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Abstract		21	

Understanding	ecological	drivers	of	mosquito-borne	disease	is	an	ongoing	public	22	

health	priority.	Previous	experiments	and	mechanistic	models	suggest	mosquito-23	

borne	disease	transmission	involves	complex	nonlinear	interactions	between	24	

climate	and	population	dynamics.	This	makes	detecting	environmental	disease	25	

drivers	at	the	population	level	challenging.	By	analyzing	incidence	data,	estimated	26	

susceptible	population	size,	and	climate	data	with	methods	based	on	nonlinear	time	27	

series	analysis,	collectively	referred	to	as	empirical	dynamic	modeling	(EDM),	we	28	

identified	drivers	and	their	interactive	effects	on	dengue	dynamics	in	San	Juan,	29	

Puerto	Rico.	Estimated	susceptible	population	size	was	the	strongest	causal	driver	30	

of	dengue	incidence,	and	climatic	forcing	became	important	above	a	certain	31	

susceptible	population	size	(temperature	and	rainfall	having	net	positive	and	32	

negative	effects,	respectively).	Our	EDM	protocol	for	measuring	and	predicting	how	33	

climate	and	population	dynamics	interact	to	drive	epidemics	adds	to	a	growing	body	34	

of	empirical	studies	of	complex,	nonlinear	systems	embedded	in	changing	35	

environments.	36	
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INTRODUCTION	37	

Mosquito-borne	diseases,	and	dengue	in	particular,	are	(re)emerging	globally	and	38	

spreading	to	higher	latitudes	in	concert	with	globalization	and	climate	change	39	

(Kilpatrick	&	Randolph	2012;	Ryan	et	al.	2019).	Dengue	virus—transmitted	40	

primarily	by	urban	Aedes	aegypti	(Kraemer	et	al.	2015b)—places	half	of	the	global	41	

human	population	in	128	countries	at	infection	risk	(Brady	et	al.	2012;	Kraemer	et	42	

al.	2019)	and	causes	an	estimated	390	million	annual	cases	of	dengue	fever	43	

worldwide	(Bhatt	et	al.	2013).	In	the	absence	of	effective	vaccines	or	treatments	44	

(Katzelnick	et	al.	2017b,	a;	Sridhar	et	al.	2018),	public	health	agencies	rely	on	vector	45	

control	to	reduce	dengue	transmission	(Erlanger	et	al.	2008).	Effective	vector	46	

control	measures	require	understanding	the	mechanisms	linking	vector	ecology	and	47	

epidemics	to	better	predict	disease	outbreaks—a	major	research	challenge.	48	

Previous	prediction	models	used	phenomenological	and	mechanistic	equation-49	

based	approaches	(Johansson	et	al.	2009;	Hii	et	al.	2012;	Tran	et	al.	2013;	Liu-50	

Helmersson	et	al.	2014;	Morin	et	al.	2015;	Mordecai	et	al.	2017;	Johnson	et	al.	2018),	51	

which	may	not	fully	capture	interdependence	between	predictors.	Here,	we	used	a	52	

mechanistic,	equation-free,	data-driven	approach	that	accounts	for	interdependence	53	

to	determine	ecological	drivers	and	predict	dengue	outbreaks	in	an	urban	54	

environment.	55	

Since	mosquitoes	have	been	shown	to	be	sensitive	to	climate	variables,	such	as	56	

temperature	and	rainfall	(Ibarra	et	al.	2013;	Mordecai	et	al.	2019),	it	is	reasonable	to	57	

ask	whether	temperature	and	rainfall	are	important	drivers	of	dengue	outbreaks.	58	
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Although	temperature	directly	affects	mosquito	and	viral	traits	in	laboratory	59	

experiments	(Watts	et	al.	1987;	Lambrechts	et	al.	2011),	the	relationship	between	60	

temperature	and	dengue	incidence	in	the	field	has	been	ambiguous.	Thus,	61	

temperature-dependent	models	have	had	mixed	success	predicting	the	timing	and	62	

magnitudes	of	epidemics	(Hii	et	al.	2012;	Johansson	et	al.	2016;	Johnson	et	al.	2018).	63	

Similarly,	the	rainfall–dengue	relationship	is	complex,	because	the	effect	of	rainfall	64	

on	mosquitoes	depends	on	local	breeding	habitat	and	human	behavior.	In	some	65	

settings,	rainfall	provides	more	container	breeding	habitat	for	mosquitoes,	thus	66	

increasing	mosquito	abundance	and	dengue	incidence	(Ibarra	et	al.	2013).	By	67	

contrast,	low	rainfall	levels	could	also	facilitate	dengue	transmission	by	promoting	68	

water	storage	that	serves	as	standing-water	habitat	for	mosquito	breeding	69	

(Oliveira-lima	et	al.	2000).	Further,	heavy	rainfall	can	reduce	mosquito	abundance	70	

by	flushing	out	larvae	(Koenraadt	&	Harrington	2008).	The	net	effect	of	climate	on	71	

dengue	is	a	convolution	of	many	different	mechanisms	of	action,	and	the	net	72	

outcome	depends	on	specific	context	details.	Moreover,	as	these	details	change,	the	73	

climate–dengue	relationship	can	change.	74	

Previous	studies	using	statistical	(Johansson	et	al.	2009;	Hii	et	al.	2012;	Liu-75	

Helmersson	et	al.	2014;	Johnson	et	al.	2018)	and	mechanistic	models	(Tran	et	al.	76	

2013;	Morin	et	al.	2015;	Mordecai	et	al.	2017)	suggest	that	temperature	and	rainfall	77	

drive	dengue	transmission	in	the	field.	However,	these	models	rely	on	parameter	78	

estimates	from	laboratory	studies	that	are	engineered	to	isolate	single	mechanisms	79	

of	action,	hence	producing	separable	relationships	between	drivers	and	dengue,	80	

eliminating	the	complex	interdependence	at	the	population	level.	While	laboratory	81	
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studies	provide	robust	validation	of	a	mechanism	(Lambrechts	et	al.	2011),	the	fixed	82	

relationships	(correlations)	taken	from	them	do	not	necessarily	translate	into	83	

proper	causal	inference	for	nonlinear	field	systems	(Sugihara	et	al.	2012).	Even	if	84	

causality	exists	between	two	variables	in	such	a	system,	their	correlation	can	switch	85	

signs	during	different	time	periods,	resulting	in	a	net	correlation	of	zero	(Deyle	et	al.	86	

2016b).	This	temporal	variation	in	the	direction	of	correlation	results	from	the	87	

nonlinear,	state-dependent	relationship	between	the	variables	(i.e.,	the	importance	88	

or	direction	of	one	effect	depends	on	the	state	of	another	variable).	Conversely,	even	89	

if	two	variables	are	consistently	correlated,	the	association	could	be	spurious	due	to	90	

a	confounder—a	third	variable	that	drives	two	otherwise	unrelated	variables.	Thus,	91	

covariation	among	variables	poses	a	problem	for	identifying	causal	drivers.	Both	92	

temperature	and	rainfall	follow	seasonal	patterns	in	most	regions	of	the	world	and	93	

often	covary,	making	it	difficult	to	separate	their	effects.	Since	ecological	systems	94	

are	often	nonlinear	with	covarying	drivers,	it	is	difficult	to	isolate	causality	from	95	

field	data.		96	

Disease	incidence	also	depends	nonlinearly	on	(potentially	climate-driven)	97	

transmission	rates,	because	epidemic	growth	slows	as	the	population	of	susceptible	98	

individuals	is	exhausted	(Rypdal	&	Sugihara	2019).	Thus,	susceptible	population	99	

size	is	an	important	driver	of	infectious	disease	dynamics	(Anderson	&	May	1979;	100	

Kraemer	et	al.	2015a;	Rypdal	&	Sugihara	2019).	Variation	in	susceptible	host	101	

availability	may	influence	the	effects	of	climate	on	dengue	dynamics,	but	such	102	

interactive	effects	are	difficult	to	detect	in	observational	data.	A	lack	of	rigorous	103	

methods	has	hindered	research	on	potential	interdependence	of	climate	and	104	
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susceptible	population	size	as	drivers	of	dengue	incidence.	Because	correlations	are	105	

unreliable	and	variables	are	interdependent	in	nature,	disentangling	climate	from	106	

other	drivers	in	disease	systems	remains	challenging	(Thai	&	Anders	2011;	Morin	et	107	

al.	2013).	108	

To	overcome	these	challenges,	we	used	empirical	dynamic	modeling	(EDM)	109	

(Sugihara	et	al.	2012)	to	identify	and	model	causal	mechanisms	driving	dengue	110	

epidemics	(see	http://tinyurl.com/EDM-intro	for	an	introduction).	EDM	differs	from	111	

statistical	and	equation-based	mechanistic	models	in	two	key	ways.	First,	unlike	112	

statistical	approaches	where	inferences	about	cause-and-effect	relationships	are	113	

based	on	fixed	independent	pairwise	associations	between	system	variables,	EDM	is	114	

based	on	reconstructing	the	system	dynamics.	This	allows	relationships	among	115	

system	variables	to	change	through	time	to	reflect	that	interactions	among	variables	116	

are	changing.	Second,	unlike	equation-based	mechanistic	models,	EDM	does	not	117	

require	assumptions	about	the	functional	form	of	the	model,	but	instead	118	

reconstructs	the	dynamic	attractor	empirically	from	time	series	observations.	An	119	

attractor	is	a	geometric	object	(i.e.,	curve	or	manifold)	that	embodies	the	rules	for	120	

how	relationships	among	variables	change	with	respect	to	each	other	through	time	121	

depending	on	system	state	(specific	location	on	the	attractor).	Like	a	set	of	122	

equations,	the	geometric	attractor	encompasses	the	dynamics	of	a	system,	and	thus	123	

can	provide	an	agnostic	(without	an	assumed	set	of	equations)	yet	mechanistic	124	

understanding	of	the	system	that	is	empirically	based.	Although	traditional	125	

equation-based	mechanistic	models	can	be	constructed	to	account	for	nonlinearity,	126	

these	approaches	require	a	priori	assumptions	about	the	identity	and	the	form	of	127	
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the	causal	relationships	between	variables	that	may	not	hold;	however,	EDM	does	128	

not	rely	on	such	assumptions.	129	

Here,	we	use	EDM	and	a	recent	approach	for	inferring	the	susceptible	population	130	

size	from	incidence	data	(Rypdal	&	Sugihara	2019)	to	answer	three	questions:	(1)	131	

Do	temperature,	rainfall	and/or	inferred	susceptible	population	size	drive	dengue	132	

incidence?	(2)	Can	we	predict	dengue	dynamics	using	climate	data	and	inferred	133	

susceptible	population	size?	(3)	What	is	the	approximate	pattern	of	each	causal	134	

relationship,	and	how	is	this	relationship	influenced	by	the	other	drivers?	We	135	

examine	the	hypothesis	that	temperature	and	rainfall	drive	dengue	incidence	in	136	

complex	ways	that	depend	on	susceptible	population	size.	The	EDM	protocol	137	

presented	here—identifying	drivers,	their	predictive	power,	and	state-dependent	138	

functional	responses—can	be	applied	to	other	complex,	ecological	systems.	139	
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METHODS	140	

Data	and	proxy	for	susceptible	population	size	141	

We	obtained	time	series	of	weekly	observations	of	dengue	incidence	(total	number	142	

of	new	dengue	cases	of	all	serotypes),	temperature	(℃),	and	rainfall	(mm)	in	San	143	

Juan,	Puerto	Rico,	1990–2009	(Figure	1a–c)	from	the	National	Oceanic	and	144	

Atmospheric	Administration	on	November	10,	2016	145	

(http://dengueforecasting.noaa.gov/).	Direct	measurement	of	susceptible	146	

populations	is	not	feasible,	so	we	used	a	recently	developed	method	for	inferring	a	147	

proxy	for	the	susceptible	population	size	(Rypdal	&	Sugihara	2019).	This	method	148	

uses	incidence	data	during	the	inter-outbreak	period	to	construct	a	time	series	for	149	

the	susceptible	population.	Although	few	dengue	cases	occur	during	the	inter-150	

outbreak	period,	incidence	during	this	time	contains	information	about	the	151	

susceptible	population	size	in	the	next	outbreak.	Because	during	an	inter-outbreak	152	

period	the	disease	system	fluctuates	around	a	disease-free	equilibrium,	a	linear	153	

approximation	of	the	incidence	rate	can	be	made	where	the	coefficient,	i.e.,	the	154	

leading	eigenvalue,	𝜆,	scales	linearly	with	the	susceptible	population	size.	If	we	155	

assume	a	simple	Susceptible-Infected-Recovered	(SIR)	model	(Kermack	&	156	

McKendrick	1927)	for	the	disease	system,	then		157	

	 𝜆 = 𝛽𝑆& − 𝛾	 (1)	

where	𝑆&	is	a	parameter	representing	the	susceptible	population	size,	𝛽	is	the	force	of	158	

infection,	and	𝛾	is	the	recovery	rate.	Thus,	𝜆	is	linearly	related	to	the	proportion	of	159	
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the	population	that	is	susceptible	over	time,	and	can	be	used	as	a	proxy	(see	160	

Supporting	Information	for	details).	161	

Since	the	weekly	incidence	data	are	discrete	we	need	to	obtain	the	discrete-time	162	

eigenvalue	𝜆& = 𝑒*∆, .	To	infer	𝜆&	from	the	weekly	incidence	data	𝐼(𝑡),	we	performed	163	

linear	regression	by	fitting	the	statistical	model	𝐼(𝑡 + Δ𝑡) = 	𝜆&	𝐼(𝑡)	for	12	time	164	

points	in	a	12-week	running	window	(∆𝑡 = 1	week).	The	model	is	robust	to	the	165	

window	size	(Rypdal	&	Sugihara	2019).	In	the	discrete	case,	when	𝜆& < 1	the	system	166	

is	stable	(inter-outbreak	period)	and	when	𝜆& ≥ 1	then	the	system	is	unstable	167	

(outbreak	period).	Here,	we	treated	the	resulting	time	series	of	𝜆&	as	a	proxy	for	the	168	

susceptible	population	size,	or	“susceptibles	index”	for	short	(Figure	1d).		169	

Statistical	analyses	170	

All	analyses	were	conducted	in	R	version	3.5.1	(R	Development	Core	Team	2018).	171	

We	performed	pairwise	cross-correlations	on	the	time	series	to	investigate	time-172	

lagged	relationships	between	potential	drivers	(i.e.,	temperature,	rainfall,	and	173	

susceptibles	index)	and	dengue	incidence	using	the	tseries	package	version	0.10-174	

45	(Trapletti	&	Hornik	2018).	We	calculated	the	interannual	mean	to	obtain	the	175	

seasonal	variability	for	each	variable.	Determining	whether	the	variables	follow	176	

seasonal	trends	is	important	for	EDM	analyses.	Before	performing	EDM,	we	177	

normalized	each	time	series	to	zero	mean	and	unit	variance	to	remove	178	

measurement	unit	bias,	ensuring	the	variables	would	be	comparable	and	the	179	

attractor	would	not	be	distorted.		180	
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Empirical	dynamic	modeling	(EDM)	181	

All	EDM	analyses	were	performed	using	package	rEDM	version	0.7.1	(Ye	et	al.	2018).	182	

EDM	includes	approaches	to	infer	a	system’s	mechanistic	underpinnings	and	predict	183	

its	dynamics.	EDM	uses	time	series	data	of	one	or	more	variables	to	construct	an	184	

attractor	in	state	space	(Figure	S1).	This	is	called	univariable	or	multivariable	state	185	

space	reconstruction	(SSR)	for	an	attractor	built	using	a	single	or	multiple	variables,	186	

respectively.	Properties	of	the	attractor	are	assessed	to	examine	characteristics	of	187	

the	system	(Deyle	&	Sugihara	2011).		188	

EDM	is	sensitive	to	stochasticity,	and	should	be	applied	in	systems	where	there	is	189	

evidence	of	deterministic	dynamics	(Cummins	et	al.	2015).	Some	stochasticity	is	190	

allowed	(e.g.,	there	can	be	stochastic	drivers	in	the	system),	but	the	system	cannot	191	

be	entirely	stochastic	(i.e.,	there	must	be	low-dimensional	deterministic	structure	to	192	

most	variables).	To	test	for	low-dimensional	deterministic	dynamics	we	performed	193	

univariable	SSR	for	each	variable	and	used	simplex	projection	(Sugihara	&	May	194	

1990)—a	type	of	nearest	neighbor	regression—to	check	that	the	prediction	skill	195	

decreases	with	time	to	prediction,	an	indicator	of	deterministic	dynamics	(Figures	196	

S2a	and	S4;	see	Supporting	Information	for	details).	To	test	for	nonlinear	state	197	

dependence	of	a	variable—the	motivation	behind	EDM—we	used	the	S-map	test	for	198	

nonlinearity	(Sugihara	1994)	(Figures	S2b,c	and	S5;	see	Supporting	Information	for	199	

details).	 	200	
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EDM:	Convergent	cross-mapping	201	

We	used	an	EDM	approach	called	convergent	cross-mapping	(CCM)	(Sugihara	et	al.	202	

2012)	to	identify	drivers	of	dengue	incidence.	If	two	variables	are	causally	related,	203	

then	a	multivariable	attractor—where	each	variable	in	the	system	represents	a	204	

dimension	that	traces	the	dynamics	of	the	system—can	be	semi-reconstructed	using	205	

lagged	versions	of	just	one	of	the	variables	(Figure	S1).	Based	on	Takens’	Theorem,	206	

this	univariable	“shadow	attractor”	preserves	the	structural	and	dynamic	properties	207	

of	the	original	multivariable	attractor	(Takens	1981)	[see	video	208	

https://youtu.be/QQwtrWBwxQg	(Sugihara	et	al.	2012)].	The	concept	behind	CCM	209	

is	that	if	temperature	causes	dengue	incidence,	then	information	about	temperature	210	

will	be	embedded	in	the	dynamics	of	dengue,	such	that	the	shadow	attractor	211	

produced	using	only	dengue	dynamics	allows	us	to	accurately	reconstruct	212	

temperature	in	the	past.	However,	the	converse	scenario	would	not	be	true:	since	213	

dengue	does	not	cause	temperature,	the	shadow	attractor	constructed	using	214	

temperature	data	should	not	contain	information	to	accurately	reconstruct	dengue	215	

incidence	(see	Supporting	Information	for	details).		216	

The	critical	criterion	for	testing	the	existence	of	causality	using	CCM	is	checking	that	217	

the	cross-mapping	skill	monotonically	increases	and	plateaus	(i.e.,	converges)	with	218	

the	length	of	the	response	variable	data	series	used	in	cross-mapping.	The	cross-219	

mapping	skill,	ρ,	is	the	Pearson’s	correlation	coefficient	between	predicted	driver	220	

values	using	the	univariable	SSR	of	the	response	variable,	and	the	observed	driver	221	

values.	We	used	the	Kendall’s	𝜏	test	as	a	significance	test	for	convergence	using	the	222	
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Kendall	package	version	2.2	(McLeod	2011).	This	test	checks	whether	cross-223	

mapping	skill	has	a	significant	monotonic	increasing	trend.	If	𝜏 > 0	then	there	is	224	

convergence	(Grziwotz	et	al.	2018).	225	

Based	on	the	cross-correlation	analyses	(Figure	S6),	we	applied	a	9-week	time	lag	226	

between	temperature	and	incidence,	an	averaged	lag	of	3–9	weeks	for	rainfall,	and	a	227	

5-week	lag	for	the	susceptibles	index.	The	rainfall	variable	is	a	proxy	for	standing	228	

water	as	mosquito	breeding	habitat,	and	thus	we	were	interested	in	the	229	

accumulation	of	water	over	time.	We	refer	to	these	as	“ecological	lags”	and	treat	230	

them	as	proxies	for	the	time	delay	of	cause-and-effect,	since	they	account	for	the	231	

ecological	processes	in	the	causal	chain	of	events	(ecological	lags	are	separate	from	232	

lags	used	in	SSR).	These	ecological	time	lags	are	consistent	with	results	from	other	233	

field	studies,	which	showed	that	temperature	and	rainfall	predict	dengue	cases	6–12	234	

weeks	ahead	(Chen	et	al.	2010;	Ibarra	et	al.	2013).	235	

EDM:	Null	models	236	

For	CCM,	we	assessed	the	strength	of	the	evidence	for	causal	effects	of	potential	237	

drivers	on	dengue	using	two	null	models	that	control	for	the	seasonal	trend	238	

observed	in	all	variables	(Figure	2).	These	null	models	address	the	sensitivity	of	239	

CCM	to	periodic	fluctuations	(i.e.,	seasonality),	which	can	make	two	variables	appear	240	

to	be	causally	linked	when	instead	they	are	simply	synchronized	by	an	unobserved	241	

seasonal	variable	(Cobey	&	Baskerville	2016;	Deyle	et	al.	2016a).	In	the	first	null	242	

model	(“seasonal	null	model”),	we	preserved	the	seasonal	signal	in	the	null,	but	243	

randomized	the	interannual	anomalies,	and	compared	model	performance	with	the	244	
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true	time	series	(Deyle	et	al.	2016a).	In	the	second,	more	conservative	null	model	245	

(“Ebisuzaki	null	model”),	we	conserved	any	serial	correlation	(beyond	seasonal)	and	246	

randomized	the	phases	of	Fourier	transformed	time	series,	and	compared	model	247	

performance	with	the	true	time	series	(Ebisuzaki	1997).		248	

We	also	repeated	the	CCM	method	in	the	nonsensical,	reverse-causal	direction	(e.g.,	249	

to	test	whether	incidence	drives	climate)	as	a	control	for	potential	spurious	250	

relationships	generated	by	non-causal	covariation	(e.g.,	due	to	seasonality).	This	251	

addresses	the	issue	of	synchrony,	in	which	CCM	can	indicate	bidirectional	causality	252	

when	one	direction	is	false	or	nonsensical	(Baskerville	&	Cobey	2017;	Sugihara	et	al.	253	

2017).		254	

EDM:	Forecast	improvement	255	

We	examined	the	predictive	power	of	each	driver—or	combination	of	drivers—on	256	

dengue	incidence	by	assessing	how	well	we	can	predict	dengue	dynamics	using	257	

temperature,	rainfall,	and	susceptibles	index.	We	used	a	combination	of	univariable	258	

SSR	(i.e.,	with	incidence	data)	and	multivariable	SSR	to	determine	the	improvement	259	

of	forecasting	(using	simplex	projection)	when	including	each	driver	or	combination	260	

of	drivers	(Dixon	et	al.	1999;	Deyle	et	al.	2013,	2016a).		261	

We	investigated	the	potential	forecast	improvement	of	dengue	incidence	using	262	

temperature,	rainfall,	susceptibles	index,	and	their	combined	effect.	In	addition,	we	263	

investigated	the	predictive	power	of	dengue	incidence	using	multivariable	SSR	with	264	
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just	the	potential	driver	variables:	temperature,	rainfall,	and	susceptibles	index	(see	265	

Supporting	Information).		266	

EDM:	Scenario	exploration	267	

In	nonlinear	systems,	drivers	generally	do	not	have	a	constant	effect.	The	effect	is	268	

state-dependent—the	strength	and	possibly	the	direction	of	the	effect	depends	on	269	

the	current	state	of	the	system.	Scenario	exploration	with	multivariable	EDM	270	

allowed	us	to	assess	the	effect	of	a	small	change	in	temperature	or	rainfall	on	271	

dengue	incidence,	across	different	states	of	the	system.	The	outcome	of	these	small	272	

changes	allowed	us	to	deduce	the	relationship	between	each	climate	driver	and	273	

dengue	incidence	and	how	they	depend	on	the	system	state.	For	each	time	step	t	we	274	

used	S-maps	(Sugihara	1994;	Deyle	et	al.	2016a)	to	predict	dengue	incidence	using	a	275	

small	increase	(+ΔX/2)	and	a	small	decrease	(–ΔX/2)	of	the	observed	value	of	driver	276	

𝑋(𝑡)	(temperature	or	rainfall).	For	each	putative	climate	driver,	the	difference	in	277	

dengue	predictions	between	these	small	changes	is	Δ𝑌 = 𝑌(𝑡 + 1) <𝑋(𝑡) + =>(,)
?
@ −278	

𝑌(𝑡 + 1) <𝑋(𝑡) − =>(,)
?
@,	where	𝑌(𝑡 + 1)	is	a	function	of	X	and	all	other	state	variables,	279	

and	we	used	ΔY/ΔX	to	approximate	the	effect	of	driver	X	at	time	t.	We	repeated	this	280	

over	all	time	steps	in	our	time	series	data	for	both	temperature	and	rainfall	to	281	

recover	their	approximate	relationships	with	dengue	incidence	at	different	states	of	282	

the	system.	Scenario	exploration	analyses	were	repeated	across	several	model	283	

parameterizations	to	address	potential	sensitivity	to	parameter	settings	(see	284	

Supporting	Information).	 	285	
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RESULTS	286	

Detecting	drivers	287	

EDM	showed	that	temperature,	rainfall,	and	susceptibles	index	drive	dengue	288	

incidence	since	the	convergence	criterion	was	met	(Kendall’s	𝜏	>	0,	p	<	0.01)	in	all	289	

three	CCM	cases	(Figure	3a–c).	Rainfall	and	susceptibles	index	were	significant	290	

drivers	of	dengue	incidence	beyond	seasonality,	as	their	effects	were	291	

distinguishable	from	seasonal	and	Ebisuzaki	null	models	(Figures	3b,	c	and	S8b,	c;	p	292	

<	0.05).	This	implies	significant	causal	effects	of	both	rainfall	and	susceptible	293	

population	size	on	dengue,	which	are	not	obscured	by	a	confounder	with	a	periodic	294	

signal.	However,	temperature	was	not	a	significant	driver	beyond	seasonality	295	

(Figures	3a	and	S8a;	p	>	0.05).	This	implies	we	cannot	rule	out	the	possibility	that	296	

the	apparent	forcing	of	temperature	on	dengue	is	due	to	a	confounder	with	a	297	

seasonal	signal.	However,	if	there	is	no	such	confounder,	then	the	seasonal	trend	in	298	

temperature,	which	accounts	for	most	temperature	variation	in	San	Juan,	drives	the	299	

seasonal	trend	observed	in	dengue	incidence	(i.e.,	seasonality	of	temperature	drives	300	

seasonality	of	dengue).	Compared	to	the	other	drivers,	the	predictive	skill	of	the	301	

temperature	null	model	was	relatively	high	(Figure	3a),	suggesting	that	temperature	302	

seasonality	in	the	null	model	was	predictive.	This	further	supports	the	notion	that	303	

seasonal	temperature	may	be	driving	dengue	dynamics.	304	

As	expected,	EDM	tests	for	causality	in	the	nonsensical	directions—incidence	305	

driving	temperature	or	rainfall—were	not	significant	(i.e.,	no	convergence;	Figure	306	
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S7,	black	lines).	This	further	supports	that	temperature	and	rainfall	drive	dengue	307	

incidence,	because	their	causal	relationships	were	not	confounded	by	spurious	308	

bidirectionality.	Further,	the	null	models	for	the	nonsensical	directions	of	causality	309	

(Figure	S7,	grey	lines)	also	displayed	no	convergence	(completely	flat),	as	expected	310	

(i.e.,	seasonality	of	dengue	incidence	does	not	drive	seasonality	of	temperature	or	311	

rainfall).	However,	seasonality	(or	any	periodicity)	of	temperature,	rainfall	and	312	

susceptibles	index	drive	dengue	dynamics,	shown	by	convergence	of	the	seasonal	313	

and	Ebisuzaki	null	models	(grey	lines	in	Figures	3	and	S8).	314	

Predictive	power	of	drivers	315	

Dengue	incidence	was	highly	predictable	using	univariable	SSR	of	incidence	data	316	

alone	(Adjusted	R2	=	0.8922,	𝜌	=	0.9446;	Figure	4a).	The	predictive	power	of	dengue	317	

incidence	improved	only	slightly	when	temperature,	rainfall,	and	susceptibles	index	318	

were	added	in	a	multivariable	SSR	model	(Adjusted	R2	=	0.8927,	𝜌	=	0.9448;	Figure	319	

4d).	These	results	suggest	that	dengue	incidence	time	series	contain	information	320	

about	these	drivers,	resulting	in	the	high	predictability	of	the	attractor	in	321	

univariable	SSR	(Figure	4a).		322	

Dengue	dynamics	were	also	highly	predictable	using	only	the	driver	time	series	(i.e.,	323	

temperature,	rainfall,	and	susceptibles	index)	in	a	multivariable	SSR	model	324	

(Adjusted	R2	=	0.5044,	𝜌	=	0.7102;	Figure	4c),	where	timing	and	magnitude	of	325	

epidemics	were	captured	reasonably	well.	However,	the	model	using	only	326	

temperature	and	rainfall	data	did	not	predict	dengue	incidence	as	well	(Adjusted	R2	327	

=	0.0533,	𝜌	=	0.2309;	Figure	4b).	Thus,	adding	the	susceptibles	index	increases	328	
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predictive	power	compared	to	climate	variables	alone,	particularly	for	predicting	329	

the	magnitude	of	outbreaks	(Figure	4c).	However,	temperature	and	rainfall	did	330	

capture	the	timing	(seasonality)	of	the	epidemics	(Figure	4b).	This	supports	the	331	

notion	that	seasonality	of	temperature	and	rainfall	is	important	for	explaining	the	332	

seasonality	of	dengue,	and	that	susceptible	population	size	is	important	for	333	

determining	epidemic	size.	All	SSR	models	(Figure	4a–d)	had	significant	(p	<	0.001)	334	

F	statistics	>>	1	from	ANOVA,	rejecting	the	null	hypothesis	(i.e.,	no	relationship	335	

between	predicted	and	observed	dengue	incidence).	336	

State-dependent	functional	responses		337	

By	investigating	the	rate	of	change	of	dengue	incidence	as	a	function	of	climate	338	

across	system	states,	we	found	that	temperature	had	a	small	positive	median	effect	339	

(0.0035,	Wilcox	p	<	0.001)	on	dengue	incidence.	A	positive	effect	is	expected	340	

(Mordecai	et	al.	2017)	for	the	temperature	range	in	Puerto	Rico	(Figure	S9,	black	341	

dashed	lines),	although	the	effect	was	occasionally	much	stronger,	both	positive	and	342	

negative	(Figure	5a,	b).	The	large	negative	effects	occurred	only	at	the	highest	343	

temperature	values	(as	predicted	by	mechanistic	models	of	temperature-dependent	344	

transmission),	reinforced	by	a	lower	quantile	regression	with	a	strongly	negative	345	

slope	(Figure	5b,	bottom	dashed	red	line).	However,	positive	effects	occurred	across	346	

the	whole	temperature	range.		347	

Rainfall	had	a	small	negative	median	effect	(–0.0022,	Wilcox	p	<	0.001),	but	348	

occasionally	had	very	large	negative	effects	(Figure	5a,	c).	These	large,	negative	349	

effects	of	rainfall	on	dengue	occurred	when	there	was	less	than	100	mm	of	rain	per	350	
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week	(Figure	5c),	in	line	with	expectations	that	low	amounts	of	rainfall	could	lead	to	351	

high	number	of	dengue	cases,	since	people	tend	to	store	water	in	containers	during	352	

periods	of	drought,	enabling	mosquitoes	to	breed	(Oliveira-lima	et	al.	2000).	There	353	

are	also	small	positive	effects	of	rainfall	on	dengue	(Figure	5c),	suggesting	that	354	

overall	the	results	showed	competing	effects	of	low–moderate	rain	providing	355	

standing	water	for	mosquito	breeding	and	humans	storing	standing	water	where	356	

mosquitoes	can	breed	when	there	is	drought	or	low	rain.	357	

The	results	on	climate	effects	suggest	that	the	strength	and	direction	of	the	effects	of	358	

climate	on	dengue	dynamics	depend	on	the	state	of	the	system.	A	potential	cause	of	359	

state-dependent	climate	effects	on	dengue	dynamics	is	the	variation	in	the	360	

susceptible	population	size	over	time	(Figure	6a,	b).	Outbreaks	do	not	occur	when	361	

there	are	too	few	susceptible	people	to	get	infected.	As	expected,	when	the	362	

susceptible	population	size	was	small	(𝜆& < 0.85)	incidence	was	insensitive	to	363	

climate	(Figure	6c,	e).	By	contrast,	when	the	susceptible	population	size	was	large	364	

(𝜆& > 0.85),	temperature	and	rainfall	effects	on	dengue	incidence	appeared	(Figure	365	

6d,	f).	The	gradual	increase	and	decrease	of	the	rate	of	change	of	dengue	as	a	366	

function	of	temperature	(Figure	6d,	red	solid	lines)	aligned	well	with	the	sigmoidal	367	

part	(Figure	S9,	black	dashed	lines	representing	the	temperature	range	in	our	368	

study)	of	the	unimodal	temperature	response	curve	(assuming	transmission	369	

primarily	by	Ae.	aegypti)	developed	previously	(Mordecai	et	al.	2017).	This	is	an	370	

important	finding,	since	evidence	of	climate	functional	responses	for	disease	371	

dynamics	is	rare	due	to	the	difficulty	of	obtaining	appropriately	informative	field	372	
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data.	It	is	possible	that	if	we	had	temperature	data	ranging	across	a	larger	373	

spectrum—possibly	by	assembling	data	across	multiple	climates—that	the	374	

empirical	functional	response	derived	from	EDM	would	also	look	unimodal.	375	
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DISCUSSION	376	

EDM	can	identify	causal	drivers,	quantify	their	predictive	power,	and	approximate	377	

functional	responses	in	nonlinear,	state-dependent	ecological	systems,	which	few	378	

other	methods	can	do.	Infectious	disease	dynamics	are	often	seasonal,	adding	379	

another	layer	of	complexity.	Here,	we	used	seasonal	null	models	and	a	well-studied	380	

ecological	system	to	disentangle	nonlinear	and	interactive	mechanisms	driving	381	

disease	dynamics.	First,	EDM	detected	rainfall,	susceptible	population	size,	and	382	

plausibly	temperature	(mostly	via	its	seasonality)	as	drivers	of	dengue	incidence.	383	

The	seasonal	variation	in	incidence	was	more	attributed	to	climate,	while	the	384	

interannual	variation	in	incidence	was	more	explained	by	the	susceptible	385	

population	(Figure	3).	Second,	EDM	provided	a	predictive	model	based	on	these	386	

three	drivers	that	had	a	reasonably	good	fit	to	dengue	incidence	data	(R2	=	0.50,	𝜌	=	387	

0.71;	Figure	4c).	Dengue	dynamics	were	also	highly	predictable	from	incidence	data	388	

alone	(R2	=	0.89,	𝜌	=	0.	94;	Figure	4a);	thus,	robust	to	missing	state	variables.	This	389	

implies	that	EDM	methods	could	be	powerful	for	forecasting	epidemics,	provided	390	

that	surveillance	efforts	continue	to	report	weekly	case	data.	Third,	EDM	revealed	391	

that	climate	effects	on	dengue	appeared	once	the	susceptible	population	size	392	

exceeded	a	threshold	(𝜆& > 0.85;	Figure	6).		393	

The	fact	that	climate	effects	are	observed	before	the	onset	of	an	outbreak,	when	𝜆& =394	

1	(Rypdal	&	Sugihara	2019),	suggests	that	rainfall,	and	possibly	temperature,	have	395	

an	effect	on	the	timing	of	an	impending	epidemic.	Thus,	although	rainfall	and	396	

temperature	might	not	influence	the	dynamics	of	dengue	during	an	inter-outbreak	397	
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period	when	the	susceptible	population	size	is	small,	climate	could	act	as	a	catalyst	398	

to	spark	an	epidemic	once	the	susceptible	population	size	is	large	enough.	This	399	

resonates	with	the	notion	that	climate	could	drive	the	force	of	infection,	𝛽,	thus	400	

influencing	the	susceptibles	index,	𝜆	(Rypdal	&	Sugihara	2019).	The	timing	of	an	401	

outbreak,	when	𝜆 ≥ 0	(or	in	the	discrete	case	when		𝜆& ≥ 1),	could	be	attributed	to	402	

the	changes	in	𝛽	caused	by	seasonal	climatic	drivers	(Rypdal	&	Sugihara	2019).	403	

Further,	seasonality	of	temperature	and	rainfall	had	higher	predictive	skill	than	404	

seasonality	of	susceptibles	index	(Figures	3	and	S8,	grey	solid	lines);	however,	405	

adding	susceptibles	index	dramatically	improved	dengue	forecasts	due	to	more	406	

accurate	epidemic	magnitudes	(Figure	4b,	c).	Thus,	climate	may	be	mostly	407	

responsible	for	the	timing	of	seasonal	epidemics,	while	susceptible	population	size	408	

may	mostly	determine	the	epidemic	magnitude.	Using	the	same	dataset,	Johnson	et	409	

al.	(2018)	found	that	mechanistic	models	could	predict	the	timing	of	seasonal	410	

epidemics,	but	that	a	phenomenological	machine	learning	component	was	needed	to	411	

capture	interannual	variation	in	epidemic	magnitude.	Our	work	suggests	that	the	412	

unobserved	size	of	the	susceptible	population	was	a	key	missing	link	for	predicting	413	

magnitude	variation	across	years.		414	

We	showed	that	susceptible	population	size	is	an	important	modifier	of	climate	415	

effects	on	dengue	(Figure	6).	This	climate–susceptible	population	interdependence	416	

might	be	generalizable	across	other	infectious	diseases.	For	example,	for	influenza	417	

dynamics,	population	density	in	cities—potentially	a	proxy	for	susceptible	418	

population	density—modulated	climate	effects	on	disease	transmission	(Dalziel	et	419	

al.	2018).	Given	complex	immune	and	serotype	dynamics	of	dengue	(Katzelnick	et	420	
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al.	2017b),	total	population	density	might	not	work	as	a	proxy	for	the	susceptible	421	

population	density	in	dengue	dynamics.	It	has	been	difficult	for	previous	422	

mechanistic	models	to	capture	susceptible	dynamics	for	dengue.	By	inferring	the	423	

susceptibles	index	from	incidence	data	(Rypdal	&	Sugihara	2019),	we	were	able	to	424	

capture	the	strong	influence	of	the	susceptible	population	size	on	dengue	dynamics,	425	

which	in	turn	moderated	the	effect	of	climate	drivers	on	dengue	dynamics.	We	426	

showed	that	climate–dengue	relationships	were	only	detectable	once	we	accounted	427	

for	seasonal	and	interannual	variation	in	susceptible	availability	(Figure	6d,	f).	This	428	

is	expected	from	theory	(Kermack	&	McKendrick	1927;	Xu	et	al.	2017),	but	429	

demonstrating	it	empirically	is	a	unique	contribution	of	this	study.	430	

Even	when	accounting	for	susceptible	availability,	the	effects	of	temperature	and	431	

rainfall	on	dengue	were	still	strongly	state-dependent	(Figure	6d,	f).	The	remaining	432	

variation	in	temperature	and	rainfall	effects	on	dengue—given	that	the	susceptible	433	

population	is	large	enough	for	an	outbreak—may	be	partially	explained	by	variation	434	

in	temperature	and	rainfall	over	time	and	space	that	is	not	captured	by	weekly	435	

climate	averages,	and	by	interactions	between	temperature	and	rainfall.	Further,	436	

any	subtle	lagged	effects	of	temperature	or	rainfall	on	dengue	are	not	captured	by	a	437	

single	ecological	lag	(a	9-week	or	an	averaged	3–9-week	lag,	respectively).	We	438	

expect	multiple	time	lags	to	operate	based	on	the	different	ecological	processes	that	439	

generate	reported	cases:	mosquito	population	growth,	mosquitoes	getting	infected	440	

and	biting	susceptible	humans,	development	of	symptoms,	and	care-seeking.	The	441	

ecological	lags	are	simple	proxies	for	this	complex	set	of	ecological	processes.		442	
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EDM	is	like	any	other	quantitative	method	in	that	it	is	appropriately	applied	when	443	

its	assumptions	are	met.	EDM	is	sensitive	to	stochasticity	and	synchrony	(e.g.,	via	444	

seasonality),	so	it	is	important	to	first	determine	whether	a	system	is	governed	by	445	

deterministic	dynamics,	and	then	to	use	null	models	that	account	for	synchrony	446	

(Ebisuzaki	1997;	Deyle	et	al.	2016a;	Chang	et	al.	2017).	Nevertheless,	EDM	is	a	447	

useful	approach	for	testing	causality	between	hypothesized	drivers	and	response	448	

variables	in	a	dynamic	system,	and	recent	work	allows	EDM	to	perform	well	with	449	

stochasticity	(Cenci	&	Saavedra	2018;	Cenci	et	al.	2019).	To	infer	strongly	supported	450	

causal	relationships,	it	is	also	important	to	consider	the	mechanistic	hypotheses	451	

underlying	the	system.	For	dengue,	there	are	complementary	lines	of	evidence	452	

about	the	drivers	of	incidence	from	experimental	studies	(Watts	et	al.	1987;	453	

Lambrechts	et	al.	2011),	mechanistic	models	parameterized	with	data	(Otero	et	al.	454	

2006;	Mordecai	et	al.	2017),	phenomenological	studies	across	settings	(Johansson	et	455	

al.	2009;	Hii	et	al.	2012;	Ibarra	et	al.	2013),	and	EDM	from	this	study.	In	particular,	456	

the	19-year	weekly	time	series	dataset	used	here	has	been	investigated	using	457	

multiple	methods	(Johansson	et	al.	2019);	however,	most	of	these	methods	are	458	

either	not	mechanistic	or	include	simple	mechanisms	that	do	not	account	for	the	459	

joint	influence	of	climate	and	susceptible	dynamics.	EDM	gives	us	the	opportunity	to	460	

infer	mechanisms,	and	assess	their	support	in	other	studies	using	different	461	

approaches.	In	sum,	EDM	has	limitations,	but	the	limitations	of	other	approaches	are	462	

at	least	as	great,	and	may	not	capture	state-dependent	effects.	When	combined	with	463	

supporting	evidence	from	other	approaches,	EDM	can	be	a	powerful	test	for	464	
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causality,	prediction,	and	functional	relationships	between	drivers	and	response	465	

variables.	466	

Connecting	climate	and	dengue	at	the	population	level	is	challenging,	because	causal	467	

relationships	are	likely	to	be	nonlinear	and	state-dependent.	Thus,	a	toolbox	of	468	

rigorous	methods	for	testing	hypotheses,	understanding	mechanisms,	and	making	469	

predictions	is	essential	for	understanding	disease	dynamics	in	complex,	natural	470	

populations.	Ultimately,	understanding	how	climate-driven	vector-borne	diseases	471	

are	influenced	by	other	variables,	such	as	susceptible	population	size,	is	important	472	

for	optimizing	vector	control	under	critical	conditions	where	climate	might	spark	473	

epidemics.	EDM	is	most	appropriate	for	deterministic	systems,	which	are	common	474	

in	disease	ecology.	The	mechanisms	inferred	from	EDM	could	be	applied	to	475	

understand	and	predict	future	ecological	responses	to	changing	environments,	476	

including	dengue	epidemics	in	a	world	undergoing	global	change.		477	
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FIGURES	646	

	647	

Figure	1.	Time	series	data.	Time	series	(1990–2009)	of	(a)	weekly	dengue	648	

incidence	(i.e.,	total	number	of	cases	per	week),	(b)	weekly	average	temperature,	(c)	649	

total	weekly	rainfall,	and	(d)	a	proxy	for	susceptible	population	size	(see	Supporting	650	

Information	for	details)	in	San	Juan,	Puerto	Rico.	651	
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	652	

Figure	2.	Seasonal	trends	and	lags	of	dengue	incidence	and	its	drivers.	The	653	

strong	seasonal	signal	of	dengue	cases	and	other	variables	suggests	potential	causal	654	

lags	between	dengue	incidence	and	temperature,	rainfall,	or	proxy	for	the	655	

susceptible	population	size.	The	lines	represent	interannual	averages	for	each	week-656	

of-year	of	dengue	incidence	(black),	temperature	lagged	9	weeks	forward	in	time	657	

(red),	average	rainfall	over	the	preceding	3–9	weeks	and	lagged	3	weeks	forward	in	658	

time	(blue),	and	a	proxy	for	susceptible	population	size	lagged	5	weeks	forward	in	659	

time	(purple).	660	
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	661	

Figure	3.	Susceptible	population	size	and	climate	drive	dengue	incidence.	662	

Cross-mapping	between	dengue	incidence	and	potential	drivers—temperature	with	663	

a	9-week	lag	(a;	red),	rainfall	with	an	averaged	3–9-week	lag	(b;	blue),	and	proxy	for	664	

susceptible	population	size	(𝜆&)	with	a	5	week	lag	(c;	purple)—display	significant	665	

(Kendall’s	test	𝜏	>	0;	p	<	0.01)	convergence	in	cross-mapping	skill	(i.e.,	𝜌	increases	666	

and	reaches	a	flat	asymptote)	as	the	number	of	time	series	data	points	increases	667	

(sign	of	causality).	Cross-mapping	skill	is	the	Pearson’s	correlation	coefficient,	ρ,	668	

between	predicted	driver	values	using	the	univariable	state	space	reconstruction	of	669	

the	response	variable,	and	the	observed	driver	values.	Rainfall	and	susceptibles	670	

index	showed	significant	forcing	above	and	beyond	seasonal	signal	(p	<	0.05),	671	

because	cross-mapping	of	the	true	time	series	(blue	and	purple)	are	distinguishable	672	

from	their	respective	null	models	(grey).	The	red,	blue	and	purple	shaded	regions	673	

represent	the	0.025	and	0.975	quantiles	of	bootstrapped	time	series	segments.	The	674	

grey	shaded	regions	represent	the	0.025	and	0.975	quantiles	of	the	seasonal	null	675	

distributions	obtained	from	500	runs	of	randomized	time	series	with	conserved	676	

seasonal	trends	(Deyle	et	al.	2016a).	The	grey	line	represents	the	median	of	the	null	677	

distribution.		 	678	
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	679	

Figure	4.	Predictive	power	of	climate	and	susceptibles	index	(𝝀I).	Forecasting	680	

results	showing	observed	(black)	and	predicted	(green)	values	of	dengue	incidence	681	

(cases	per	week)	using	state	space	reconstruction	(SSR).	Univariable	SSR	with	just	682	

incidence	data	(a)	illustrates	that	dengue	incidence	is	strongly	predictable	(R2	=	683	

0.8922,	𝜌	=	0.9446).	Multivariable	SSR	using	only	temperature	and	rainfall	(b)	684	

predicts	dengue	incidence	less	well	(R2	=	0.0533,	𝜌	=	0.2309),	especially	the	685	

magnitudes	of	the	outbreaks,	but	the	seasonal	trend	is	captured.	Multivariable	SSR	686	

using	temperature,	rainfall,	and	the	proxy	for	susceptible	population	size	𝜆&	(c)	687	

predicts	incidence	well	(R2	=	0.5044,	𝜌	=	0.7102).	Forecast	predictions	improve	688	

slightly	(R2	=	0.8927,	𝜌	=	0.9448)	when	the	drivers	temperature,	rainfall,	and	689	

susceptibles	index	are	added	to	incidence	SSR	(d).	All	R2	values	represent	adjusted	690	

R2.	All	SSR	models	(Figure	4a–d)	had	significant	(p	<	0.001)	F	statistics	>>	1	based	691	

on	ANOVA	and	the	null	hypothesis	was	rejected	(H0:	there	is	no	relationship	692	

between	predicted	and	observed	dengue	incidence).693	
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	694	

Figure	5.	Temperature	and	rainfall	show	mixed	functional	responses	of	695	

dengue	incidence.	Scenario	exploration	quantifies	the	variable	effect	of	changes	in	696	

drivers	on	dengue.	Boxplots	show	that	the	median	effects	of	rainfall	(Rain)	and	697	

temperature	(Temp)	are	small	(close	to	zero),	but	drivers	occasionally	have	strong	698	

impacts	(a).	To	investigate	climate	driver	functional	responses,	we	plotted	the	rate	699	

of	change	of	dengue	incidence	as	a	function	of	temperature	(b)	and	the	rate	of	700	

change	of	dengue	incidence	as	a	function	of	rainfall	(c).	Red	and	blue	lines	represent	701	

regression	on	the	median	for	temperature	and	rainfall,	respectively.	The	dashed	red	702	

and	blue	lines	represent	regression	on	the	0.05	and	0.95	quantiles	of	temperature	703	

and	rainfall,	respectively.	Temperature	has	an	overall	positive	effect	on	dengue	704	

incidence	(median	regression	line	of	the	rate	of	change	is	positive),	but	can	also	705	

have	large	negative	and	positive	effects	(a,	b).	Rainfall	has	an	overall	negative	effect	706	

(median	regression	line	of	the	rate	of	change	is	negative),	but	can	also	have	small	707	

positive	effects	(a,	c).	Some	of	this	effect	variation	can	be	explained	by	the	708	

susceptible	population	size	(Figure	6).	709	
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	710	

Figure	6.		Temperature	and	rainfall	effects	on	dengue	vary	depending	on	the	711	

susceptible	population	size.	Effects	of	climate	drivers	(i.e.,	temperature	and	712	

rainfall)	are	investigated	in	relation	to	the	proxy	for	susceptible	population	size,	𝜆&.	713	

Plotting	the	effect	of	changes	in	temperature	(a)	and	rainfall	(b)	against	the	714	

susceptible	population	size	shows	that	driver	effects	are	split	around	the	threshold	715	

of	𝜆& = 0.85	(purple	dashed	line).	The	red	and	blue	lines	represent	the	median	716	

regression	of	temperature	and	rainfall	effects,	respectively	(a–f).	The	dashed	red	717	
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and	blue	lines	represent	the	0.5	and	0.95	quantile	regressions	of	temperature	and	718	

rainfall	effects,	respectively	(a–f).	Neither	driver	has	an	effect	when	there	is	not	a	719	

sufficiently	large	susceptible	population	size	(𝜆& < 0.85)	for	an	outbreak	(c,	e).	720	

However,	above	a	certain	susceptible	population	size	the	climate	effects	are	721	

observed:	temperature	with	mostly	a	(possibly	sigmoidal,	see	Figure	S9)	positive	722	

effect	(d)	and	rainfall	with	a	negative	effect	(f).	However,	even	when	driver	effects	723	

are	split	at	the	evident	threshold	of	𝜆& = 0.85	(c–f),	there	are	still	many	occurrences	724	

when	the	susceptible	population	size	is	sufficient	large	(𝜆& > 0.85)	but	temperature	725	

and	rainfall	have	no	effect.	In	certain	cases,	temperature	has	even	a	negative	effect	726	

on	dengue	(d).	727	
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