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Abstract 

Single-cell ChIP-seq analysis is challenging due to data sparsity. We present SIMPA 

(https://github.com/salbrec/SIMPA), a single-cell ChIP-seq data imputation method 

leveraging predictive information within bulk ENCODE data to impute missing protein-

DNA interacting regions of target histone marks or transcription factors. Machine 

learning models trained for each single cell, each target, and each genomic region 

enable drastic improvement in cell types clustering and genes identification. 

The discovery of protein-DNA interactions of histone marks and transcription factors is of 

high importance in biomedical studies because of their impact on the regulation of core 

cellular processes such as chromatin structure organization and gene expression. These 

interactions are measured by chromatin immunoprecipitation followed by high-throughput 

sequencing (ChIP-seq). Public data from the ENCODE portal, which provides a large 

collection of experimental bulk ChIP-seq data, has been used for comprehensive 

investigations revealing insights into epigenomic processes impacting chromatin 3D-

structure, open chromatin state, and gene expression to name just a few (ENCODE project 

consortium, 2012). Recently developed protocols for single-cell ChIP-seq (scChIP-seq) are 
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powerful techniques that will enable in-depth characterization of those processes on single-

cell resolution. ChIP-seq was successfully performed within single cells at the expense of 

sequencing coverage that can be as low as 1,000 unique reads per cell, reflecting the low 

amount of cellular material obtained from only one single cell (Rotem, Assaf, et al. 2015). 

Even though this low coverage leads to sparse datasets, scChIP-seq data was used to 

investigate relationships between drug-sensitive and resistant breast cancer cells; this would 

not have been possible with bulk ChIP-seq on millions of cells (Grosselin, Kevin, et al. 2019). 

Nevertheless, the sparsity of data from single-cell assays is a strong limitation for further 

analysis. In the context of ChIP-seq, sparsity means no signal observed for numerous 

genomic regions without the possibility to explain whether this is due to real biosample 

specific processes or to low sequencing coverage. Notably, sparsity may disable the 

investigation of functional genomic elements that could be of crucial interest. Hence, an 

imputation method is needed that completes sparse datasets from single-cell ChIP-seq while 

preserving the identity of each individual cell. 

The first published imputation method for NGS epigenomic signals was ChromImpute 

(Ernst, Jason and Kellis, Manolis 2015), later followed by PREDICTD (Durham, Timothy J., 

et al. 2018), which was shown to perform better to impute also validated on more recent data 

in order to impute signal tracks for several molecular assays in a biosample-specific manner. 

The challenge of transcription factor binding site prediction was approached using deep 

learning algorithms on sequence position weight matrices (Qin, Qian and Feng, Jianxing 

2017), and more recently by the embedding of transcription factor labels and k-mers (Yuan, 

Han, et al. 2019). Such methods show the successful application of machine learning and 

mathematical approaches in predicting epigenomic signals, however, their scope, being 

limited to either imputation of missing bulk experiments or sequence-specific binding site 

prediction, hampers their application to single-cell data. Imputation methods specialized for 

single-cell data are well established for RNA-seq, but the difference between RNA-seq and 

ChIP-seq data makes their application to scChIP-seq difficult. Recently, a method called 

SCALE (Xiong, Lei, et al. 2019) was published to analyze scATAC-seq (single-cell Assay for 

Transposase-Accessible Chromatin using sequencing) data, which is more similar to 

scChIP-seq. Although SCALE includes an imputation strategy, it was not yet applied and 

tested on scChIP-seq data.  

Here we present SIMPA, an algorithm for Single-cell ChIP-seq iMPutAtion, and its 

validation on a scChIP-seq dataset of the H3K4me3 and H3K27me3 histone marks in B-cells 

and T-cells (Grosselin, Kevin, et al. 2019), currently the only available scChIP-seq dataset 

for human cells. Different from most single-cell imputation methods, SIMPA leverages 
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predictive information within bulk ChIP-seq data by combining the sparse input of one single 

cell and a collection of 2,251 ChIP-seq experiments from ENCODE. In order to better 

compare bulk and single-cell data, ChIP-seq regions (or significant signal/noise ChIP-seq 

peaks) are mapped to genomic bins (Fig. 1A and Methods). SIMPA’s results for one single 

cell are obtained by using machine learning models trained on a subset of the ENCODE 

data related to a selected target. Derived from this target-specific subset, the classification 

features are defined by genomic regions detected in the single cell, while the class to predict 

is defined by a region observed in at least one target-specific bulk ENCODE experiment, but 

not in the single cell (Fig. 1B). In other words, by using this particular data selection strategy, 

SIMPA searches relevant statistical patterns linking protein-DNA interacting regions across 

single-cell specific regions of the target-specific ENCODE data for different cell types and 

the presence or absence of a potential region for the given single cell. SIMPA’s machine 

learning models are able to use those patterns to provide accurate predictions (Fig. 1C and 

S1). Moreover, on the high-resolution H3K4me3 dataset, imputed results from SIMPA show 

high recall rates (Fig. S2). 

Next, we validated SIMPA in the task of separating B-cells from T-cells in the scChIP-seq 

dataset. Because of the better resolution available for H3K4me3 (processed as genomic 

bins of size 5kb), we present below results on this histone mark and refer to supplementary 

material for H3K27me3 (processed at 50kb). For benchmarking, we used an imputation 

method based on the single-cell dataset itself and not leveraging information from a 

reference bulk dataset such as ENCODE. This reference-free imputation method is 

implemented by SCALE, an analysis method for single-cell ATAC-seq data (Xiong, Lei, et al. 

2019). Furthermore, we implemented an average imputation method as a baseline approach 

(Schreiber, Jacob, et al. 2019). After applying a two-dimensional projection from a principal 

component analysis (PCA) on the sparse and imputed datasets, we observed that the 

separation between the cell types was drastically improved by SIMPA and by the reference-

free method, contrary to the average imputation strategy (Fig. 2A). 

Then, in order to validate the algorithmic concept of SIMPA we implemented two 

randomization tests in which either the ENCODE reference information was shuffled 

(Shuffled Reference) or the sparse single-cell input was randomly sampled (Randomized 

Sparse Input). Additionally, we applied SIMPA on the same data but with different histone 

marks as target. The selected histone marks were H3K36me3, a repressive mark 

functionally different to H3K4me3, and H3K9ac and H3K27ac, a group of two histone marks 

functionally related to H3K4me3. These two marks were used together to increase the 

training data size. From this comparison, we observed that (i) the separation on the PCA 
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projection is lost after removing statistical patterns through shuffling or randomization, (ii) 

separation quality stays moderate with an input mark functionally different to the real mark, 

and (iii) separation quality stays high using SIMPA with target histone marks functionally 

similar to the real mark (Fig 2A). Thus, the most relevant statistical patterns from the 

reference dataset are identified by both the selection of single-cell-specific regions and the 

selection of target-specific experiments. Similar observations were made for H3K27me3 

although the separation between cell types was smaller than with H3K4me3, probably due to 

the lower bin resolution mentioned above (Fig. S3). The analysis of subgroups of B-cells and 

T-cells in the H3K4me3 data also shows that the data structure was better preserved by 

SIMPA (Fig. S4).  

Finally, we were interested to know whether enrichment analyses of cell-type-specific 

pathways for individual single cells can be improved after applying imputation. As H3K4me3 

is an activating mark known to interact with promoters, we analyzed genes related to those 

promoters with the KEGG pathway analysis function of Cistrome-GO tool (Li, Shaojuan, et 

al. 2019). As reported in Fig. 2B, the data was not enough within the sparse sets to show a 

significant pathway enrichment for any of the two cell types. Results from the reference-free 

strategy showed an improvement but not significant. However, with regions imputed by 

SIMPA, it was indeed possible to achieve significant enrichment scores and recover the cell-

type-specific pathways for most of the cells. The ability of SIMPA to generate meaningful 

biological results could be associated with its non-limitation to the original single-cell dataset 

to learn relevant patterns (integration with bulk data) or to impute potential regions contrary 

to the reference-free method.  

In conclusion, the imputation strategy of SIMPA, as a novel approach in single-cell 

sequencing data imputation, is able to complete sparse scChIP-seq data of individual single 

cells, enabling better cell-type clustering and the recovery of cell-type-specific pathways. 
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Methods 

ENCODE dataset preparation 

To create the reference set that is used by SIMPA we downloaded all ChIP-seq experiments 

from the ENCODE portal that comply with the following criteria: the status is released, the 

experiment is replicated (isogenic or anisogenic), no treatment to the biosample, without 

genetic modification, and the organism is Homo Sapiens (human). For all experiments, we 

downloaded fully preprocessed sets of protein-DNA interacting regions as peak files: the 

replicated peaks for histone mark ChIP and the optimal IDR thresholded peaks for 

transcription factor ChIP. If possible the peak files were downloaded for both assemblies 

hg19 and hg38 if one of the two was missing, we used the UCSC LiftOver tool to convert. 
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Finally, we used 2251 experiments from different protein targets (antibody targets within the 

ChIP) and biosamples (either tissue or an immortalized cell line). 

Data preprocessing 

All reference experiments were converted from ChIP-seq peak sets to genomic bin sets. A 

bin is here a non-overlapping genomic region of a predefined size that can also be described 

by a unique identifier (ID), for example at a size of 5kb, the first bin is located on 

chromosome 1 from base 1 to 5000. We provide the reference data in bin sizes of 5kb and 

50kb for hg38. Given one reference experiment, a bin is said to be “present” if there is at 

least one ChIP-seq peak that overlaps this bin, “absent” otherwise. In order to limit 

computational complexity, a reference experiment is finally described by a set of bin IDs.  

SIMPA algorithm 

SIMPA is an algorithm implemented in Python 3.7.3 for “Single-cell ChIP-seq iMPutAtion” 

that is applied to one single cell represented by a sparse set of scChIP-seq genomic regions 

(or peaks) provided by the user in bed format. Within the algorithm, the given single-cell bed 

file is converted into a set of bins 𝑆𝐶 describing the single-cell input. The user also provides 

the 𝑡𝑎𝑟𝑔𝑒𝑡 that is the name of the histone mark or transcription factor targeted by the 

antibody within the single-cell immunoprecipitation. The 𝑡𝑎𝑟𝑔𝑒𝑡 is needed to specify the 

training set that is composed of experiments from the ENCODE reference set. 

Different from other single-cell imputation methods, SIMPA does not use information from 

other single cells. The imputation strategy is to use the sparse input from one given single 

cell to impute missing bins based on predictive information within bulk data between 

genomic regions bound by the target. In order to make the bulk data informative, first SIMPA 

collects all the ENCODE reference experiments available for the given 𝑡𝑎𝑟𝑔𝑒𝑡 that define the 

rows of the reference set matrix (RS) where columns represent bins: 

  𝑅𝑆 =  (𝑎𝑖,𝑗), 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 

with 

𝑎𝑖,𝑗 ∈ {0,1}describing a cell of the matrix with value = 1 when bin 𝑗 in 

reference experiment 𝑖 is present, 0 otherwise, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2020. ; https://doi.org/10.1101/2019.12.20.883983doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.883983
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

and where 𝑛 is the number of experiments available for the given target, and 𝑚 is the 

number of bins that are present in at least one of the 𝑡𝑎𝑟𝑔𝑒𝑡 specific experiments. As the 

rows are defined by the given 𝑡𝑎𝑟𝑔𝑒𝑡, the target-specificity is induced within this step. 

Second, a subset of 𝑅𝑆 is created by selecting only the columns for bins that are present 

in 𝑆𝐶 to create the training features 𝑇𝐹:     

  𝑇𝐹 ⊂ 𝑅𝑆, 

𝑇𝐹 =  (𝑎𝑖,𝑘), 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑠,        

where 𝑘 indexes a selection of bins from 𝑅𝑆 that are present in 𝑆𝐶 and with 𝑠 the number 

of bins in 𝑆𝐶 (see Fig. 1B). At the same time, bins present in 𝑅𝑆 but not present in 𝑆𝐶 are 

collected and named as candidate bins 𝑐 that are potentially imputed bins. 

Third, SIMPA takes each candidate bin in 𝑐 separately to compute an individual imputed 

probability 𝜌𝑖 for each 𝑐𝑖. Given 𝑐𝑖, SIMPA trains a classification model 𝑐𝑚𝑖 based on 𝑇𝐹 

defining the features and 𝑐𝑖 as the class vector. Because an individual model is trained for 

each individual genomic bin, bin-specificity is induced to the whole approach. The imputed 

probability 𝜌𝑖 is finally computed by 𝑐𝑚𝑖 that takes as input an artificial instance vector 

𝑎 =  (𝑎𝑘), 𝑎𝑘 = 1, 1 ≤ 𝑘 ≤ 𝑠. Consequently, 𝜌𝑖 is the probability of 𝑐𝑖 to be predicted for the 

imputed single-cell result, given the fact that all bins in 𝑆𝐶 are observed. As we use a 

Random Forest implementation from the scikit-learn (version 0.21.3) Python’s library 

(Pedregosa, Fabian, et al., 2011) with default settings to build classification models, the 

imputed probability is then the mean predicted class probability of the trees in the forest 

while the class probability of a single tree is calculated by the fraction of samples of the 

same class in a leaf. 

Finally, SIMPA creates two files: one file in bed format and the other in SIMPA format 

described as a table listing the single-cell bins first, followed by the imputed bins sorted by 

the imputed probability. A line represents a bin described by its ID, its genomic coordinates, 

its frequency according to the target-specific reference experiments, and the imputed 

probability. Note, the first bins have no imputed probabilities as they represent the original 

sparse single-cell input (default value of -1 is assigned). However, the second file created by 

SIMPA is the imputed bed file containing the single-cell bins and bins with the highest 

imputed probability. The number of bins within this bed file is defined by the average number 

of bins present in the target-specific bulk experiments, 32584 for H3K4me3 (5kb bin size) 

and 12598 for H3K27me3 (50kb bin size). 
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Reference frequency and average imputation method 

The reference frequency 𝑓𝑟𝑒𝑞 of a particular bin 𝑗 describes its presence in the reference 

experiments in 𝑅𝑆: 

  𝑓𝑟𝑒𝑞𝑗 =  
∑𝑛

𝑖=0 𝑎𝑖,𝑗

𝑛
 

where 𝑎𝑖,𝑗  ∈  𝑅𝑆 describes the values of bin 𝑗 in experiment 𝑖. 

The reference frequency, described above is, in general, a good indicator for the presence of 

a bin. Intuitively, the higher the frequency, the more likely the presence of the bin. We use 

this frequency to implement the baseline average imputation strategy. Hence, the average 

imputation strategy outputs the sparse bins from the single cell, plus imputed bins ranked by 

the reference frequency. The number of bins for the imputed result is the average number of 

bins observed for the target-specific reference experiment. 

Cross validations 

In order to validate whether machine learning models can be trained to accurately predict the 

observation of a bin we applied the following approach: given the target, 10 single cells were 

randomly sampled for both cell types (B-cell and T-cell); for each single cell the training 

feature matrix 𝑇𝐹 was created as explained for SIMPA while collecting also the candidate 

bins 𝑐. Then, for each candidate bin that defines the class vector, a Random Forest 

classification model was trained and evaluated by the area under ROC-curve within a ten-

fold cross-validation. In addition, we used the area under precision-recall curve to better 

study the class vector imbalance. 

Reference-free imputation 

For reference-free imputation we used SCALE (a method developed for scATAC-Seq that 

uses the whole single-cell dataset for imputation; (Xiong, Lei, et al. 2019)) with default 

settings for the count matrices of H3K4me3 and H3K37me3 excluding gender-specific 

chromosomes but keeping all single cells. We used the flag --binary to receive a binary 

description of the presence of single bins within the imputed results for each single cell. 
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Randomization tests 

We randomized the reference set obtained from the mark of interest from the bulk ENCODE 

data maintaining the same frequency observed for each bin. For this operation, we used the 

numpy shuffle function in Python (numpy 1.17.2). The second randomization was performed 

by simulating the single-cell bins as a set of random sequences with a similar amount, length 

and nucleotide distribution as observed for each single cell. For this operation we used the 

function “getNullseqs” from the package gkmSVM (Ghandi, Mahmoud, et al., 2011) in R. 

Similar and different mark imputation 

To analyze the impact of the selected target that defines the training set, we analyzed the 

imputed results using histone marks with either similar or different functionality than the 

actual histone mark. For H3K4me3, an activating mark, the selected similar marks were 

H3K9ac and H3K27ac with 49 and 98 available experiments, respectively, and the selected 

different mark was H3K36me3 with 106 available experiments. For H3K27me3, we used 

H3K36me3 as similar, and H3K9ac and H3K27ac together as different marks. Using a 

collection of two similar marks (H3K9ac and H3K27ac) allowed us to increase the number of 

reference experiments used for training. The size of the reference set is 178 or 107 

respectively when the real mark H3K4me3 or H3K27me3 is used as the target. 

Preprocessing of scChIP-seq data (Grosselin et al.) 

We downloaded the count matrices for H3K4me3 and H3K27me3 available in GEO under 

accession GSE117309 in 5kb and 50kb binning resolution, respectively. From the matrices, 

we derived bed files for every single cell excluding gender-specific chromosomes. SIMPA 

and other imputation methods were then applied on 25% of the single cells randomly 

sampled, 1520 bed files for H3K4me3 and 1128 bed files for H3K27me3. 

Statistical analysis 

In order to apply the Principal Component Analysis (PCA) implemented in scikit-learn, the 

bin sets of single cells were described by a matrix that has one single cell in a row and the 

bins described by the columns. The PCA was then applied to reduce this matrix to two 

dimensions using the default parameters. 
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Pathway enrichment analysis on sparse and imputed bin sets was performed using the 

cistromego tool downloaded from https://github.com/changxinw/Cistrome-GO and applied 

with default settings. 

Implementation details and high-performance computing (HPC) 

As described, SIMPA trains a Random Forest classification model specifically for each bin of 

each single cell. However, we observed that bins exist that have equal class vectors across 

the target-specific reference experiment set. Given a single cell and two or more bins with 

equal class vectors, SIMPA trains only one model for all of them resulting in equal imputed 

probabilities for these bins. Using this approach, the number of classification models was 

reduced on average from approximately 314,000 to 138,000 models trained for one single 

cell of the H3K4me3 data (5kb bin size).  

In order to reduce run time spent on one single cell, SIMPA was implemented using an Open 

MPI interface for Python (mpi4py 3.0.2). The computationally heavy part of training 

classification models can be distributed to many CPU cores. We observed high CPU 

efficiency (> 97%) and 11 GB memory usage when using one full compute node (40 cores, 

128GB RAM, Intel® Xeon® Processor E5-2630 v4) with a runtime of approximately 15 

minutes for one single cell. We recommend using SIMPA within a cloud or high-performance 

computing system, if available. Considering the different validations in this paper based on 

the data for H3K4me3 with 5kb bins, we applied SIMPA on ~7,500 single cells for which 1.2 

billion classification models were trained on the HPC system Mogon II (JGU, Mainz) within 

24 hours (may be faster depending on the general workload of the system). Nevertheless, 

SIMPA can be applied on a standard computer. For one single cell, it took approximately 

120 or 70 minutes using 2 or 4 cores, respectively, of an Intel® Core™ i5-4590 CPU @ 

3.30GHz with 8GB RAM.  

Data and Software Availability 

The ENCODE data used by SIMPA is available on the GitHub page of the software in 

preprocessed format. Single-cell ChIP-seq data used for the validations was taken from 

GSE117309.  

The SIMPA software is available at this link: https://github.com/salbrec/SIMPA 
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Fig 1. SIMPA’s Algorithm and Cross Validations 

A. Identified ChIP-seq regions from bulk experiments were downloaded from ENCODE and 

mapped to bins defined as non-overlapping and contiguous genomic regions of a defined 

length (5kb for H3K4me3 and 50 kb for H3K27me3) and covering the whole genome (the 

table). A bin is given a value of 1 for a particular experiment if there is at least one ChIP-seq 

region in this experiment that overlaps the bin, 0 otherwise. In total 2251 ChIP-seq 

experiments for several targets (histone marks or transcription factors) performed in several 

biosamples (tissues and cell-lines) were downloaded and preprocessed. Depending on the 

target specified by the user, the target-specific reference set RS is then created and contains 
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all experiments related to this target (red lines) and all bins observed for at least one of those 

experiments. B. The single-cell specific training feature matrix TF is created as a subset of 

RS by selecting only bins observed within the given single cell (green columns). All other 

bins from RS are the candidate bins (c; blue columns) and define the class vectors 

consisting of the corresponding values in RS. For each candidate bin, a classification model 

is trained based on the training features and the class vector identifying associated 

experiments. C. Cross-validated evaluations of SIMPA’s Random Forest performances to 

predict values of candidate bins in single cells within the H3K4me3 data. For each bin, a ten-

fold cross-validation was applied and summarized as Area under ROC-Curve (AUROC) or 

Area under Precision-Recall Curve (AUPRC) (y-axes). Results for all bins are presented by 

boxplots subdivided by class balance in the candidate bins (percentage of “1” values in the 

bin) (x-axis). The dashed lines describe the baseline performance expected from a random 

classification model: 0.5 for AUROC and equal to the class balance for AUPRC. 
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Fig 2. Cell-Type Specificity Validation 

A. Separation of single cells according to cell type. Principal component analysis applied to 

the H3K4me3 data derived from the sparse single-cell data, SIMPA, reference-free 

imputation, average imputation based on expected frequencies in the reference set, shuffled 

reference set, randomized sparse input data, functionally different histone mark H3K36me3 

as target instead of H3K4me3, and functionally similar histone marks H3K9ac and H3K27ac 

instead of H3K4me3. SIMPA achieves the best imputation by maximizing the separation of 

single cells (points) by cell types (colors) while showing no more artifacts due to data 
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sparsity (especially visible on the Sparse Single Cells plot). B. Pathway enrichment analysis. 

Boxplots show the significance of pathway enrichment analyses of genes annotated by 

single-cell regions as log-transformed false discovery rate (FDR; x-axis). Each dot 

represents the FDR of one single cell from the results of the different analysis experiments 

(y-axis). The dashed lines represent the log-transformed significance threshold of an FDR 

equal to 0.001. Only SIMPA achieves significant results by imputing preferably genomic 

regions associated with relevant pathway-related genes.  
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