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ABSTRACT 

Gene expression data has been widely used to infer gene regulatory networks (GRNs). Recent single-

cell RNA sequencing (scRNAseq) data, containing the expression information of the individual cells 

(or status), are highly useful in blindly reconstructing regulatory mechanisms. However, it is still not 

easy to understand transcriptional cascade from large amount of expression data. Besides, the 

reconstructed networks may not capture the major regulatory rules. 

Here, we propose a novel approach called TENET to reconstruct the GRNs from scRNAseq data by 

calculating causal relationships between genes using transfer entropy (TE). We show that known target 

genes have significantly higher TE values. Genes with higher TE values were more affected by various 

perturbations. Comprehensive benchmarking showed that TENET outperformed other GRN prediction 

algorithms. More importantly, TENET is uniquely capable of identifying key regulators. Applying 

TENET to scRNAseq during embryonic stem cell differentiation to neural cells, we show that Nme2 is 

a critical factor for 2i condition specific stem cell self-renewal.  

 

Keyword: Gene regulatory network, single cell RNA sequencing, causal relationship, stem cell 

pluripotency, Nme2 
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INTRODUCTION 

Understanding regulatory mechanisms is a key question in biology to understand cellular 

processes. Various approaches including genome-wide location analysis using chromatin 

immunoprecipitation followed by genome-wide sequencing (ChIP-seq)1,2 and perturbation analysis 

were designed to explain the causal relationships between genes3,4. However, protein binding 

information is limited by the availability of antibody and identifying target genes is difficult when 

bound in the intergenic region. Moreover, perturbation analysis is hard to measure the strength of the 

causal relationships with the target genes. Systems approaches to predict regulators and their target 

genes have been suggested prior to testing in the wet-lab experiments to reduce the cost and time5–8. 

However, previous attempts were applied to inferring gene regulator networks (GRNs) only for a 

limited number of genes9–11 and/or cannot detect causal relationships effectively12,13. 

When dealing with causal relationships, time is involved, i.e. an effect cannot occur before its 

cause. To utilize time to identify the cause (the regulator) and the effect (the target genes), a series of 

expression data across multiple time points is useful. Single cell RNA sequencing (scRNAseq) can 

provide sequential expression data from the cells aligned along the virtual time, called pseudo-time14–16. 

Previously, indeed, the peak locations across pseudo-time have been naively used in predicting 

potential regulators15,17. It is based on the assumption that the expression profile of a potential regulator 

is proceeded by the expression pattern of a target gene along the pseudo-time. Systematic approaches to 

quantify potential causal relationships and reconstruct GRNs are still highly required to understand 

biological processes underlying in the data. 

We hypothesize that we can quantify the strength of causality between genes by using an 

information theory, called transfer entropy (TE). TE measures the amount of directed information 

transfer between two variables while considering the past events by quantifying the contribution of the 

past events of a variable (cause) to the other variable (effect) in reducing uncertainty18,19. TE has been 

successfully applied to the estimation of functional connectivity of neurons20–22 and social influence in 

social networks23. By adopting TE, we developed an approach called TENET 

(https://github.com/neocaleb/TENET), an algorithm to reconstruct GRNs from scRNAseq data. Using 

TENET, we identified the relationships between regulators and the target genes. TE values of the 

known target genes were significantly higher than random targets. Interestingly, target genes with 

higher TE values were affected more by the perturbation analysis, suggesting that TE score measure the 

dependency of a target gene to its regulator. 
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We performed benchmarking tests for the existing GRN reconstructors. We show that TENET 

outperforms previous GRN constructors in identifying target genes using various scRNAseq data. More 

importantly, unique to TENET is the ability to identify regulator of the key biological processes. 

TENET identified pluripotency factors as the key regulator while other competitors could not find them 

or with worse prediction performance. Expanding GRNs we newly found that Nme2 is a 2i condition 

specific key transcription factor (TF) that regulates majority of pluripotency genes. Inhibition of Nme2 

in mouse embryonic stem cells (mESC) dramatically prevented cell proliferation in a 2i condition 

specific manner. In summary, we show that TENET has a potential to elucidate previously 

uncharacterized regulatory mechanisms by reprocessing scRNAseq data. 

 

RESULTS 

TENET quantifies causal relationships between genes from scRNAseq data aligned along the 

pseudo-time 

TENET measures TE for all pairs of genes to reconstruct a GRN. To involve time into the gene 

expression, TENET aligns cells along the pseudo-time. Gene expression levels of the gene pairs along 

the aligned cells (Fig. 1a) are used to calculate TE between them. The TE from X to Y is defined as 

follows: 

����� � ����|����:���� 	 ����|����:���, ����:����,   (1) 

where H(X) is Shannon entropy of X and L denotes the length of the past events considered for 

calculating TE. Given the pseudo-time ordered expression profiles (Fig. 1a), TE applied to scRNAseq 

quantifies the causal relationships of a gene X to a gene Y (Fig. 1b) by considering the past events of 

the two genes. TE can represent the level of the information in X that contributes to the prediction of 

the current event Yt. We obtained the significantly high relationships between genes after modeling all 

possible relationships with normal distribution (Benjamini-Hochberg’s false discovery rate 

(FDR)24<0.01). Potential indirect relationships were removed by applying data processing inequality8 

(Fig. 1c) (see Methods). TENET can run various set of potential regulators. In can run only for known 

set of gene, entire transcription factors (TFs), or even for entire genes to find new regulators. Network 

analysis can be followed to understand key regulators in the networks. 
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Figure 1. TENET reconstructs GRNs from a pseudo-time ordered single cell transcriptome data 

using TE. a. Step 1: Pseudo-time ordered scRNAseq data are used as the input for TENET.  b. Step 2: 

TENET calculates gene-to-gene pairwise TE. c. Step 3: A reconstructed GRN is composed of strong 

causal relationships. 

 

The TF target genes showed significantly higher TE values than randomly selected genes 

We applied TENET to the scRNAseq data during mESC differentiation into neural progenitor 

cells (NPCs)25. We chose this experimental system as several ChIP-seq and RNAseq datasets are 

publicly available for validation2. Visualization of the scRNAseq data using tSNE showed potential 

differentiation trajectory (Fig. 2a). Consistent with differentiation time course, pluripotency markers 

including Pou5f1 (or Oct4), Sox2 and Nanog were highly expressed in the mESC population whereas 

NPC markers such as Pax6 and Slc1a3 was highly expressed in the NPCs (Supplementary Fig. 1). First, 

we evaluated the TE values of the target genes supported by ChIP-seq at the promoter proximal (+/-

2kbps) region. We chose c-Myc, n-Myc, E2f1 and Zfx2 as their occupancy is often observed at the 

promoter region of their target genes. Peak calling using Homer26 found 541 c-Myc promoter proximal 

peaks. The TE values of the c-Myc targets were compared with those of the same number of randomly 

selected genes. Repeating it for 1,000 times, we observed that the 541 c-Myc target genes showed 

significantly higher TE values (p-value-7.94e-53) than the randomly selected genes (Fig. 2b). We also 

confirmed that ChIP-seq binding targets for n-Myc, E2f1 and Zfx have significantly higher TE values 

compared with the random targets (Supplementary Fig. 2a-c). 
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Figure 2. Validation of TENET-inferred GRNs for the mouse embryonic stem cell (mESC) 

pluripotency. a. A tSNE plot of the mESCs (2i and serum) and NPCs shows distinct expression. b. 

The c-Myc target genes have higher TE values than the randomly selected 541 genes (repeated 1000 

times). The expression ratio of predicted Tbx3 (c) or Esrrb (d) target genes (Tbx3 or Esrrb 

overexpression (Tbx3+ or Esrrb+) against control (Tbx3- or Esrrb-)). The expression ratio of predicted 

Pou5f1 (e) or Nanog (f) target genes (knockdown versus wild-type). 

 

As an additional test, we performed evaluation using the scRNAseq dataset for the 

reprogramming of mouse fibroblasts into induced cardiomyocytes27. Investigation using Gata4 ChIP-

seq in cardiomyocytes28 further confirmed that the 331 Gata4 target genes also have significantly 

higher TE values compared with random targets (Supplementary Fig. 2d). 
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Figure 3. TENET outperformed in terms of reconstruction of GRN and predicting key 

regulatory factors for mESC pluripotency. a. Receiver operating characteristic (ROC) curves for the 

mESC GRN by TENET and seven different algorithms. b. Area under curve (AUC) of the ROC curves. 

c. Key regulatory factors for mESC pluripotency predicted by TENET. The purple bar denotes 

pluripotency gene. Comparison of capability of predicting key genes (pluripotency genes (d) and neural 

differentiation genes (e)) using hub genes (number of targets >= 5) in the reconstructed GRNs. 

 

TE values reflect the degree of dependency to the regulator 

We further examined the TE values of the potential TF target genes identified by knock-in of 

Esrrb and Tbx3 and knockdown of Pou5f1 and Nanog3,4. We divided the genes based on their TE 

values and investigated the fold change upon the perturbation of the corresponding TF. As expected, 

we observed that genes with low TE values (<0.05) did not change their expression levels upon the 

perturbation. However, the expression levels of the genes with high TE values increased upon knock-in 

of Esrrb and Tbx3 and decreased upon knockdown of Pou5f1 and Nanog. The changes were more 

distinct for the genes with higher TE values (>0.2) (Fig. 2c-g). These indicate that TE values reflects 

the degree of dependency of the target genes to the expression of their regulator. 

 

TENET outperforms other GRN reconstruction algorithms 

To evaluate overall performance of reconstructed GRN, we used Beeline29, a benchmarking 

software for GRN inference algorithms for the mESC scRNAseq dataset25. Among them, we performed 
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benchmarking only for those algorithms that can implement large scale GRN reconstruction including 

SCODE30, GENIE331, GRNBOOST232, SINCERITIES33, LEAP34, SCRIBE35, and SCINGE36. To 

prepare stringent datasets for evaluation, we only considered as targets if their expression levels were 

significantly changed upon Nanog, Pou5f1, Esrrb, and Tbx3 perturbations3,4 and the binding occupancy 

from ChIP-seq (+/-50kbps)2 (see Supplementary Fig. 3a and Methods). 

Benchmarking was performed for the 3,280 highly variable genes computed from the mESC 

scRNAseq data (see Methods). Beeline29 provided the comprehensive results after running all GRN 

reconstructors. The receiver operating characteristic (ROC) curves (Fig. 3a) showed that TENET, 

GENIE3 and LEAP outperformed other predictors in predicting targets of Nanog, Pou5f1, Esrrb, and 

Tbx3 (Fig. 3a-b and Supplementary Fig. 3b). SCRIBE, which is designed based on TE as well, showed 

worse performance than TENET. Both GENIE3 and GRNBOOST2 are based on the same tree-based 

ensemble algorithm. But, we observed different performance in this test. 

 

TENET can predict key regulators from scRNAseq data 

The performance evaluation by counting the number of correct or false prediction does not 

reflect the importance of the inferred network. It is still required to evaluate if the inferred networks 

reflect the key underlying biological processes. 

We, therefore, evaluated if the key regulators were well represented in the networks by 

investigating hub nodes. From the reconstructed GRNs, we further evaluated if the key regulators 

(based on number of outgoing edges) in the GRNs are associated with the stem cell or neural cell 

biology. We sorted the regulators based on the number of target genes for each GRNs. The top 4 

regulators by TENET were the markers for pluripotency (Pou5f1, Nanog, Esrrb, and Tbx3) (Fig. 3c). 

Compared with it, majority of other predictors did not identify these key genes in the hub list. For 

instance, GENIE3 which showed comparable performance with TENET found only Nanog as the 14th 

of the top regulators. LEAP, another competitor, did not find any pluripotency markers. On the other 

hand, SCRIBE, a TE-based GRN predictor, identified Nanog, Pou5f1, Esrrb, Tbx3 as the top regulators, 

suggesting the algorithmic advantages of TE (Supplementary Fig. 4). 

Intrigued by this, we investigated whether the identified hubs are associated with “pluripotency” 

or “neural differentiation” using the list of the genes obtained from gene ontology (GO) database (see 

Methods). Collectively, TENET identified far exceeding number of genes related with the relevant GO 

terms compared to other methods (Fig. 3d-e). The performance of LEAP, which used time-lagged co-

expression along the genes assigned pseudo-time did not perform well in this experiment, suggesting 

the algorithmic advantages of TENET. 
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To further test if TENET can suggest key regulatory factors in various biological systems, we 

reconstructed a GRN based on scRNAseq data for direct reprogramming from mouse fibroblast into 

cardiomyocyte by overexpressing Mef2c, Tbx5 and Gata427 (Supplementary Fig. 5a). We tested if 

these overexpressed factors were well predicted in TENET. We confirmed that TENET identified those 

three major reprogramming factors (Mef2c, Tbx5 and Gata4) as well as other genes associated with 

cardiomyocytes as the key regulators (Supplementary Fig. 5b). In comparison, other predictors found 

low numbers of genes associated with cardiomyocytes (Supplementary Fig. 5c). Indeed, the networks 

by other GRN reconstructors failed to identify the 3 reprogramming factors and found only a few 

regulators related with cardiomyocytes. Interestingly, TE-based SCRIBE also only found Mef2c among 

the key factors for this experiment (Supplementary Fig. 6). Collectively, our results show that TENET 

can capture key regulatory genes for the biological processes. 

 

TENET mimics the controllability (key regulators) of Boolean network dynamics 

To further investigate the characteristics of TENET in finding key regulators, we compared the 

reconstructed networks with the Boolean networks (BNs)9. Considering all possible binary status of the 

members, BNs have been widely used to model biological systems10,37,38. BNs can simulate 

overexpression or knock-out of a gene and its consequences from the inferred networks. Therefore, 

BNs can evaluate how much a member can influence the steady-state dynamics of the networks in 

combination with other members (called “controllability”)39. Besides, BNs can represent causal 

relationships among the members. We found a BN-inferred GRN for 20 TFs inferred from the 

scRNAseq data for mouse early blood development9 (Supplementary Fig. 7). Using the BN-inferred 

GRN as the surrogate of the gold standard, we first evaluate if the networks from GRN reconstructors 

well mimic the BN-inferred GRN. The comparison showed that TENET and GRNBOOST2 

outperforms other approaches in both directed and undirected networks (Supplementary Fig. 8a-b) 

In a series of experiment, TENET showed a function to find key regulators. We evaluated this 

using the simulation of the BNs. The number of final stable states (known as attractors) was calculated 

when a member is perturbed. For this the BNs simulates all possible states of the members. If the 

member of interest is a critical one, the number of attractors is small. Therefore, we calculated 

correlations between the out-degree of a gene in the inferred networks and the number of attractors 

when perturbing the gene. The simulation showed that the TENET-inferred network has the lowest 

correlation with the number of attractors compared with other methods (Supplementary Fig. 8c). This 

further demonstrated that TENET has a capability to identify key regulators. 
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Figure 4. Nme2 inhibition completely blocked proliferation of mESC in 2i condition. a. 

Experimental design of the experiment. The mESC were seeded in either Serum or 2i culture 

conditions and treated with either DMSO (control) Stauprimide (STP) for 24hr and 48hr. The 6 

samples were assayed for proliferation rates, relative transcript expression and for pluripotency using 

Alkaline Phosphatase (AP). b. Cell proliferation assay for mESCs cultured in Serum and 2i conditions 

with either DMSO (Control) or 0.5uM STP. The data are mean ± SEM from 2 biologically independent 

replicates. c. STP treatment leads reduction in AP positive colonies both in Serum (after 48 hours) and 

2i (after 24 hours) condition highlighting differentiation. Representative image of AP positive 

pluripotent and primed colonies in both culture conditions. The data are mean ± SEM from 3 

biologically independent replicates. d. The c-Myc transcript levels are down-regulated both in 2i and 

serum upon STP treatment, owing to impaired Nme2 nuclear localization. The NME2 target genes in 

TENET (Nanog and Ctnnb1) are selectively upregulated. 

 

TENET identifies condition specific regulator 

To search for new regulators besides the known TFs, we extended the GRN considering 13,694 

highly variable genes as regulators as well as target genes (see Methods). Therefore, regulators are not 

limited to the TFs in this setting. We were interested to find Nme2 and Fgf4 as the top regulators. We 
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confirmed that these are supported by a previous report that these genes have been implicated in either 

pluripotency or differentiation40,41 (Supplementary Fig. 9).  

As we analyzed mESCs from two culture conditions (namely 2i and serum), we further 

questioned if TENET can further distinguish them and identify condition specific GRNs. We 

reconstructed GRNs for 2i and serum condition separately and compared the number of condition 

specific target genes of the key regulators (see Methods). Interestingly, we found that Nme2 as the top 

regulator in the 2i-specific GRNs. Besides it, we found that pluripotent factors such as Fgf4, Pou5f1, 

and Nanog are 2i-specific whereas DNA methylation factors such as Tet1 and Dnmt3l are serum-

specific (Supplementary Fig. 10), which is consistent with a previous report about higher DNA 

methylation in serum than 2i42,43. 

Intrigued by this, we questioned condition specific role for Nme2 in the 2i and serum condition. 

After culturing mESCs in 2i and serum, we treated them with Stauprimide (STP) which blocks nuclear 

localization of Nme2 (Fig. 4a). The number of cells did not increase in the 2i condition, showing that 

the effect of the STP treatment is more profound in the 2i condition (Fig. 4b). The serum cultured 

mESCs grown in 0.5uM STP (for 24 and 48hrs) had reduced proliferation and increased heterogeneity, 

as assessed by Alkaline phosphatase (AP) stained colonies (Pluripotent and Primed colonies; Fig. 4b-c). 

In contrast, 0.5uM STP treatment in 2i cultured cells led to inhibited proliferation at 24 hours, and very 

few viable cells at 48 hours (Fig. 4b-c). Previously, c-Myc has been reported as the target gene of 

Nme240. TENET predicted c-Myc as a target of Nme2. We confirmed that c-Myc expression was 

significantly downregulated upon STP treatment in both culture conditions (Fig. 4d). Additionally, we 

measured expression levels of several TFs including Nanog and Ctnnb1 targeted by Nme2 in the 

TENET-inferred GRN. We found that both Nanog and Ctnnb1 transcripts are highly upregulated upon 

STP treatment in both culture conditions but more significant in 2i condition, indicating condition 

specific regulation of Nme2 as predicted by TENET (Fig. 4d). 

 

DISCUSSION 

Systems approaches to infer GRNs can provide the hypothesis for transcriptional regulation 

under biological process. Previous approaches using bulk cells were limited because they cannot 

capture the continuous cellular dynamics because the cells must be synchronized in order to avoid 

obtaining “average out” expression. scRNAseq has been emerged as an alternative because each cell 

provides the transcriptomic snapshot in a massive scale. Subsequently, computational approaches have 

been developed to use of scRNAseq for GRN reconstruction9,11,12,30–36. 
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These algorithms including TENET used temporal gene expression to infer GRNs. For example, 

GENEI331 and GRNBOOST232 were originally developed for temporal bulk expression data using 

ensembles of regression trees. LEAP34 calculates possible maximum time-lagged correlations. 

SINCERITIES33 and SCINGE36 use Granger causality a statistical test for predicting one time series 

data using another time series data which have been used in economics. SCODE30 use a mechanistical 

model ordinary differential equation for the pseudo-time aligned scRNAseq data. Compared with them, 

TENET makes use of the power of information theory by adopting TE on the gene expression along the 

pseudo-time. 

We showed that TE values of the known target genes were significantly higher than randomly 

selected genes (Fig. 2b and Supplementary Fig. 2). The higher TE values were associated with gene 

expression changes once the associated regulator is perturbed (Fig. 2c-f). These show that TE well 

quantifies the causal relationships between genes. We performed comprehensive benchmarking using 

the Beeline29 which provides the comparison of diverse GRN reconstructor in its automated pipeline. 

The test using the scRNAseq for mESC pluripotency and differentiation showed that TENET is one of 

the top performing GRN reconstructor along with GENIE3 and LEAP. 

We found that TENET is working far better than other approaches in identifying key regulators. 

This is important because the reconstructed GRNs only find some relationships which are not that 

important in interpreting the biological processes of the given scRNAseq datasets. For instance, 

GENIE3 and LEAP, which showed similar performance with TENET could not capture the key known 

regulators in the networks (Supplementary Fig. 4). TENET, on the other hand, ranked Nanog, Pou5f1, 

Esrrb and Tbx3 as the top 4 regulators and identified genes related with stem cell or neural 

development. We also confirmed that TENET (but not others) identified 3 cardiomyocyte 

reprogramming factors in the inferred network. We further investigate the function of TENET using the 

BN. TENET best matched with the BN among other predictors. Besides, the regulators that TENET 

identified also showed to be more important in the independently obtained BN. Even though BN is not 

a perfect model of the system, it provides the comprehensive overview of the system by visiting all 

potential status. Our results suggest the algorithmic merits of TENET. In line with it, TE-based 

SCRIBE also identified key pluripotency factors. 

With the power to predict key regulators, TENET has been applied to identify condition 

specific regulators. Prediction of condition specific regulators is of great value to provide hypothesis 

about the mechanism that can be subsequently validated. TENET predicted that Nme2 is a key 

regulator for 2i-condition-specific mESC pluripotency. In consistent with our prediction, perturbing 
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Nme2 STP lead to reduced proliferation more profoundly in the 2i condition. These results suggest that 

TENET is a useful approach to predict gene regulatory mechanisms from scRNAseq. 

 

METHODS 

Algorithm for TENET 

TENET measures the amount of causal relationships using the scRNAseq data aligned along pseudo-

time. Given pseudo-time ordered scRNAseq data, TENET calculates bidirectional pairwise TE values 

for selected genes using JAVA Information Dynamics Toolkit (JIDT)44. We calculated TE values by 

estimating the joint probability density functions (PDFs) for mutual information (MI) using a non-

linear non-parametric estimator “kernel estimator”18. The joint PDF of two genes x and y can be 

calculated as follows: 

�̂����, ��� � �

�
∑ Θ�

����
�����  ���

��  �����  ��,   (2) 

where Θ is a kernel function and N is the number of cells. We used step kernel (Θ(x>0)=1, Θ(x≤0)=0) 

and kernel width r=0.5 as default. The causal relationships using TE are calculated using the Eq (1). 

We reconstructed the GRNs by integrating all TE values for gene pairs. To remove potential indirect 

relationships, we applied the data processing inequality8, i.e. iteratively eliminating feed-forward loops. 

The feed-forward loop is defined by a network motif composed of three genes, where when gene X 

regulates gene Y and both gene X and Y regulate gene Z. We trimmed the link from gene X to gene Z 

if TEX
�

Z is less than the minimum value of TEX
�

Y and TEY
�

Z while allowing a threshold. Finally, we 

reconstructed a GRN consisting in the links with significant Benjamini-Hochberg’s FDR24 by 

performing one-sided z-test considering the all trimmed TE values as a normal distribution. The hub 

node is identified by calculating the number of targets (outgoing links). 

 

Data processing of scRNAseq data 

To test TENET, we downloaded two scRNAseq datasets obtained from mESCs25 and mouse 

cardiomyocytes27. Wishbone a pseudo-time analysis tool14 was used on the two datasets. As an input 

gene list for benchmarking of mESC dataset, we used 3,280 highly variable genes which have 

expression criterion log2count>1 in more than 10% of the whole cells and coefficient of variation > 1.5. 

To extend the GRN inferred by TENET, we used 13,694 highly variable genes which have expression 

criterion log2count>1 in more than 10% of the whole cells. For the mouse cardiomyocytes, we used 

8,640 highly variable genes which have expression criterion log2count>1 in more than 10% of the 

whole cells and coefficient of variation > 1. To reconstruct the GRN, we used a regulator gene list 
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which includes genes with a gene ontology term “regulation of transcription (GO:0006355)” only for 

the mESC dataset. We generated all the network figures (Supplementary Fig. 3a, Supplementary Fig. 

5a, Supplementary Fig. 7 and Supplementary Fig. 9a) using Cytoscape 3.6.145. 

 

Gene ontology for the functional gene group 

The “pluripotency gene” in Fig. 3c-d and the “neural differentiation gene” in Fig. 3e was obtained from 

the genes with a gene ontology term “stem cell population maintenance (GO:0019827)” and “neuron 

differentiation (GO:0030182)”, respectively. We used gene ontology terms “cardiac muscle cell 

differentiation (GO:0055007)” and “cardiac muscle contraction (GO:0060048)” for “cardiomyocyte 

gene” in Supplementary Fig. 5 and 6. 

 

Public data of gene expression and ChIP-seq 

We downloaded an RNA-seq data obtained from mESCs with three different combinations of double 

knock-in for Esrrb and Tbx3 (Esrrb-/Tbx3-, Esrrb+/Tbx3-, Esrrb+/Tbx3+)4. The gold standard target 

genes of Esrrb and Tbx3 was obtained by comparing Esrrb-/Tbx3- versus Esrrb+/Tbx3- samples and 

Esrrb+/Tbx3- versus Esrrb+/Tbx3+ samples with 2-fold criterion, respectively. The target genes of 

Nanog and Pou5f1 were identified by a downloaded microarray data obtained from mESC with Nanog 

and Pou5f1 knockdown3. To identify target genes of these two TFs, we used 2-fold and p-value < 0.01 

provided in the original data analysis. 

ChIP-seq data for Pou5f1, Esrrb, Nanog in mESCs were reanalyzed for peak calling2. After 

removing the adapter sequence using CutAdapt46 implemented in TrimGalore-0.4.5, we aligned the 

ChIP-seq reads to the mm10 genome using Bowtie247. ChIP-seq peak calling for each TF was 

performed by comparing each ChIP sample with GFP control using the findPeaks command in the 

Homer package26. 

 

Statistical analysis 

A two-sided, one -sample z-test was performed to evaluate the mean of TE values of targets of key 

factors (c-Myc, n-Myc, E2f1, Zfx, Nme2) in mESCs and a key factor Gata4 in mouse cardiomyocytes 

by generating a fitted z-distribution based on an empirical distribution of the thousand means of the TE 

values of the same number of randomly selected genes (Fig. 2b and Supplementary Fig. 2). A two-

sided, two-sample Student t-test was used to evaluate the relative expression values by knocking-in of 

Tbx3 and Esrrb and knocking-down of Pou5f1 and Nanog along with TE values, respectively (Fig. 2c-

f). 
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Condition specific targets 

To identify condition specific targets, we reconstructed GRNs on the pseudo-time ordered expression 

data of 2i+NPCs and serum+NPCs using TENET. Subsequently, the condition specific targets of the 

top 20 factors in the common GRN (Supplementary Fig. 9) was obtained by the targets in the common 

GRN exclusively included in the condition specific GRNs. For example, the 35 target genes of Nme2 

was included in the 2i-specific but not in the serum-specific GRN whereas the 14 target genes were 

included in the serum-specific but not in the 2i-specific GRN (Supplementary Fig. 10). 

 

ESC culture 

E14 mESC were cultured on plastic plates coated with 0.1% gelatin (Sigma #G1393) in either DMEM 

knockout (Gibco #10829), 15% FBS (Gibco #10270), 1xPen-Strep-Glutamine (Gibco #10378), 

1xMEM (Gibco #11140), 1xB-ME (Gibco #21985) and 1000U/mL LIF (Merck #ESG1107) (“Serum”) 

or in NDiff 227 (Takara #Y40002), 3uM CHIR99021, 1uM PD0325901 and 1000U/mL (“2i”). For 

Nme2 experiments, mESCs were treated with either vehicle DMSO (Sigma #02660) or 0.5uM 

Stauprimide (StemCell technologies #72652) for 24 or 48hr.  

 

Alkaline phosphatase staining 

For AP staining, 1000 mESCs were seeded in a 12-well plate and cultured for 24 or 48hr. The cells 

were washed in PBS, fixed in 1% formaldehyde and stained with AP following manufacturers 

instruction (Merck #SCR004). For quantification of positive stained colonies, four random selected 

areas of each well were imaged (10x magnification; MICROSCOPE DETAILS) and manually counted. 

Colonies were marked as pluripotent or primed based on morphology and intensity of AP staining. The 

results are presented in percentages of positive stained colonies from two biological replicates.  

 

Cell proliferation assay 

For proliferation assay, 140.000 mESCs were seeded in a 6-well plate in both 2i and Serum condition. 

Cells were initially allowed to attach for 24hrs before treatment with either DMSO or STP. After either 

24hr or 48hr of DMSO or STP treatment, cells were detached from the plate using Accutase and 

counted using the TC-20 automated cell counter (BioRad). Data are mean + SEM from two biological 

replicates. 

 

RNA extraction and qPCR 
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Total RNA was harvested using Trizol (Ambion #15596026), lock-gel columns (5prime #733-2478) 

and precipitated in chloroform/isopropanol using with glycogen. Reverse transcription was performed 

with 1ug of RNA using high capacity cDNA kit (Applied Biosystem #4368814). Quantitative-PCR was 

performed using SYBR-green with LightCycler480. Relative gene expression levels were presented as 

expression level normalized to Gadph as loading/amplification control. 

 

Robustness of the performance of TENET 

In order to evaluate the robustness of TENET, we run the Wishbone 57 times with different options on 

the Boolean expression data9 of single-cell obtained from early blood development experiments. 57 

Wishbone trajectories were obtained by running the Wishbone with 19 different initial states provided 

in the reference paper9 and three different choices of cells based on the branches (total cells, trunk + 

first branch, trunk + second branch). 

 

 

AVAILABILITY 

A source code for TENET and input files for the benchmarking datasets are available at 

https://github.com/neocaleb/TENET. 
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