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Abstract

For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in
many sensory areas is correlated with the animal’s perceptual report. This phenomenon
has often been attributed to feedforward readout of the neural activity by the
downstream decision-making circuits. The interpretation of choice-correlated activity is
quite ambiguous, but its meaning can be better understood in the light of
population-wide correlations among sensory neurons. Using a statistical nonlinear
dimensionality reduction technique on single-trial ensemble recordings from the middle
temporal area during perceptual-decision-making, we extracted low-dimensional neural
trajectories that captured the population-wide fluctuations. We dissected the particular
contributions of sensory-driven versus choice-correlated activity in the low-dimensional
population code. We found that the neural trajectories strongly encoded the direction
of the stimulus in single dimension with a temporal signature similar to that of single
MT neurons. If the downstream circuit were optimally utilizing this information,
choice-correlated signals should be aligned with this stimulus encoding dimension.
Surprisingly, we found that a large component of the choice information resides in the
subspace orthogonal to the stimulus representation inconsistent with the optimal
readout view. This misaligned choice information allows the feedforward sensory
information to coexist with the decision-making process. The time course of these
signals suggest that this misaligned contribution likely is feedback from the downstream
areas. We hypothesize that this non-corrupting choice-correlated feedback might be
related to learning or reinforcing sensory-motor relations in the sensory population.

Author summary

In sensorimotor decision-making, internal representation of sensory stimuli is utilized for
the generation of appropriate behavior for the context. Therefore, the correlation
between variability in sensory neurons and perceptual decisions is sometimes explained
by a causal, feedforward role of sensory noise in behavior. However, this correlation
could also originate via feedback from decision-making mechanisms downstream of the
sensory representation. This cannot be resolved by analyzing single unit responses, but
requires a population level analysis. Area MT contains both sensory and choice
information and is known to be the key sensory area for visual motion perception. Thus
the decision-making process may be corrupting the sensory representation. However, we
find that the sensory stimuli and choice variables are separate at the population level,
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contradicting the previous interpretations based on single unit recordings. This new
insight postulates how neural systems can maintain a mixed representation while allows
learning and adaptation.

Introduction 1

Sensory cortical neurons exhibit substantial variability to repeated presentations of the 2

same stimulus [1, 2]. This variability depends on the specifics of the sensory stimulus 3

and task being performed [3–7], and is often correlated with the trial-by-trial perceptual 4

report of the animal [8–11]. This trial-by-trial correlation between neural responses and 5

perceptual reports, often quantified as choice probability (CP), has long been of interest 6

for its potential to reveal the mechanisms by which downstream areas read out the 7

response of relevant population of sensory neurons [12–14]. However, this interpretation 8

is complicated by the presence of interneuronal correlations [15], top-down 9

feedback [9, 16] and also depends on assumptions about the readout mechanisms of 10

downstream brain areas [12,14,16,17]. 11

Several models of perceptual decision-making have been proposed to explain the 12

empirical relationships between stimuli, neural responses, and behavioral 13

choices [12,14,16]. Existing proposals come in two basic flavors: those that posit an 14

optimal readout that is limited by shared neural variability [14,18,19] and those that 15

assert that choice-related feedback modifies the signals in sensory areas [16, 20]. Several 16

recent experimental results support the feedback hypothesis [7,9,20]. Although feedback 17

can be interpreted in terms of probabilistic inference [16], the resulting pattern of 18

variability in sensory areas will reduce the information about the stimulus [16,19,21] 19

and impair performance on the task [20]. Why would the brain bother to feedback a 20

choice or decision that corrupts the sensory information and make it do worse on the 21

task? Here, we propose an alternative hypothesis: that the feedback can be 22

non-corrupting, effectively multiplexing choice signals in a sensory population without 23

diminishing information about the stimulus. 24

To visualize the space of hypotheses and how they can be distinguished, it is helpful 25

to summarize the joint activity of a population of neurons with respect to the stimulus 26

driven activity. Figure 1 demonstrates this alignment conceptually and the effect of 27

each type of choice model in this space. Specifically, for a population of only two 28

neurons, the joint activity of the population can be represented as points in a 2D space 29

where each axis represents an individual neuron’s activity (Figure 1A). For a 30

one-dimensional stimulus (as is typically used in discrimination paradigms), different 31

values of the stimulus (red and black) will drive activity that falls along a 32

one-dimensional “stimulus axis”. Increased variability along the stimulus axis will 33

decrease the amount of information about changes in the stimulus, while, importantly, 34

variability orthogonal to the stimulus axis will not [19,22]. We call this variability the 35

“non-stimulus subspace” (Figure 1A). In larger populations, it is possible that the 36

“stimulus axis” could be higher than one-dimension, however, there will still be a 37

subspace that is orthogonal to the stimulus axes and, therefore, will not affect 38

information about the stimulus (i.e., in the null-space of the stimulus axes). 39

By realigning the population activity to the “stimulus axis”, the effect of noise 40

correlations and feedback can be visualized clearly. Noise correlation is any elongation 41

of the joint activity point cloud for repeats of the same stimulus (Figure 1B). In this 42

space, the optimal readout of such a population is to draw a criterion line (decision 43

boundary) orthogonal to the stimulus axis and report which side the population activity 44

on that trial fell on (Figure 1C). The classic feedforward hypothesis, i.e. optimal 45

readout limited by noise, produces CP greater than chance along the stimulus axis 46

because noise correlations pushed the population activity across the two sides of the 47
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Fig 1. Hypotheses on the sources of choice correlations in sensory area. (A) Joint
activity of the population. The point cloud represents neuronal activities colored by
stimulus direction. The neural space can be divided into stimulus and non-stimulus
spaces. (B) Noise correlation is any elongation of the joint activity point cloud for
repeats of the same stimulus. (C) Optimal readout. The optimal decision boundary is a
criterion line orthogonal to the stimulus axis. All CP is due to readout and there is no
CP in the non-stimulus subspace. (D) Suboptimal readout. The decision boundary is
not orthogonal to the stimulus axis. CP exist in both subspaces. (E) Corrupting
feedback. The choice is fed back and pushes variability along the stimulus axis. This
increases CP along the stimulus axis without affecting the non-stimulus subspace, and
causes more variability along the stimulus axis. (F) Non-corrupting feedback. Feedback
pushes choice information in the non-stimulus subspace and increases CP in the
non-stimulus subspace without adding CP in the stimulus axis.

discrimination boundary. In this model, all CP is due to readout and there is no CP 48

(i.e., 0.5) in the non-stimulus subspace. In corrupting feedback models [16,20,21], the 49

choice is fed back only along the stimulus axis. This increases CP and causes more 50

variability along the stimulus axis without affecting the non-stimulus subspace, and 51

reduces the performance on the task for weak stimuli (Figure 1E). In contrast, feedback 52

could be non-corrupting by pushing choice information only in the non-stimulus 53

subspace (Figure 1F). This increases CP in the non-stimulus subspace without adding 54

CP in the stimulus axis and does not diminish stimulus decoding performance. In each 55

of these examples (Figure 1C,E,F) the readout is optimal (orthogonal to the stimulus 56

axis). For completeness, one additional possibility is that the readout is suboptimal and 57

the downstream areas are mistakenly including variability that is in the non-stimulus 58

subspace giving rise to CP in the non-stimulus subspace (Figure 1D). 59

To test these different hypotheses requires an analysis of the joint statistics of 60

populations of sensory neurons while subjects perform a discrimination task. Here, we 61

take advantages of recent developments in statistical dimensionality reduction of 62

single-trial population recordings [23] to examine how information about the stimulus 63

and choice are encoded jointly in small populations of simultaneously recorded MT 64

neurons during perceptual reports about integrated motion direction [24]. The effects of 65
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stimulus, choice, and trial-to-trial variability present in the population activity are 66

decomposed into shared low-dimensional neural trajectories and noise that is private to 67

each neuron (Figure 2). As expected, low-dimensional shared signals capture a majority 68

of the variability in these data as seen previously in other areas [6, 23,25,26]. By 69

aligning the latent signals to the stimulus and task variables, we were able to investigate 70

how stimulus and choice are encoded by neurons collectively. 71

We found that the task variable (visual motion) was primarily captured by a single 72

latent dimension, indicating that the high-dimensional visual stimulus was represented 73

in a low-dimensional, task-relevant manner across the MT population. Additionally, we 74

found that the choice-correlated variability in the population was mainly captured by 75

the latent subspace orthogonal to the task dimension. These results suggest the 76

monkeys’ readout is either highly suboptimal or choice signal is fed back to sensory 77

cortex in the null space of the stimulus – multiplexing choice signals in sensory areas 78

without corrupting information about the stimulus. This feedback signal could be 79

critical for adapting sensory representations while learning new tasks or in 80

non-stationary environments [27,28]. 81

Materials and methods 82

Electrophysiology, task, and behavioral data 83

Data were recorded from three adult rhesus macaque monkeys (two males, P & L, and 84

one female, N) performing perceptual decision-making task for multiple sessions (P: 9, 85

L: 13, N: 10) as reported in [24,29] (with additional sessions added). Spike trains from 86

area MT were obtained via linear electrode arrays (Plexon U or V Probe). All 87

procedures were performed in accordance with US National Institutes of Health 88

guidelines, were approved by The University of Texas at Austin Institutional Animal 89

Care and Use Committee. The stimulus consisted of a hexagonal grid of drifting or 90

flickering Gabor patches. In each trial, the stimulus consisted of 7 consecutive motion 91

pulses, each lasting 150 ms. The strength and direction of each pulse was randomly 92

drawn from Gaussian distribution and rounded to integers. The monkey was rewarded 93

for making a correct choice if the total sum of motion pulses was greater in the 94

corresponding direction. The monkey was rewarded at random with probability 0.5 on 95

the zero sum trials. We keep the recordings from 100 ms before the visual stimuli onset 96

to 350 ms after the visual stimuli offset. We analyze sessions with at least 10 neurons in 97

order to extract latent processes (for a total of 14 sessions). Length of sessions ranged 98

from 245 to 1000 good trials. 99

Single-trial latent dynamics of population 100

To understand how stimulus and perceptual choice are encoded across the population, 101

we employed the variational latent Gaussian process (vLGP) method to extract 102

single-trial low-dimensional neural trajectories from population recordings in area MT. 103

We used the recording of the period from 100 ms before stimulus onset to 350 ms after 104

offset, and binned the spike counts at 1 ms resolutions. Let xk denote the k-th 105

dimension of the latent process. We assumed that the spatial dimensions of latent 106

process are independent and imposed a Gaussian Process (GP) prior to the temporal 107

correlation of each dimension, 108

xk ∼ N (0,K).

To obtain smoothness, we used the squared exponential covariance function and
respective covariance matrix K in the case of discrete time. Let ytn denote the
occurrence of a spike of the nth neuron at time t, ytn = 1 if there was a spike at time t
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and ytn = 0 otherwise at this time resolution. Then yt is the vector of length N , total
number of neurons in a session, that concatenates all neurons at time t. The spikes yt
are assumed to be a point-process generated by the latent state xt at that time via a
linear-nonlinear model,

yt ∼ Poisson(exp(Axt + b)). (1)

To infer the latent process (xt for each trial) and the model parameters (A and b), we 109

used variational inference technique, as the pair of prior and likelihood do not have an 110

tractable posterior. We assumed parametric variational posterior distribution of the 111

latent process, 112

q(xk) = N (µk,Σk).

We analyze the mean {µk} as the latent trajectory in this study. The detail of inference 113

is described in [23]. To accelerate the inference, we initialized algorithm at the result of 114

Gaussian Process Factor Analysis (GPFA). The dimensionality of the latent process was 115

determined to be 4 by leave-one-neuron-out cross-validation on the session with the 116

largest population (2). All the sessions with more than 10 simultaneously recorded units 117

were included in the this study. 118

Pulse-triggered average 119

To measure the relationship between the time-varying pulse strength and the inferred 120

latent process, we measured the contribution of pulses to the latent process. The 121

pulse-triggered average (PTA) measures the change in latent process resulting from an 122

additional pulse at a particular time of unit strength. To calculate the PTA, we used 123

the pulse stimulus and latent response at 1 ms resolution. For each session, let si denote 124

the value of the i-th motion stimulus, and let xtk denote the k-th dimension of the 125

latent process at time t. All trials were concatenated such that the latent process X is a 126

matrix of length T × 4, where T is the total time. For the i-th pulse, si is the number of 127

Gabors pulsing, with si > 0 for pulses in one direction and si < 0 for pulses in the other 128

direction. To calculate the temporal lags of the PTA, we built design matrices, 129

D = [D1,D2, . . . ,D7]. For the i-th pulse, the design matrix Di is a T × 28 matrix that 130

consists of 4 cosine basis functions at the 4i+ 1, 4i+ 2, . . . , 4i+ 4-th columns and 0 131

elsewhere. These basis functions starts at 0 ms, 50 ms, 100 ms and 150 ms after the 132

onset, lasts 100 ms each and spans the rows of Di. The magnitude of the bases is equal 133

to the corresponding pulse value si. We calculated a separate Di for each of the seven 134

pulses and concatenated them to obtain a design matrix for all seven pulses and 135

estimated the weights with `2-regularization, 136

X =DW + E

W =argmin
W

‖X−DW‖22 + γ‖W‖22
(2)

where W is the weight matrix to estimate and E is the Gaussian noise matrix and the 137

regularization hyperparameter γ was chosen by the generalized cross-validation 138

(GCV) [30]. The PTA was calculated with the design matrices of unit-strength pulse 139

and the estimated weights β. We smoothed the PTA with a temporal Gaussian kernel 140

(40 ms kernel width). 141

Subject to arbitrary rotations, a latent trajectory forms an equivalence class of 142

which the members have the same explanatory power in the vLGP model. We seek a 143

particular rotation for each session that makes the encoded task signal concentrate in 144

the first few dimensions. By singular value decomposition, W> = USV>, we rotate the 145

trajectory x to U>x. 146
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Choice decoder 147

Since there were some recording sessions with less than ideal number of frozen trials for 148

the calculation of choice probability, we instead analyzed the “weak” trials of which the 149

monkeys’ correct rate was below a threshold (65%). We started at the trials of zero 150

pulse coherence and gradually increased the magnitude of coherence (absolute value) 151

until the correct rate reached the threshold. One of the sessions containing less than 100 152

weak trials was excluded in this analysis. 153

We removed the stimulus directions that are encoded in the latent process and raw 154

population activity of weak trials by regressing out the pulses and analyzed the residuals. 155

The latent process and population activity were re-binned at 100 ms resolution where 156

the value of each bin is the sum of latent state xt or spike counts yt over the bin for 157

t = 1, 2, . . . , T . For each t, we assumed a linear model to predict its value 158

xt =
7∑
i=1

wtisi + e,

where si denote the strength of the i-th pulse, wti is the weight vector corresponding to 159

the bin and pulse, and e is the homogeneous Gaussian noise across all bins. We 160

estimated the weight vector by least-squares with `2-regularization to prevent 161

over-fitting, 162

wti = argmin
wti

‖xt −
7∑
i=1

wtisi‖22 + γ‖wti‖22.

Again, the hyperparameter of regularization was chosen by GCV. For the raw 163

population activity, we did the same regression, replacing xt with the spike count yt. 164

We then analyzed the contribution of behavioral choice on the residuals 165

rt = xt −
7∑
i=1

wtisi.

For the whole trial we used the sum residual of the windows r =
∑
t rt. The range of t 166

depends on the period of interest. 167

We trained logistic models, to which we refer to as choice decoders, to predict the 168

subject’s choice on each trial using either latent trajectories or population responses. 169

The weights β and bias β0 were estimated by maximum likelihood with 170

`2-regularization, 171

β, β0 = argmax
β,β0

logL(choice | r;β, β0)− γ‖β, β0‖22

Due to small sample sizes, the hyperparameter of regularization was chosen via 3-fold 172

stratified (balanced classes in test set) cross-validation for every session individually. 173

Choice mapping 174

The conventional choice probability only applies to univariate variables. However, either 175

the latent process or population activity is multivariate. We transformed the 176

multivariate variables mentioned above onto a one-dimensional subspace that has the 177

same direction as the choice through the choice decoders, 178

c =
1

1 + e−β
>r−β0

(3)

We refer to the transform as the choice mapping. The quantity c is a normalized value 179

within [0, 1] that maps the residual onto the choice direction [31], and enables 180
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aggregation across sessions as well. We pooled these mapped values of test sets and 181

aggregate them across all sessions. By plugging different dimensions of latent process or 182

population activity as r in the mapping, we obtained the choice-mapped values of the 183

stimulus-dimension, non-stimulus-dimensions of latent process and the whole population. 184

With these mapped values, we calculated the choice probability of the corresponding 185

dimensions. 186

To investigate the effect of different dimensions on the choice, we did sequential
likelihood ratio tests through adding the choice-mapped value of stimulus-dimension,
non-stimulus-dimensions and the population one by one to a logistic model that predicts
the choice,

LR1 =
L(choice | cstimulus)

L(choice | cstimulus, cnon-stimulus)

LR2 =
L(choice | cstimulus, cnon-stimulus)

L(choice | cstimulus, cnon-stimulus, cpopulation)

To investigate the time course of choice probabilities, we used choice decoders to 187

perform choice-mapping on the whole data with a 100 ms non-overlapping moving 188

window. The choice decoders were fitted to early (200–500 ms), middle (600–900 ms) 189

and late (1000–1300 ms) periods of non-stimulus latent dimensions(Figure 6). The 190

decoders were regularized with cross-validation as mentioned before. The choice 191

probabilities were then calculated based on the choice-mapping using the decoders. 192

Results 193

Low-dimensional shared variability structure 194

Three monkeys performed a motion-pulse direction discrimination task with an eye 195

movement to one of two targets [29]. The visual stimulus was presented as a sequence of 196

7 temporally coherent motion pulses of varying strength. An ensemble of MT neurons 197

were simultaneously recorded using multi-electrode arrays. Given the recording, we 198

statistically infer a low-dimensional latent process that explains the shared component 199

of the high-dimensional variations in the observed spiking activity. Conventional 200

analysis methods such as factor analysis or principal component analysis assume either 201

observation models inappropriate for spikes (e.g. Gaussian) or linear dynamics that lack 202

expressive power to describe any non-trivial computation. To overcome these 203

disadvantages, we imposed a general (nonlinear) Gaussian process prior on the latent 204

trajectories and assumed a point-process observation model to account for spikes. The 205

generative model was fit using the variation latent Gaussian process (vLGP) method to 206

recover nonlinear smooth latent trajectories from population recordings [23]. Figure 2A 207

shows the scheme of the model and an example trial. The population firing rates are 208

driven by the latent trajectory through a linear-nonlinear cascade. The loading matrix 209

linearly maps the high-dimensional observation space to the low-dimensional latent 210

space, of which the rows corresponding to the neurons and the columns corresponding 211

to the latent dimensions. The extracted latent trajectories captured the shared 212

variability of the population activity, while the individual variability of each neuron was 213

explained by stochastic generation of spike trains. The dimensionality of latent 214

trajectory was chosen to be 4 by a leave-one-out cross-validation scheme on the session 215

with the largest population (N = 21 neurons). To aggregate analysis across sessions, we 216

fixed this dimensionality of the latent processes. 217

To validate the model, we evaluate the pairwise noise correlations between neurons 218

on randomly interleaved frozen trials where the stimulus was held constant (Figure 2B). 219

With the inferred latent process and loading matrix, we can generate spike trains from 220

the model. We calculated the noise correlation matrices from data and reconstructed 221
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Fig 2. Probabilistic description of a single trial using variational latent Gaussian
process method and resulting noise correlation. (A; top) Simultaneously recorded spike
trains of the MT units in an example trial (yt in Eq. 1). (A; bottom) Corresponding
4-dimensional trajectory. The rank-4 matrix multiplication of the loading matrix
(matrix A in Eq. (1)), and latent trajectory is exponentiated to produce the population
rate. The loading matrix is rotated to maximize stimulus encoding (see Fig. 3), so that
the first column has the strongest stimulus response. The inferred latent factors (xt in
Eq. (1)) are colored to indicate the respective factors corresponding to the loading
matrix. (B) The noise correlation matrices (neuron by neuron) for the sessions with
frozen trials. The lower triangles are the correlations calculated from the raw data, and
the upper triangles are the correlations from the reconstruction by the inferred
4-dimensional latent factors. Time bin size 100 ms.

spikes (Figure 2B). The results show that the extracted latent trajectories captures well 222

the co-variability of the population with only 4 dimensions. 223

Stimulus-encoding is concentrated in one shared dimension 224

In previous work, MT neurons showed strong transient responses on average to motion 225

pulses [24]. We ask if the individual MT responses to visual stimulus are aligned at the 226

population level. To describe the temporal dependence of the latent process on the 227

motion pulses, we calculated the pulse-triggered average (PTA) for each of the seven 228

pulses [24]. The PTA captures the change in latent state resulting from a unit visual 229

motion (a single patch of Gabor drifting in one direction during a pulse), assuming a 230

linear scaling with motion strength (see Materials and Methods). 231

The latent process is subject to arbitrary rotation [23] which results in models with 232

equivalent explanatory power. Hence, we rotated the latent processes for each session so 233

that the effects of motion pulses are concentrated in decreasing order across dimensions 234

(Figure 3A). For both subjects, the pulses are faithfully represented as transiently 235

modulated latent process, and most of the motion information is encoded in the mean 236

value of the first factor—we refer to this factor as the stimulus axis. 237

We pooled the stimulus-explaining latent factor alignment across all sessions. The 238

first dimension explains most (> 90%) of the PTA in the latent process for all but one 239

session (Figure 3B). This concentration of stimulus information in 1-dimension is 240

consistent with the canonical view of MT as primarily a sensory area. Since the sensory 241

stimulus is 1-dimensional (directional motion with different strength), this suggests that 242

the encoding of MT units is temporarily uniform (without multiple time scales of 243

adaptation or lag) and linear (no nonlinear superposition). Note that this is not a 244

trivial result, since the motion information can be encoded in a curved 1-dimensional 245
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the seven pulses of visual motion stimuli. (bottom right) The power of each factor that
explains the variation contributed by the stimuli to the factors. The shape indicates the
animal and the color indicate the respective trials.

manifold that spans multiple dimensions in the neural space [32]. 246

Sensory and choice population codes are misaligned in MT 247

Next, we investigate how the downstream choice signal is aligned with respect to the 248

stimulus axis. There are several possibilities that the choice-correlations can manifest in 249

the MT population activity (Figure 1). To optimally perform the task, the choice 250

should rely only on the stimulus and ignore the off-axis “noise” [17]. Hence, for a purely 251

feed-forward system, only the noise in the stimulus dimension should influence the 252

choice, resulting in choice-correlation reflecting the optimal strategy (Figure 1C). 253

Otherwise sub-optimal “readout” can show choice-correlation through 254

stimulus-irrelevant variability (Figure 1D). On the other hand, feedback paths can mix 255

the downstream choice process signals back into the MT representation: if the feedback 256

is aligned with the stimulus-axis, it will corrupt the encoding of the sensory signal 257

(Figure 1E), while misaligned feedback that stays orthogonal to the continuous stream 258

of stimulus modulated population activity subspace (Figure 1F). 259

To investigate the effect of different axes on the choice, we calculated the choice 260

probability of the recorded neural population after mapping the multivariate activity to 261

choice through choice-mapping (Figure 5; see Materials and Methods). The pooled 262

choice probability estimated using the choice-mapped stimulus-axis, non-stimulus-axes 263

(the 3-dimensional subspace orthogonal to the stimulus-axis), and all 4 dimensions of 264

the MT latent trajectory are 0.546, 0.591, and 0.621 respectively (Fig. 4). The 265

estimated population spike count choice probability is 0.627. To verify that the pooling 266
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Fig 4. Choice probabilities of latent factors for each monkey. Contours corresponds to
50%, 90%, 99% quantities of the choice-mapped stimulus and non-stimulus trial
distribution. The IN choice distribution (red-shade contours) is biased upward,
indicating existence of the choice information in the non-stimulus axes. The pooled
choice probability estimated using the choice-mapped stimulus-axis, non-stimulus-axes
(the 3-dimensional subspace orthogonal to the stimulus-axis), and all 4 dimensions of
the latent trajectory are 0.546, 0.591, and 0.621 respectively. The estimated population
spike count choice probability is 0.627. For nested statistical tests of the corresponding
regression models, see main text and Fig. 5.
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Fig 5. Data analysis pipeline and nested model comparison. (1) Extract latent
processes. (2) Align latent processes to stimulus & null dimensions. (3) Map dimensions
of latent processes into real-valued scalars. (4) Pool the choice-mapping over all sessions
and perform nested log-likelihood tests.
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across sessions (Fig. 5, stage 4) does not weaken the choice information, we compare the 267

pooled model with models of individual sessions as a baseline. The likelihood ratios of 268

full models of individual sessions to the full model of pooled sessions is between 0 and 1 269

because the log-likelihoods are always negative and the pooled model is at most as good 270

as the individual session models. Among the 10 sessions, the likelihood ratio ranges 271

between 0.92 and 0.99, and the average is 0.98. These indicate that the pooling over 272

sessions keeps most of the choice information. 273

To determine the major contribution among regressors on choice, we performed 274

nested likelihood ratio tests by adding the choice-mapped value of stimulus-axis, 275

non-stimulus-axes, and the population, one by one (Figure 5). The choice is significantly 276

correlated with the latent nonstimulus-axes (p < 2.2× 10−16), which indicates that the 277

choice axis is not perfectly aligned with the stimulus axis as the optimal readout or 278

corrupting feedback models suggest. Therefore, our analysis supports representation of 279

choice information in the non-stimulus latent subspace. This misalignment of stimulus 280

axis and choice axis can occur through either non-optimal readout (Figure 1D) or 281

non-corrupting feedback (Figure 1F). The misalignment between choice and stimulus in 282

MT provides evidence for a feedback source of choice information in sensory neurons. 283

The presence of CP orthogonal to the stimulus axis suggests that choice information is 284

not just a result of noise on the sensory response, but rather arises from another process 285

altogether. 286

Time course of choice probability indicates feedback of 287

decision-making process to MT 288

The misalignment between choice and stimulus in MT suggests a feedback source for 289

choice-correlated activity, but could still be explained by suboptimal readout. Debates 290

based on models and arguments in the literature have yet to resolve issue of feedforward 291

versus feedback choice correlations in area MT [16,20,33–35]. To disambiguate the two, 292

we investigate the temporal profile of choice probability. Behavioral analysis showed 293

that the sensory information immediately after its presentation has a strong influence in 294

the choice [24]. In turn, one would expect to see choice information early in the 295

population activity. If the choice information is only present late in the trial, then we 296

can conclude that the feedback from the downstream decision-making process is 297

contributing to the misaligned choice information we observed in the previous section. 298

To investigate the temporal profile of choice correlation in the non-stimulus axes, we 299

calculated time course of CP. We fit 3 linear choice decoders to the latent non-stimulus 300

axes during the early (200–500 ms), middle (600–900 ms) and late (1000–1300 ms) 301

periods, and then used them to decode the whole period with a 100 ms moving window. 302

Figure 6 shows that the middle and late decoders start climbing late during the visual 303

motion presentation and reach a peak at around the motion stimulus was terminated. 304

This temporal profile is consistent with a choice variable that accumulates sensory 305

evidence [12], and supports the non-corrupting feedback from the decision-making 306

process. On the other hand, the early decoder shows a constant choice probability 307

throughout the motion presentation period (Fig. 6) which could represent a per-trial 308

choice bias. These observations suggest that the choice information resides in more than 309

1-dimension within the non-stimulus subspace. 310

Conclusion 311

To understand how stimulus and perceptual choice are encoded across the population of 312

MT neurons, we take advantage of recent developments in unsupervised statistical 313

approaches to single-trial population analyses (Figure 7). Using vLGP, the stimulus, 314
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Fig 6. Time course of choice probability in the non-stimulus subspace suggests
feedback from the decision-making process. Decoders were fit to early (yellow), middle
(red), and late (purple) periods (300 ms, marked by the colored bars) of non-stimulus
latent dimensions to predict choice. We used the resulting weights of the decoders to
perform choice-mapping on the whole time interval divided into 100 ms non-overlapping
moving windows (aligned at the center). The colored curves correspond to the choice
probability time course using the respective decoder.

non-stimulus
subspace

visual motion
stimulus

MT population low-dimensional
shared-variability

possible sources
of choice-correlation

downstream
decision

circuit

decision
noise

behavior
(choice)

(1) optimal readout

(3) suboptimal readout

(2) corrupting feedback

(4) non-corrupting
      feedback

Fig 7. Four possible sources of neural-choice correlation. 1-dimensional stimulus drive
to MT is picked up as population variability along with other noise correlations denoted
x1(t),x2(t),x3(t). To optimally perform the task, the choice should rely on only the
stimulus dimension, and hence noise in x1 shows up as CP in relevant units reflecting
their ‘readout’ strategy (case 1). Non-optimal readout can provide CP through
stimulus-irrelevant variability (case 3). Alternatively, feedback from the decision-making
process to MT can provide choice-correlation in the stimulus-irrelevant subspace (case 4)
without corrupting the optimal representation or the stimulus driven shared dimension
(case 2) causing non-optimal behavior.

choice, and trial-to-trial variability presented in the population activity are decomposed 315

to reveal the underlying signals: individual neuron’s private activity, and 316

low-dimensional shared signals. As expected, latent low-dimensional shared signals 317

capture the majority of the variability present in the population recordings. By aligning 318

the latent signals to the stimulus and behavioral choice, we were able to investigate how 319

stimulus and choice are shared across neurons. We found that the sensory task variable 320

was primarily captured by a single latent dimension, indicating that high-dimensional 321

visual stimulus was represented in a low-dimensional, task-relevant manner across the 322

MT population. Surprisingly, we found that the choice-correlated variability in the 323

population of was mainly captured in latent subspace orthogonal to the 324

stimulus-encoding dimension, which suggests that either the downstream decision circuit 325
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used suboptimal readout from MT response (Figure 7, path 3) or the feedback from 326

downstream circuit was non-corrupting (Figure 7, path 4). Further analysis of the time 327

course of choice probability supports feedback mechanism rather than readout. 328

Therefore, we propose a new multi-dimensional model of information representation 329

within MT population where feedforward sensory and feedback decision related 330

choice-correlations give rise to a mixed population code. The non-corrupting feedback of 331

choice formation to MT can be useful for tuning of receptive fields and learning of 332

optimal readouts in relation to the task context. 333
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