele frequencies, weighting the binomial probability118

of drawing di derived alleles by the density determined by φ within population i. Taking this P-119

dimensional integral across the weighted product of binomial probabilities gives us the expression120

for the joint expected SFS:121

E[d1, . . . , dP] =
∫ 1

0
· · ·

∫ 1

0
∏

i=1,...,P

(
ni

di

)
xdi

i (1− xi)
ni−di φ(x1, . . . , xP)dxi. (1)

The Expected SFS with Inbreeding122

Through its use of binomial sampling, the preceding derivation for the expected SFS makes the123

assumption that matings within populations are random. When inbreeding has occurred, individ-124
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ual genotypes are more likely to be homozygous due to being IBD. One way to capture this excess125

in homozygosity is to incorporate the inbreeding coefficient F into a generalized form for the ex-126

pected genotype frequencies under Hardy Weinberg equilibrium (Wright 1951). Here we use an127

alternative model that captures the fact that genotypes within populations will be correlated due128

to inbreeding, pushing the distribution of genotypes towards homozygotes. To capture this cor-129

relation among genotypes, Balding and Nichols (1995, 1997) proposed a probability model to in-130

corporate inbreeding using a beta-binomial distribution. Under this model, individual genotypes131

are a random variable, Gi ∈ {0, 1, 2}, for the number of copies of the derived allele in individual132

i (i = 1, . . . , n) such that Pr(Gi = g) at an individual locus with allele frequency p ∈ (0, 1) and133

population inbreeding coefficient F ∈ (0, 1) is beta-binomial with the following form:134

Pr(Gi = g|p, F) = BB
(

g, α = p
[

1− F
F

]
, β = (1− p)

[
1− F

F

])
=

(
2
g

)
B(g + α, 2− g + β)

B(α, β)
. (2)

Here BB denotes the probability mass function for the beta-binomial distribution and B(x, y) is135

the beta function with dummy parameters x and y. The parameterization of α = p
[ 1−F

F

]
and136

β = (1− p)
[ 1−F

F

]
introduces the overdispersion of probability towards homozygous genotypes137

that is expected as inbreeding increases (Balding and Nichols 1995, 1997).138

To get the expected SFS, we need to be able to model the total number of derived alleles139

sampled in the population, which is the sum across the genotypes of all individuals. Given a140

sample of n diploid individuals (2n chromosomes), we use the random variable D ∈ {0, . . . , 2n} to141

denote this quantity. The probability mass function for D is an n-fold convolution of beta-binomial142

distributions, which does not have a simple distributional form. However, we can obtain the143

probability mass function by considering all possible combinations of the probability of drawing144

D = d alleles across n beta-binomial distributions, giving us a closed form expression for the145

convolution of n beta-binomial random variables:146

P(D = d|p, F) = BB∗n
(

d, α = p
[

1− F
F

]
, β = (1− p)

[
1− F

F

])

= ∑
R∈pn(d)

n!
n0! n1! n2!

[
∏
r∈R
BB(r, α, β)

]
. (3)

Breaking this down, we can think of it as enumerating all possible ways to generate genotypes147

in n individuals such that they sum to d, times the beta-binomial probability of sampling each148

genotype. More specifically, let pn(d) be an array of integer partitions with n entries that sum149

to d such that all entries in the partition are 0, 1, or 2 (corresponding to the possible genotype150

values). For example, the partitions defined by p5(4) are [2, 2, 0, 0, 0], [2, 1, 1, 0, 0], and [1, 1, 1, 1, 0].151

Then for each of these partitions, we use the multinomial coefficient n!
n0! n1! n2! , with n0, n1, and n2152

corresponding to the number of partition entries equal to 0, 1, and 2, respectively, to account for all153

possible rearrangements of the partition entries. Next, we multiply the beta-binomial probability154
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for each genotype in a partition using Eq. 2. Taking the product across all possible partitions gives155

us the full expression for the n-fold convolution, which we denote BB∗n (∗ is the mathematical156

operator for convolutions). Inserting this distribution into Eq. 1 gives us the final form for the157

expected SFS with inbreeding:158

EF[d1, . . . , dP] =
∫ 1

0
· · ·

∫ 1

0
∏

i=1,...,P
BB∗ni

(
di, xi

[
1− Fi

Fi

]
, (1− xi)

[
1− Fi

Fi

])
φ(x1, . . . , xP)dxi. (4)

We have written a small R Shiny application illustrating the probability distribution for the159

beta-binomial convolution (available on GitHub). Figure 1 also shows a sample of example fre-160

quency spectra for different levels of inbreeding.161

Results162

Comparison with SLiM163

We used SLiM (Haller and Messer 2019) to validate the expectations of the SFS with inbreeding164

by simulating frequency spectra under three models (described in more detail in the Simulations165

section below): a simple equilibrium model (standard neutral model), a one-population bottleneck166

and growth model, and a two-population divergence and one-way migration model. Inbreeding167

was assumed to occur through selfing and expected frequency spectra were obtained by taking the168

mean of 5000 simulations for each model. Figure 1 plots the comparison between the SFS obtained169

from ∂a∂i (blue) and SLiM (green) for the equilibrium and bottleneck models with F=0.5, 0.75,170

and 0.9, respectively. The frequency spectra for these models for F=0.1 and F=0.25 are presented171

in Figure S1 and the comparisons for the two-population divergence model are in Figure S2. The172

percent differences between the frequency spectra from ∂a∂i and SLiM were between 0.1% to 0.2%173

for the one-population models and were between 0.02% to 0.03% for the two-population model,174

demonstrating that our results from modeling the expected SFS with beta-binomial distributions175

corresponds well with the spectra simulated from SLiM.176

We also used simulated frequency spectra from SLiM to estimate parameters for these three177

models in ∂a∂i. Figure 2 shows the distribution of estimated inbreeding coefficients for the bottle-178

neck and growth model (RMSD = 0.094) and divergence and one-way migration models (RMSD179

= 0.163). Similar plots for all other estimated parameters across all three models are presented in180

Figures S3–S5.181

Simulations182

Simulation 1: Co-Estimating Inbreeding and Demography183

To assess our ability to estimate demographic parameters under increasing levels of inbreeding184

(F= 0.1, 0.25, 0.5, 0.75, and 0.9), as well as the inbreeding coefficient within a population itself,185

we performed demographic inference using simulated frequency spectra under three models:186

(1) a standard neutral model, (2) a one-population bottleneck and growth model, and (3) a two-187

population divergence model with unidirectional gene flow (models two and three are illustrated188

in Figure 2). For the standard neutral model, the inbreeding coefficient is the only parameter that189
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needs to be estimated. The one-population bottleneck and growth model has three parameters:190

the inbreeding coefficient, the relative size of the bottlenecked population (ν0 = 0.1, 0.25, and 0.5),191

and the recovery time back to the original size (T = 0.1, 0.2, and 0.3). The two-population model192

has four parameters: the inbreeding coefficient, the relative size of the diverging population (ν2 =193

0.1, 0.25, 0.5), the time of divergence from the main population (T = 0.1, 0.2, and 0.3), and the rate194

of gene flow from the main population into the diverged population (M21 = 0.5, 1.0, and 1.5). All195

parameters are specified relative to the ancestral population size, which in ∂a∂i defaults to 1.0.196

Figures S6–S8 shows the distribution of estimated inbreeding coefficients across 20 replicate197

experiments for every combination of simulation parameters for the equilibrium, bottleneck, and198

divergence models. For all three models, we are able to recover accurate estimates of F (Model199

1 RMSD: 0.0139; Model 2 RMSD: 0.0176; Model 3 RMSD: 0.0406) even when inbreeding is quite200

high (F = 0.9). Figure S7 also shows plots for estimates of bottleneck size and recovery time201

across inbreeding levels for model two. The RMSD for these estimates across all simulated values202

were 0.0236 and 0.0184 for ν0 and T, respectively. Figure S8 shows similar plots for estimates of203

population size, divergence time, and one-way migration rate across inbreeding levels for model204

three. The RMSD for these estimates across all simulated values were 0.0131 for ν2, 0.0103 for T,205

and 0.158 for M21.206

Simulation 2: Parameter Estimation When Inbreeding is Ignored207

To understand the impact of ignoring inbreeding on demographic inference, we simulated data208

sets with inbreeding under the same bottleneck and divergence models as above (models two209

and three) but performed inference under the assumption that inbreeding was absent. Because of210

initial issues with convergence in these analyses, particularly with the bottleneck model, and the211

fact that higher levels of inbreeding cause increasingly conspicuous changes to the SFS (e.g., see212

Figure 1), we used a smaller range for F in these simulations: 0.1, 0,2, 0.3, 0.4, and 0.5.213

Parameter estimates for the bottleneck model had higher rates of error compared to when214

inbreeding was directly modeled. The RMSDs for ν0 and T were 0.191 and 0.117, respectively.215

Estimates of these parameters also got worse as inbreeding increased (Figure S9), clearly demon-216

strating the issues that can arise when inbreeding is ignored. In contrast, results for the divergence217

model were surprising in that they didn’t show the high levels of estimation error seen with the218

bottleneck model (Figure S10). The RMSD values for the parameters of the divergence model were219

0.0261 for ν2, 0.0130 for T, and 0.142 for M21. Interestingly, the RMSD for M21 was actually lower220

in this simulation experiment than when inbreeding was modeled (0.158). However, the increase221

in RMSD for the simulations where inbreeding is modeled is due to using higher levels of in-222

breeding (F > 0.5). If we restrict the calculation of RMSD in the estimates including inbreeding to223

only those with F ≤ 0.5, the RMSD is lower than when inbreeding is ignored, as expected (0.109).224

RMSD values for ν2 and T where higher for model two than in Simulation 1, indicating that these225

parameters may be more sensitive to the effects of unmodeled inbreeding.226

Simulation 3: Masking Rare Variants227

Several techniques to ‘side-step’ the impact of inbreeding have been taken in empirical analy-228

ses. This includes sampling only a single chromosome per site, per individual (e.g., Beissinger229

et al. 2016; Koenig et al. 2019) or masking rare variants (e.g., Cornejo et al. 2018), which are dis-230

proportionately affected at lower levels of inbreeding (Figure 1). Since sampling only a single231

chromosome cuts the sample size in half, and investigations on the effect of sample size on de-232
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Figure 2: (a) Estimates of F from data generated with SLiM for the bottleneck and growth model (lower)
plus an illustration of the model (upper). In this model, NA is the ancestral population size, ν0 is the size
of the bottleneck (proportion of NA remaining after population reduction), and T is the amount of time for
the population to recover back to a size of NA. (b) Estimates of F from data generated with SLiM for the
divergence with one-way migration model (lower) plus an illustration of the model (upper). NA in this
model is the same as the bottleneck model, ν2 is the size of the diverging population (again a proportion of
NA), T is the divergence time between populations, and M21 is the one-way migration rate of individuals
from population one into population two.

mographic inference have already been explored (Robinson et al. 2014), we instead focused on the233

effect of masking rare variants under increasing levels of inbreeding. For the bottleneck model234

we masked the singleton and doubleton entries of the 1D-SFS, and for the divergence model we235

masked the bottom corner of the 2D-SFS (ie singletons, doubletons, and their combinations across236

both populations). We then used the same range of parameters as in the previous simulations to237

see how much masking affected our inferences.238

For the bottleneck and growth model, data masking had a small but noticeable effect on239

parameter estimation. The bottleneck size was estimated with less accuracy compared to when240

inbreeding was included (RMSD = 0.0296) and estimates of recovery time also had higher error241

(RMSD = 0.0218), typically in the direction of underestimation (Figure S11). The effect of mask-242

ing was more pronounced in the divergence model (Figure S12), particularly for the migration243

parameter, where the amount of gene flow was almost always underestimated across all param-244
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eter combinations (RMSD = 0.193). Estimates of population size and divergence time were also245

slightly underestimated when compared to models including inbreeding (RMSD = 0.0122 and246

0.0103, respectively) but the effect was less pronounced.247

Simulation 4: Misspecified Inbreeding248

As a final test of the model for inbreeding, we simulated frequency spectra under the bottleneck249

and divergence models without inbreeding but included it as a parameter to be estimated. The250

expectation in this case is that inbreeding should be estimated close to 0 and that its inclusion in251

the model does not lead to poor estimates of other model parameters. However, for both models,252

the inbreeding parameter was always estimated to be greater than 0. The mean estimates of F for253

the bottleneck and divergence models were 0.0934 and 0.212, respectively. Nevertheless, despite254

not estimating an absence of inbreeding, the other model parameters were estimated with only255

slightly higher levels of error (Figures S13 and S14). For the bottleneck model, bottleneck size and256

duration had RMSD values of 0.0280 and 0.0268, respectively, which are both higher levels of error257

than the simulations where inbreeding was truly present. Parameters in the divergence model had258

RMSDs of 0.0183 for ν2, 0.0110 for T, and 0.132 for M21, showing that the two-population model259

was not strongly affected by the level of inbreeding estimated in population two.260

Empirical Examples261

American Puma262

The American puma (Puma concolor) is an iconic carnivore distributed primarily in western North263

America and South America, occupying a large diversity of habitats across its range. However, in264

the eastern United States, the only remnant population is the highly endangered Florida panther265

(Hansen 1992; Culver et al. 2000). Florida panthers have been the subject of large-scale conserva-266

tion efforts aimed at ameliorating the adverse effects of small population size, including moving267

individuals from their closest sister population, the Texas puma, to introduce novel genetic varia-268

tion (Seal and Lacy 1994; Johnson et al. 2010). Using genomic data from five individuals of Texas269

pumas and two individuals of ‘canonical’ Florida panthers from Ochoa et al. (2019), we estimated270

the demographic history of these two populations to investigate their divergence time, changes271

in population size, and levels of inbreeding (see cartoon in Figure 3). More specifically, we fit a272

model that included an initial change in population size to mimic the colonization of North Amer-273

ica by the Texas population (NTX), the duration of time spent at the new population size (T1), the274

divergence time between Texas pumas and Florida panthers (T2), and the inbreeding coefficients275

for both the Texas and Florida populations (FTX and FFL).276

After processing (see Methods), 6,262,417 variant sites were retained for constructing the 2D-277

SFS. Because we lacked a suitable outgroup for determining ancestral versus derived allelic states,278

we used the folded SFS for all model fits. Table 1 lists parameter estimates and their 95% confi-279

dence intervals for models fit with and without inbreeding (ε = 10−2) and uncertainty estimates280

across different step sizes for numerical differentiation using the Godambe Information Matrix281

(Coffman et al. 2015) are presented in Tables S3 and S4. In both models, the Texas and Florida282

populations are estimated to have diverged 7,000–8,000 years ago, with both also having similar283

estimates of the ancestral population size (120,000–130,000 individuals). As expected, the Florida284

population experienced a severe reduction in population size down to 1,200–1,600 individuals,285

as well as having a high estimate of F in the model including inbreeding (FFL = 0.607). Texas286
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Table 1: Parameter estimates for Puma concolor from demographic models estimated both with and without
inbreeding. 95% confidence intervals are given in parentheses and were estimated using a step size of
ε = 10−2 for numerical differentiation. Population sizes are given in number of individuals and divergence
time is given in years.

Parameter Estimate With Inbreeding Estimate Without Inbreeding

NA 130,000 (129,000–132,000) 120,000 (92,400–157,000)

NTX 70,800 (63,300–79,200) 23,700 (3,490–161,000)

NFL 1,600 (128–19,100) 1,210 (118–12,500)

T1 247,000 (169,000–359,000) 26,800 (504–1,420,000)

T2 7,820 (650–94,200) 8,230 (784–86,500)

FTX 0.440 (0.408–0.474) –

FFL 0.607 (0.588–0.626) –

pumas were also inferred to be inbred, though less so than Florida panthers (FTX = 0.440). Es-287

timates of population size for the Texas population were different between the models with and288

without inbreeding (70,800 individuals versus 23,700 individuals) and the duration of the initial289

population size change (T1) were especially different as well (247,000 years versus 26,800 years).290

The log-likelihoods for the model with and without inbreeding are−318058.079 and−453003.048,291

respectively, and the Godambe-adjusted likelihood ratio statistic is 425.489 (p-value = ∼0.0; Coff-292

man et al. 2015), demonstrating that the model with inbreeding has a significantly better fit to the293

data. In addition, when comparing the predicted SFS from the models with the observed SFS294

(Figure 3), the residuals for the model with inbreeding were lower overall, providing even more295

support for preferring the model with inbreeding. Uncertainty estimates were also typically more296

stable across step sizes for the model with inbreeding.297

Domesticated Cabbage298

Brassica oleracea is an agronomically important plant species cultivated primarily in Europe, Asia,299

and North America (Maggioni 2015). It is especially well-known for its morphological diver-300

sity, having been domesticated into several different crops including broccoli, Brussels sprouts,301

cauliflower, cabbage, kale, and kohlrabi, among others. The timing and origin of domestication302

for these different B. oleracea crops is still uncertain, but several hypotheses have been proposed to303

explain their evolutionary history (Maggioni 2015). Cabbage, B. oleracea var. capitata, is thought to304

have been domesticated roughly 500 years ago in the Mediterranean region (Cheng et al. 2016a,b),305

providing an interesting hypothesis that we can test using demographic models.306

To infer the demographic history of domesticated cabbage, we used SNP data from publicly307

available resequencing data for 45 individuals from Cheng et al. (2016a,b). We then fit a demo-308

graphic model for cabbage domestication that included two changes in population size (N1 and309

N2), the amount of time spent at these population sizes (T1 and T2), and the level of inbreeding (F)310

[see cartoon in Figure 4]. We used 2,941,018 intergenic SNPs to build the folded SFS for B. oleracea311

var. capitata and fit models with and without inbreeding. Parameter estimates were obtained us-312
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NA

NTX

T1

T2NFL

Figure 3: The observed joint site frequency spectrum for Puma concolor in Texas and Florida, along with
the model fit and residuals, for models with inbreeding (middle) and without inbreeding (right). Residu-
als for each model are plotted below their expected spectra and a cartoon representation of the proposed
demographic model is given in the bottom left.

ing newly implemented optimization routines in the ∂a∂i library built on top of the nlopt Python313

package (Johnson 2014). Parameter estimates and their 95% confidence intervals are listed in Table314

2 (ε = 10−2). Uncertainty estimates across different step sizes for numerical differentiation using315

the Godambe Information Matrix (Coffman et al. 2015) are presented in Tables S3 and S4.316

Much like the models inferred with and without inbreeding for American pumas, the es-317

timates of demography for cabbage are markedly different between the two analyses. When in-318

breeding was not modeled, we infer an ancestral population size for cabbage of 19,100 individuals,319

which expanded to a size of 123,000 individuals∼6,000 years ago. This expanded population then320

experienced a very recent and severe bottleneck 38 years ago down to a size of 592 individuals.321

The time estimate for the bottleneck consistently hit the lower bound of the parameter search322

space, however, suggesting that this estimate is likely not very reliable. Parameter estimates for323
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Table 2: Parameter estimates for B. oleracea var. capitata from demographic models estimated both with and
without inbreeding. 95% confidence intervals are given in parentheses and were estimated using a step size
of ε = 10−2 for numerical differentiation. Population sizes are given in number of individuals and times
are given in years. Parameters estimated at the upper/lower bound of the given search space are marked
with an asterisk (*).

Parameter Estimate With Inbreeding Estimate Without Inbreeding

NA 17,500 (16,900–18,100) 19,100 (18,500–19,800)

N1 31,600 (28,900–34,700) 123,000 (80,400–190,000)

N2 215,000 (4,910–9,370,000) 592 (547–641)

T1 16,600 (12,900–21,200) 5,870 (5,200–6,620)

T2 322 (94.2–1,097) 38.3 (32.5–45.1)*

F 0.578 (0.557–0.599) –

the inbreeding model inferred an ancestral population size of 17,500 individuals, which expanded324

to a size of 31,600 individuals∼17,000 years ago. This population then experienced an even larger325

expansion to a size of 215,000 individuals 322 years ago. The model with inbreeding inferred F326

to be 0.578, showing that inbreeding in these cabbage samples is fairly high. The log-likelihoods327

for the model with and without inbreeding were −4281.145 and −24330.403, respectively, and the328

Godambe-adjusted likelihood ratio statistic was 127.562 (p-value =∼0.0; Coffman et al. 2015). Fig-329

ure 4 also shows the observed and predicted SFS for each model plus their residuals. The residual330

plots clearly show that the model with inbreeding is able to capture more of the ‘zig-zagging’ pat-331

tern of the lower frequency variants than the model without inbreeding, demonstrating its overall332

better fit. Uncertainty estimates were again typically more stable across step sizes for the model333

with inbreeding.334

Inbreeding No Inbreeding

NA

N1

N2

T1

T2

Figure 4: The observed site frequency spectrum for Brassica oleracea var. capitata, along with the model fit
(red) and residuals (bottom panels), for models with inbreeding (middle) and without inbreeding (right).
On the left is a cartoon of the proposed demographic model with parameters labeled.
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Discussion335

The prevalence of inbreeding in nature, especially among plant lineages and small and endan-336

gered populations, make it an important process to include in demographic models. Unlike337

previous approaches that rely on full genome sequences to characterize patterns of identity by338

descent or the distribution of runs of homozygosity, our model uses the frequency spectrum of339

biallelic SNPs to infer demography, allowing it to be employed not only in model systems but in340

organisms that lack a suitable reference genome as well. The impact of inbreeding on the SFS has341

important consequences for demographic inference, however, a result that is well-demonstrated342

by our simulations and example analyses. The relationship between inbreeding and population343

size is especially relevant for understanding inferences of past population dynamics. Below we344

describe this connection in the context of our simulations and the results of our empirical analyses,345

drawing on previous theoretical work to help qualify our results. We then discuss the importance346

of considering how our current model behaves for recent versus sustained inbreeding.347

The Effects of Inbreeding on Estimates of Demography348

Comparison with SLiM349

In our analysis of frequency spectra from SLiM, we found a high level of agreement between the350

expected SFS from the diffusion approximation and beta-binomial model in ∂a∂i and the mean351

SFS from the three models we tested in SLiM. In addition, we were generally able to get accurate352

estimates for the parameters of the three models, though there was a large amount of variation.353

Part of this is likely driven by only simulating a 1 Mbp region, which limits the number of SNPs354

being used to build the SFS. A more important contributor to the variation in parameter estimates355

is the impact of inbreeding itself on the scaling of population level parameters such as θ. Previous356

work in both the diffusion (Pollack 1987) and coalescent (Nordborg and Donnelly 1997; Nordborg357

2000) frameworks have derived the appropriate scaling of population-level parameters for inbred358

populations. In both cases, the equilibrium θ of a randomly mating population simply needs to be359

rescaled by 1+ F to obtain the corresponding process with inbreeding (here inbreeding is achieved360

through selfing). The same rescaling applies to parameters estimated by ∂a∂i when inbreeding is361

included, so the appropriate scaling can be achieved by rescaling the affected parameters by 1+ F362

using the estimated value of the inbreeding coefficient.363

Simulations with ∂a∂i364

From our more detailed simulation experiments, we were able to characterize several scenarios365

where inbreeding adversely affects inferences of demography. For the single-population bottle-366

neck model in particular, not accounting for inbreeding had a dramatic impact on the accuracy of367

estimated population size. The primary reason for this is that inbreeding, much like population368

growth or contraction, affects the low frequency entries of the SFS in such a way that these factors369

are likely confounded (Figure 1).370

The result of ignoring inbreeding for the two-population divergence with one-way migra-371

tion model was much less drastic (Figures S10), such that parameter estimates were often nearly372

as accurate as when we included inbreeding in the model. It should be noted that in this case373

the highest level of inbreeding was F = 0.5, compared to the highest level in the co-estimating in-374

breeding simulations (F = 0.9). However, the fact that the results did not show the same pattern of375
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extremely poor parameter inference as the one-population model despite also having a bottleneck376

was noteworthy. One possible explanation for this is that jointly modeling the demography of the377

inbred, bottlenecked population with the main, non-inbred population provided more informa-378

tion in the 2D-SFS to estimate parameters. Nevertheless, despite having more overall accuracy379

than the one-population model, parameter estimates in the two-population model were increas-380

ingly underestimated with higher levels of inbreeding, demonstrating its adverse effects even381

when including a second panmictic species in the model.382

The other two simulation experiments, masking rare variants and misspecifying inbreed-383

ing, provide further examples of the extent to which the variants with lowest frequency are con-384

founded with inbreeding in ways that affect demographic inference. Masking the singleton and385

doubleton entries of the 1D- and 2D-SFS for the bottleneck and divergence models, respectively,386

had only a small effect on estimates of population size and the timing of demographic events,387

showing that the signal for these inferences is also contained in the remaining entries of the SFS.388

However, estimates of gene flow were consistently underestimated in the divergence model, likely389

due to the fact that the influx of migrant alleles at low frequency were being masked. Simulations390

that modeled inbreeding when it was absent provide a different view on the inference of inbreed-391

ing and demography. In this case, the inbreeding coefficient was inferred to be ∼0.1 and ∼0.2 in392

the one- and two-population models, respectively, even though there was no inbreeding (Figure393

S13 and S14). The accuracy of the remaining parameters was fairly high; however, there were394

instances of certain parameter combinations leading to over- and underestimation of the true pa-395

rameter value. Therefore, to prevent poor estimation of other parameter values, it is advised that396

inbreeding be included in a model only when there is an observable excess in homozygosity.397

Results from Empirical Analyses398

The impact of inbreeding on the results of our empirical analyses demonstrate the importance399

of directly estimating this parameter when inferring demography. Analyses with and without400

inbreeding provided different estimates of population size and duration for Texas pumas and in-401

fer strikingly different population size changes during the history of domesticated cabbage. In402

the case of the American puma, our estimates of population divergence time between Texas and403

Florida, the timing of movement from South America into North America, reductions in popula-404

tion size (especially for the Florida population), and a high level of inbreeding in Florida panthers405

are all consistent with previous work (Culver et al. 2000; Ochoa et al. 2017, 2019).406

The demographic history inferred for cabbage provides yet another example of how inbreed-407

ing and population contraction can be confounded since estimates of current population size with-408

out inbreeding were ∼600 individuals, an unrealistic estimate given the prevalence of cabbage409

cultivation, as well as the clear discrepancy between model fit and the observed SFS for low fre-410

quency variants (Figure 4). Including inbreeding, however, provides a potentially revealing look411

into the domestication history of cabbage, especially regarding the signal for the textbook “domes-412

tication bottleneck” (Gaut et al. 2018). The expansion of the ancestral cabbage population ∼17,000413

years ago coincides with the end of glaciation in Europe and, in particular, the Mediterranean re-414

gion (Hughes et al. 2006; Clark et al. 2009; Hughes and Woodward 2017). Previous work has also415

placed the timing of domestication for the cabbage morphotype of B. oleracea at approximately 500416

years ago (Cheng et al. 2016b), which roughly agrees with the date that we estimated for the sec-417

ondary population expansion. This series of population expansions differs quite conspicuously418

when compared to what is often expected for domesticated species (e.g., severe bottlenecks; Doe-419
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bley et al. 2006; Meyer and Purugganan 2013; Gerbault et al. 2014; Gaut et al. 2018). Given the420

relatively high inbreeding coefficient estimated for cabbage (F = 0.58), and the fact that ignoring421

inbreeding led to inferences of a very recent and severe bottleneck, it is possible that past infer-422

ences of domestication bottlenecks have been partially misled by the occurrence of inbreeding423

when inferring population dynamics.424

Short- Versus Long-Term Inbreeding425

In a review on the effects of inbreeding, Deborah Charlesworth (2003) discussed the temporal as-426

pects of its impact on genetic diversity, distinguishing between the short-term consequences on427

patterns of diversity (i.e., excess homozygosity compared to panmixia) versus the long-term ef-428

fects of inbreeding that lead to an overall reduction in the effective size of the population. The429

method we have introduced here is capable of modeling inbreeding in both categories by not430

only fitting the physical manifestation of inbreeding in the SFS (i.e., spikiness), but also by being431

able to appropriately scale the diffusion process to account for the reduction in diversity caused432

by inbreeding (θF = θ
1+F ). The reduction in effective population size, as well as the recombina-433

tion rate, that inbreeding causes has important consequences for the impact of selection and the434

rate of adaptation in inbred populations (Charlesworth 1992; Hartfield and Glémin 2016; Hart-435

field and Bataillon 2019). Therefore, studies aiming to identify the targets of selection in inbred,436

non-equilibrium populations must exercise special caution. This is especially relevant for domes-437

ticated species and organisms of conservation concern, whose evolutionary histories can often438

involve drastic changes in population size. Moving forward, the joint inference of demography,439

inbreeding, and selection will be an important advance for better understanding their collective440

contributions to genetic variation, as well as having potentially large consequences on informing441

decision making in agriculture and the designation of protection status for threatened or endan-442

gered species.443

Materials and Methods444

Comparison with SLiM445

Simulations to validate the expected SFS with inbreeding were conducted using SLiM v3.3 (Haller446

and Messer 2019). To include inbreeding, we set the selfing rate in SLiM to s = 2F/(1+ F), F = 0.1,447

0.25, 0.5, 0.75, and 0.9, and conducted 50 independent simulations, randomly sampling 25 indi-448

viduals with replacement 100 times for each replicate, for a total of 5000 simulated spectra for each449

of three models: (1) equilibrium/standard neutral model, (2) bottleneck and growth model, and450

(3) divergence with one-way migration model (models two and three are depicted in Figure 2).451

Each simulation used θ = 4NALµ = 10, 000, with NA = 1000, L = 1× 106 bp, and µ = 2.5× 10−5.452

We also set the recombination rate, r, equal to the mutation rate. For all models, we simulated453

10,000 generations of burn-in to allow the ancestral population to reach equilibrium and included454

selfing from the start of the simulation for models one and two. Individuals were sampled di-455

rectly after this phase for the standard neutral model. For model two, after burn-in, we reduced456

the population size to 250 individuals and then allowed the population size to recover exponen-457

tially back to 1000 individuals over 400 generations: N(t) = 250× 1000
250

t
400 . Model three started458

with an outcrossing equilibrium population, from which we split off a selfing population with a459

size of 250 individuals. These two populations were then simulated forward for an additional 400460
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generations with the selfing population receiving migrants from the original population at a rate461

of m21 = 5× 10−4. At the end of each simulation, individual genotype information was exported462

in variant call format and summarized using a Python script to obtained the SFS (available on463

GitHub). The expected SFS was then calculated by taking the mean value of each entry of the sim-464

ulated spectra across replicates for each model and each value of the inbreeding coefficient. This465

simulation routine was also replicated to generate 20 independent data sets for each model across466

the five levels of inbreeding to infer parameters using ∂a∂i v2.0.3 (Gutenkunst et al. 2009). Models467

were specified in Python v3.7 using the parameterizations described above and depicted in Fig-468

ure 2. Parameters were estimated for each simulated frequency spectrum using 100 optimization469

runs initiated from different random starting points. Parameter estimates with the highest log-470

likelihood were then recorded for comparison with the true simulated values using the root mean471

squared deviation (RMSD).472

Because inbreeding rescales the effective population size by a factor of 1 + F (Pollack 1987;473

Nordborg and Donnelly 1997), and ∂a∂i estimates parameters relative to the ancestral population474

size, we rescaled parameters in ∂a∂i in the following ways for the simulations above. For the475

standard neutral model, we included selfing from the start of the simulation, so for our compari-476

son between SLiM and ∂a∂i we divided the original θ of 10,000 by 1 + F. For the bottleneck and477

growth models, the ancestral population was also inbred, so we rescaled θ by again dividing by478

1+ F. The recovery time for this model was always set to 400 generations in SLiM, which in ∂a∂i’s479

units would be equal to 0.2× 2NA. Because the effective ancestral population size gets smaller480

as inbreeding increases, we had to account for this by multiplying by a factor of 1 + F. However,481

when inferring parameters under this model, we have to rescale in the opposite direction by di-482

viding by 1 + F to get the correct estimate for the number of generations relative to the ancestral483

population size. Finally, for the divergence with one-way migration model, the ancestral pop-484

ulation is not inbred, so the only rescaling that needs to be done is for the size of the diverged485

selfing population (0.25NA in ∂a∂i units). When comparing the expected SFS between ∂a∂i and486

SLiM, we divide 0.25 by 1 + F to get the correct size for the inbred population. When inferring487

parameters, we instead multiply by 1 + F to recover the original 0.25NA. In practice, it should be488

possible to estimate models assuming an outcrossing ancestral population and including a change489

in population size to account for the effects of inbreeding.490

Simulations491

Simulations to explore a greater breadth of parameters were conducted in Python 3.7 using func-492

tions available in the ∂a∂i library (v2.0.3). For each simulation experiment, we used the same493

basic setup for simulating frequency spectra under the two main models that were tested. The494

two models were (1) a single-population model experiencing a bottleneck of varying size [0.1NA,495

0.25NA, 0.5NA] followed by exponential growth over different time scales [0.2NA, 0.4NA, 0.6NA]496

back to the original size and (2) a two-population model where a small subpopulation diverges497

from the main population at different times in the past [0.2NA, 0.4NA, 0.6NA], going through a498

bottleneck of different sizes [0.1NA, 0.25NA, 0.5NA] and receiving migrants from the main pop-499

ulation at different rates [0.25/NA, 0.5/NA, 0.75/NA]. For the Co-Estimating Inbreeding and500

Demography simulations, we generated SFS under a standard neutral model with inbreeding as501

well. We also used a larger range of inbreeding coefficients for this experiment (FIS=0.1, 0.25, 0.5,502

0.75, and 0.9). The remaining three simulations that were not focused on estimating inbreeding503

used a smaller range (FIS=0.1, 0.2, 0.3, 0.4, and 0.5) since optimizations at higher inbreeding levels504
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generally failed to converge. Each simulation experiment was replicated 20 times, with each repli-505

cate having 25 individuals sampled per population and running 50 independent optimizations.506

Site frequency spectra were generated for each replicate by first getting the expected SFS for the507

model with the true parameters, followed by scaling the SFS using θ = 10, 000 and sampling chro-508

mosomes assuming a Poisson distribution (sample() method in the Spectrum class within ∂a∂i).509

Parameter estimates with the highest log-likelihood were selected from the 50 optimization runs510

for each replicate.511

We evaluated parameter estimates for each experiment (including estimates with SLiM above)512

by comparing the estimated values with the true parameters by calculating the RMSD in R v3.6.1513

using the tidyverse package v1.2.1 (R Core Team 2019; Wickham et al. 2019). Plots from R were514

generated using ggplot2 v3.2.1 (Wickham 2009). Plots from Python were made using matplotlib515

v3.1.1 (Hunter 2007) or plotting functions within the ∂a∂i library.516

Empirical Examples517

American Puma518

Genome-wide variant data from Ochoa et al. (2019) were obtained from the authors for five Texas519

pumas and two Florida panthers in variant call format (VCF). SNPs within annotated genes were520

removed using bedtools v2.28.0 (Quinlan and Hall 2010), followed by processing with VCFtools521

v0.1.16 (Danecek et al. 2011) to retain only biallelic SNPs with no missing data. The final data522

set contained 6,262,417 sites, which we converted from VCF format into ∂a∂i’s ‘SNP data format’523

using a Python script (available on GitHub) for demographic analysis. We then estimated de-524

mographic parameters in ∂a∂i using 100 independent optimization runs from different random525

starting points (Gutenkunst et al. 2009). Parameters were converted from estimated ratios of the526

ancestral population size (NA) to real units using a mutation rate of µ = 2.2× 10−9, a generation527

time of 3 years, and a sequence length of 2,564,692,624 bp Ochoa et al. (2019). Confidence intervals528

were estimated using the Godambe Information Matrix with 100 bootstrapped frequency spectra529

that were constructed by randomly sampling genome scaffolds with replacement until we reached530

the same number of scaffolds as the original full genome (Coffman et al. 2015). The Godambe In-531

formation Matrix uses numerical differentiation to estimate uncertainty and requires a step size532

(ε) to be chosen. The choice of step size should be roughly proportional to the size of the uncer-533

tainty that is being estimated. To evaluate which step size was most appropriate for American534

pumas, we used the bootstrapped spectra to estimate uncertainties across a range of step sizes:535

[10−2 – 10−7 by factors of 10]. These bootstrapped frequency spectra were also used to conduct536

a likelihood ratio test between the models with and without inbreeding using the LRT adjust()537

method in ∂a∂i and comparing the test statistic to a weighted sum of χ2 distributions with zero,538

one, and two degrees of freedom (Ota et al. 2000): 1
4 χ2

0 +
1
2 χ2

1 +
1
4 χ2

2. This weighted sum is used539

because we are testing whether the inbreeding coefficients for the Texas and Florida populations540

are equal to 0, which is the lower boundary of their parameter space since we are assuming in-541

breeding coefficients cannot be negative. Because of this, the typical normality assumptions used542

in the construction of the likelihood ratio test do not apply and we must adjust the distribution543

being used for assessing the significance of the likelihood ratio test statistic (Ota et al. 2000).544

Domesticated Cabbage545

We obtained a VCF file containing SNP calls for 45 cabbage individuals from resequencing data in546
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Cheng et al. (2016a,b). We then filtered out genic SNPs with bedtools v2.28.0 using gene anno-547

tations from http://www.genoscope.cns.fr/externe/plants/chromosomes.html (Belser et al.548

2018). Biallelic SNPs containing no missing data were extracted with VCFtools v0.1.16 for a fi-549

nal data set with 2,941,018 variable sites. Demographic parameters were estimated in ∂a∂i with550

the BOBYQA algorithm implemented in the nlopt Python package using 100 independent opti-551

mization runs from random starting points (Gutenkunst et al. 2009; Powell 2009; Johnson 2014).552

Parameters were converted from estimated ratios of the ancestral population size to real units553

using a mutation rate of µ = 1.5× 10−8, a generation time of 1 year, and a sequence length of554

411,560,319 bp (chromosomes minus genic regions). Confidence intervals were then estimated555

using the Godambe Information Matrix with 100 bootstrapped frequency spectra that were con-556

structed by randomly sampling 1 Mbp blocks with replacement until the total sequence length557

was as close as possible to the size of the full genome (528,860,695 bp; Coffman et al. 2015). We558

also repeated the same procedure described above for choosing a step size for numerical differen-559

tiation (ε ∈ [10−2, . . . , 10−7] by factors of 10]). These bootstrapped frequency spectra were again560

used to conduct a likelihood ratio test between the models with and without inbreeding using561

the LRT adjust() method in ∂a∂i and comparing the test statistic to a weighted sum of χ2 dis-562

tributions with zero and one degrees of freedom (see section above for rationale; Ota et al. 2000):563

1
2 χ2

0 +
1
2 χ2

1.564

Confidence Intervals for Composite Parameters565

We used the constants listed above for sequence length (L), mutation rate (µ), and generation time566

(g) for pumas and domesticated cabbage to convert from the units used by ∂a∂i to real units of567

years and individuals. However, in order to estimate confidence intervals for these converted568

parameters, we need to correctly account for the fact that times and population sizes are products569

of two estimated parameters (either θ× T∂a∂i or θ× N∂a∂i): Treal =
2g

4Lµ θT∂a∂i and Nreal =
1

4Lµ θN∂a∂i.570

We do this by propagating the uncertainty in our estimates of each individual parameter into a571

combined estimate of the standard deviation for the composite parameter. In addition, because572

our original uncertainty estimates for each parameter were large and led to negative values in our573

confidence intervals, we instead estimated our uncertainty on a log scale. Taking the log of Treal574

and Nreal gives us the following expressions for each parameter:575

log Treal = log
(

2g
4Lµ

)
+ log θ + log T∂a∂i ,

log Nreal = log
(

1
4Lµ

)
+ log θ + log N∂a∂i .

The corresponding expressions for the standard deviations of log Treal and log Nreal are then576

σlog Treal =
√

σ2
log θ + σ2

log T∂a∂i
+ 2σlog θ,log T∂a∂i ,

σlog Nreal =
√

σ2
log θ + σ2

log N∂a∂i
+ 2σlog θ,log N∂a∂i ,
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where σ2
x , σ2

y , and σx,y are the variances and covariance for arbitrary variables x and y. With these577

new estimates of the standard deviation, we can obtain the log-scaled confidence intervals for578

Treal and Nreal : log Treal ± Cσlog Treal and log Nreal ± Cσlog Nreal . Here C is a constant chosen based on579

the desired confidence level (e.g., C = 1.96 for 95% confidence intervals). Exponentiating these580

expressions then gives us our confidence limits on the original scale.581

Data Availability582

The inbreeding model is implemented in the Python package ∂a∂i, which is available on Bit-583

bucket (https://bitbucket.org/gutenkunstlab/dadi). Code for generating and analyzing sim-584

ulated and empirical data sets from this paper are available on GitHub (https://github.com/585

pblischak/inbreeding-sfs). The bbc-shiny/ folder in the GitHub repository also contains a586

small R Shiny application for plotting the probability mass function of the n-fold convolution of587

beta-binomials with different sample sizes, allele frequencies, and inbreeding coefficients.588
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Lukić, S. and Hey, J. 2012. Demographic inference using spectral methods on SNP data, with an697

analysis of the human out-of-Africa expansion. Genetics, 192(2): 619–639.698

Maggioni, L. 2015. Domestication of Brassica oleracea L. Ph.D. thesis, Swedish University of Agri-699

cultural Sciences.700

Meyer, R. S. and Purugganan, M. D. 2013. Evolution of crop species: Genetics of domestication701

and diversification. Nature Reviews Genetics, 14: 840–852.702

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.20.881474doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.881474
http://creativecommons.org/licenses/by/4.0/


Nielsen, R., Melissa J. Hubisz, I. H., Torgerson, D., Andrés, A. M., Albrechtsen, A., Gutenkunst,703

R., Adams, M. D., Cargill, M., Boyko, A., Indap, A., Bustamante, C. D., , and Clark, A. G. 2009.704

Darwinian and demographic forces affecting human protein coding genes. Genome Research, 19:705

838–849.706

Nordborg, M. 2000. Linkage disequilibrium, gene trees and selfing: An ancestral recombination707

graph with partial self-fertilization. Genetics, 154: 923–929.708

Nordborg, M. and Donnelly, P. 1997. The coalescent process with selfing. Genetics, 146: 1185–1195.709

Ochoa, A., Onorato, D. P., Fitak, R. R., Roelke-Parker, M. E., and Culver, M. 2017. Evolutionary710

and Functional Mitogenomics Associated With the Genetic Restoration of the Florida Panther.711

Journal of Heredity, 108: 449–455.712

Ochoa, A., Onorato, D. P., Fitak, R. R., Roelke-Parker, M. E., and Culver, M. 2019. De novo assembly713

and annotation from parental and F1 puma genomes for the Florida panther genetic restoration714

program. G3: Genes|Genomes|Genetics, 9: 3531–3536.715

Ota, R., Waddell, P. J., Hasegawa, M., Shimodaira, H., and Kishino, H. 2000. Appropriate Likeli-716

hood Ratio Tests and Marginal Distributions for Evolutionary Tree Models with Constraints on717

Parameters. Molecular Biology and Evolution, 17: 798–803.718

Pollack, E. 1987. On the theory of partially inbreeding finite populations. I. partial selfing. Genetics,719

117: 353–360.720

Powell, M. J. D. 2009. The BOBYQA algorithm for bound constrained optimization without721

derivatives. Technical Report 2009/NA06, Department of Applied Mathematics and Theoretical722

Physics, Cambridge University.723

Quinlan, A. R. and Hall, I. M. 2010. BEDTools: A flexible suite of utilities for comparing genomic724

features. Bioinformatics, 26: 841–842.725

R Core Team 2019. R: A language and environment for statistical computing. R Foundation for Statis-726

tical Computing, Vienna, Austria.727

Robinson, J. A., Vecchyo, D. O.-D., Fan, Z., Kim, B. Y., von Holdt, B. M., Marsden, C. D.,728

Lohmueller, K. E., and Wayne, R. K. 2016. Genomic flatlining in the endangered island fox.729

Current Biology, 26: 1183–1189.730
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Supplemental Tables765

Table S1: Log-scale standard deviations for parameters in the model with inbreeding for American pumas
across a series of step sizes.

ε σlog νTX σlog νFL σlog τ1 σlog τ2 σlog FTX σlog FFL σlog θ

10−2 0.0604 1.281 0.1961 1.274 0.0385 0.0162 0.0061

10−3 0.0175 0.1738 0.0749 0.1993 0.0171 0.0427 0.0114

10−4 0.0104 0.3512 0.0209 0.3757 0.0277 0.0425 0.0109

10−5 0.0307 0.3501 0.0258 0.3741 0.0248 0.0425 0.0177

10−6 0.0595 0.3819 0.1853 0.4111 0.0330 0.0446 0.0671

10−7 0.0039 0.0086 0.0114 0.0052 0.0184 0.0222 0.0097

Table S2: Log-scale standard deviations for parameters in the model without inbreeding for American
pumas across a series of step sizes.

ε σlog νTX σlog νFL σlog τ1 σlog τ2 σlog θ

10−2 0.8452 1.057 1.894 1.067 0.1353

10−3 0.0642 0.0312 0.1588 0.0370 0.0160

10−4 0.1603 0.1758 0.3030 0.1818 0.0170

10−5 0.0205 0.0109 0.0410 0.0114 0.0105

10−6 0.0025 0.0079 0.0126 0.0029 0.0103

10−7 5.50e-5 6.69e-5 5.87e-5 1.03e-4 9.76e-3
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Table S3: Log-scale standard deviations for parameters in the model with inbreeding for domesticated
cabbage across a series of step sizes.

ε σlog ν1 σlog ν2 σlog τ1 σlog τ2 σlog F σlog θ

10−2 0.0432 1.913 0.1347 0.6388 0.0184 0.0171

10−3 0.0426 1.953 0.4052 0.8423 0.0187 0.0655

10−4 0.0434 1.411 0.2900 0.5930 0.0189 0.0470

10−5 0.0426 0.7802 0.2784 0.4184 0.0189 0.0453

10−6 0.0582 1.828 0.5530 0.1422 0.0183 0.0920

10−7 0.1664 0.0979 0.1425 0.4607 0.0147 0.0953

Table S4: Log-scale uncertainties for parameters in the model without inbreeding for domesticated cabbage
across a series of step sizes.

ε σlog ν1 σlog ν2 σlog τ1 σlog τ2 σlog θ

10−2 0.2236 0.0344 0.0597 0.0856 0.0161

10−3 2.068 4.006 0.5373 3.679 0.0512

10−4 2.596 1.325 0.5685 1.560 0.0438

10−5 3.435 10.57 0.7405 11.32 0.0496

10−6 0.9482 0.1776 0.2459 0.0701 0.0238

10−7 0.0071 0.0077 0.0191 0.0211 0.0179
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Supplemental Figures766

Equilibrium

Bottleneck

F=0.1 F=0.25

dadi

SLiM

Figure S1: Comparison of expected frequency spectra for F=0.1 and 0.25 for ∂a∂i (blue) and SLiM (green)
for the equilibrium and bottleneck+growth models.
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Figure S3: Estimates of the inbreeding coefficient for the equilibrium model generated by SLiM.
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Figure S4: Parameter estimates from ∂a∂i for data simulated by SLiM for the bottleneck+growth model
[bottleneck size (ν0): top left; final size (νF): top right; scaled bottleneck duration ( τ

1+F ): bottom].
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Figure S5: Parameter estimates from ∂a∂i for data simulated by SLiM for the domestication
(divergence+one-way migration) model [scaled size of population two (ν2 × (1 + F)): top left; divergence
time (τ): top right; migration (M21): bottom].
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Figure S6: Estimates of the inbreeding coefficient for the standard neutral model for data generated by
Poisson sampling within ∂a∂i.
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Figure S7: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the bottleneck+growth
model [inbreeding coefficient (F=0.1, 0.25, 0.5, 0.75, 0.9): top; bottleneck size (ν0=0.1, 0.25, 0.5): bottom left;
bottleneck duration (τ=0.1, 0.2, 0.3): bottom right]. Plots for ν0 and τ are split into rows (true inbreeding
coefficient) and column (true simulated parameter value).
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Figure S8: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the divergence+one-
way migration model [inbreeding coefficient (F=0.1, 0.25, 0.5, 0.75, 0.9): top left; size of population two
(ν2=0.1, 0.25, 0.5): top right; divergence time (τ=0.1, 0.2, 0.3): bottom left; migration (M21 = 0.5, 1.0, 1.5):
bottom right]. Plots for ν2, τ, and M21 are split into columns for each value of the inbreeding coefficient.
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Figure S9: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the bottleneck+growth
model when inbreeding is ignored [inbreeding coefficient (F=0.1, 0.2, 0.3, 0.4, 0.5): not estimated; bottleneck size
(ν0=0.1, 0.25, 0.5): top; bottleneck duration (τ=0.1, 0.2, 0.3): bottom]. Plots for ν0 and τ are split into rows
(true inbreeding coefficient) and column (true simulated parameter value).
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Figure S10: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the divergence+one-
way migration model when inbreeding is ignored [inbreeding coefficient (F=0.1, 0.2, 0.3, 0.4, 0.5): not estimated;
size of population two (ν2=0.1, 0.25, 0.5): top left; divergence time (τ=0.1, 0.2, 0.3): top right; migration
(M21 = 0.5, 1.0, 1.5): bottom]. Plots for ν2, τ, and M21 are split into columns for each value of the inbreeding
coefficient.
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Figure S11: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the bottle-
neck+growth model when rare variants are masked [inbreeding coefficient (F=0.1, 0.2, 0.3, 0.4, 0.5): not es-
timated; bottleneck size (ν0=0.1, 0.25, 0.5): left; bottleneck duration (τ=0.1, 0.2, 0.3): right]. Plots for ν0 and τ
are split into rows (true inbreeding coefficient) and column (true simulated parameter value).
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Figure S12: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the divergence+one-
way migration model when rare variants are masked [inbreeding coefficient (F=0.1, 0.2, 0.3, 0.4, 0.5): not
estimated; size of population two (ν2=0.1, 0.25, 0.5): top left; divergence time (τ=0.1, 0.2, 0.3): top right;
migration (M21 = 0.5, 1.0, 1.5): bottom]. Plots for ν2, τ, and M21 are split into columns for each value of the
inbreeding coefficient.
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Figure S13: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the bottle-
neck+growth model when inbreeding is absent but is still inferred [bottleneck size (ν0=0.1, 0.25, 0.5): top left;
bottleneck duration (τ=0.1, 0.2, 0.3): top right; inbreeding coefficient (F=0): bottom]. Plots for ν0 and τ are
split into columns for each value of the other simulated parameter value.
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Figure S14: Parameter estimates from ∂a∂i for data generated by Poisson sampling for the divergence+one-
way migration model when inbreeding is absent but is still inferred [inbreeding coefficient (F=0): top left; size
of population two (ν2=0.1, 0.25, 0.5): top right; divergence time (τ=0.1, 0.2, 0.3): bottom left; migration (M21
= 0.5, 1.0, 1.5): bottom]. Plots for ν2, τ, and M21 are split into rows and columns for each value of the other
two simulated parameters.
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