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Abstract 1

Summary: Whole-Genome Bisulfite Sequencing (WGBS) is a Next Generation Sequenc- 2

ing (NGS) technique for measuring DNA methylation at base resolution. Recent drops in 3

sequencing costs are beginning to enable high-throughput surveys of DNA methylation in 4

large samples of individuals and/or single cells. These surveys can generate hundreds or even 5

thousands of whole genome bisulfite sequencing (WGBS) datasets in a single study. The com- 6

putational analysis of this data poses major challenges and creates unnecessary bottlenecks 7

for biological interpretation. To offer an efficient analysis solution for such emerging data, we 8

have developed MethylStar, a fast, stable and flexible computational pipeline. MethylStar of- 9

fers easy installation through a dockerized container with all preloaded dependencies and also 10

features a user-friendly interface designed for experts/non-experts. We show that MethylStar 11

outperforms existing tools/pipelines for bulk and single-cell WGBS analysis. 12

13

Availability and implementation: MethylStar is distributed under GPL-3.0 license and 14

source code is publicly available for download from github https://github.com/jlab-code/ 15

MethylStar. Installation through a docker image is available from http://jlabdata.org/ 16

methylstar.tar.gz 17

18

Introduction: As a result of recent drops in sequencing costs, an increasing number of 19

laboratories and international consortia are adopting WGBS as the method of choice to survey 20

DNA methylation in large population samples or in collections of cell lines and tissue types 21

(IHEC, SYSCID, BLUEPRINT, EpiDiverse, NIH ROADMAP, Arabidopsis 1001 Epigenomes, 22

Genomes and physical Maps), either in bulk or at the single-cell level ( [Luo et al., 2017]; [Zhu 23

et al., 2018]). Such surveys can easily generate hundreds or even thousands of WGBS datasets 24

in a single study. A major computational challenge is the fast and reliable analysis of these 25

large amounts of data. Although a number of WGBS pipelines exist, including gemBS ( 26

[Merkel et al., 2018]), nf-core/methylseq https://github.com/nf-core/methylseq, Bicycle 27

( [Graña et al., 2017]), Methylpy ( [Schultz et al., 2015]), they are usually used as standard 28

processing tools and have not been optimized for high-throughput analysis. Moreover, these 29

pipelines have been geared mainly towards human genome applications and may therefore 30

show sub-optimal performance in the analysis of plant genomes, which can be substantially 31

larger and more complex. To address these shortcomings, we have developed MethylStar, 32

a fast and robust computational pipeline for high-throughput analysis of bulk or single-cell 33

WGBS experiments. 34
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Software features 35

MethylStar efficiently integrates all the steps of WGBS analysis. At its core, the pipeline 36

uses established NGS tools including Trimmomatic ( [Bolger et al., 2014]) for read processing, 37

fastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc for quality con- 38

trol, Bismark ( [Krueger and Andrews, 2011]) for alignment, and (optionally) METHimpute 39

( [Taudt et al., 2018]) for methylation state calling. 40

Installation 41

MethylStar can be easily installed via a Docker image. This includes all the softwares, libraries, 42

packages within the container, and thus solves any dependency issues. Advanced users can 43

edit the existing docker container and build their own image. 44

Pipeline architecture and parallel support 45

The pipeline architecture comprises three main layers (Fig. 1A). The first layer is the user- 46

interface implemented in Python. It is a simple command-based interface for configuring 47

software settings, and is aimed at both experts and non-experts. The second layer consists 48

of shell scripts, which handle low-level processes, efficiently coordinate the major software 49

components and manage computational resources. The final layer is implemented in R, and 50

is used to generate output files and other downstream analysis steps. MethylStar features a 51

”Quick Run option”, which allows the user to run all pipeline steps in one go. Alternatively, 52

the ”Advanced option” allows the user to manually run individual steps of the pipeline ( Fig. 53

1A). All steps have been parallelized using GNU Parallel. The user can either set the number 54

of parallel jobs manually, or can opt to use the inbuilt parallel option where the number of 55

parallel is automatically detected based on available system resources. 56

Data processing and downstream functionalities 57

MethylStar integrates processing of raw fastq reads for both single- and paired-end data 58

with options for adapter trimming (Trimmomatic), quality control (fastQC) and removal of 59

PCR duplicates (Bismark software suite). Read alignment and cytosine context extraction 60
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is performed with the Bismark software suite. Finally, cytosine-level methylation calls are 61

obtained with METHimpute. All the different data processing steps have been optimized for 62

speed and performance, and can run on local machines as well as on larger compute nodes. In 63

addition to cytosine-level methylation calls, MethylStar offers functionalities for generating 64

output files that are compatible with a number of publicly available DMR-callers such as 65

Methylkit ( [Akalin et al., 2012]), DMRcaller ( [Catoni et al., 2018]). For visualization, the 66

user can upload the final methylomes to a Genome Browser such as JBrowse ( [Skinner et al., 67

2009]). All outputs are provided in standard data formats for downstream analysis. 68

Benchmarking 69

To demonstrate MethylStar’s performance we analyzed bulk WGBS data from a selection of 70

200 Arabidopsis thaliana ecotypes (paired-end, 295GB, ∼ 8.63X depth, 85.66% genome cover- 71

age, GSE54292), 75 maize strains (paired-end, 209GB, ∼ 0.36X depth, ∼ 22.12% genome cov- 72

erage, GSE39232) and 88 Human H1 cell lines (single-end, 82GB, ∼ 0.12X depth, ∼ 10.62% 73

genome coverage, GSM429321). MethylStar was compared with three popular pipelines: 74

Methylpy, nf-core/methylseq and gemBS. All pipelines were run with default parameters on a 75

computing cluster with a total of 88 cores (CPU 2.2 GHz with 378 GB RAM). Speed perfor- 76

mance was assessed for a series of batch sizes (A. thaliana: 50, 100, 150, 200 samples; human 77

H1 cell line: 22, 44, 66, 88 samples; maize: 15, 30, 45, 60, 75 samples) and was restricted to a 78

fixed number of jobs (=32), see Fig. 1B-C. Although gemBS achieved the fastest processing 79

times for the A. thaliana samples, MethylStar clearly outperformed the other pipelines when 80

applied to the more complex genomes of human and maize, which are computationally more 81

expansive and resource-demanding (Fig. 1B). For instance, for 88 human WGBS samples 82

(82GB of data), MethylStar showed a 75.61% reduction in processing time relative to gemBS, 83

the second fastest pipeline (909 mins vs. 3727 mins). Extrapolating from these numbers, 84

we expect that for 1000 human WGBS samples, MethylStar could save about ∼ 22.24 days 85

of run time (4x faster). To demonstrate that MethylStar can also be applied to single-cell 86

WGBS data, we analyzed DNA methylation of 200 single cells from human early embryo tissue 87

(paired-end, 845GB, ∼ 0.38 depth, ∼ 9.97% genome coverage, GSE81233) split into batches 88

of 100 and 200, see Fig. 1C. MethylStar’s processing times increased linearly with batch size 89
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(i.e. number of cells). For 200 cells, MethylStar required only 4227 mins, thus making it an 90

efficient analysis solution for deep single-cell WGBS experiments. Comparisons with the other 91

pipelines were unfortunately not available in this setting, as their default implementation is 92

incompatible with single-cell WGBS data. 93

Conclusion 94

MethylStar is a fast, stable and flexible pipeline for the high-throughput analysis of bulk or 95

single-cell WGBS data. Its easy installation and user-friendly interface should make it a useful 96

resource for the wider epigenomics community. 97
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