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Abstract 1

Background: Whole-Genome Bisulfite Sequencing (WGBS) is a Next Generation Sequenc- 2

ing (NGS) technique for measuring DNA methylation at base resolution. Continuing drops 3

in sequencing costs are beginning to enable high-throughput surveys of DNA methylation in 4

large samples of individuals and/or single cells. These surveys can easily generate hundreds or 5

even thousands of WGBS datasets in a single study. The efficient pre-processing of these large 6

amounts of data poses major computational challenges and creates unnecessary bottlenecks 7

for downstream analysis and biological interpretation. 8

9

Results: To offer an efficient analysis solution, we present MethylStar, a fast, stable and flex- 10

ible pre-processing pipeline for WGBS data. MethylStar integrates well-established tools for 11

read trimming, alignment and methylation state calling in a highly parallelized environment, 12

manages computational resources and performs automatic error detection. MethylStar offers 13

easy installation through a dockerized container with all preloaded dependencies and also fea- 14

tures a user-friendly interface designed for experts/non-experts. Application of MethylStar to 15

WGBS from human, maize and Arabidopsis shows that it outperforms existing pre-processing 16

pipelines in terms of speed and memory requirements. 17

18

Conclusions: MethylStar is a fast, stable and flexible pipeline for high-throughput pre- 19

processing of bulk or single-cell WGBS data. Its easy installation and user-friendly inter- 20

face should make it a useful resource for the wider epigenomics community. MethylStar is 21

distributed under GPL-3.0 license and source code is publicly available for download from 22

github https://github.com/jlab-code/MethylStar . Installation through a docker image 23

is available from http://jlabdata.org/methylstar.tar.gz 24

Background 25

Whole-Genome Bisulfite Sequencing (WGBS) is a Next Generation Sequencing (NGS) tech- 26

nique for measuring DNA methylation at base resolution. As a result of continuing drops 27

in sequencing costs, an increasing number of laboratories and international consortia (e.g. 28

IHEC, SYSCID, BLUEPRINT, EpiDiverse, NIH ROADMAP, Arabidopsis 1001 Epigenomes, 29

Genomes and physical Maps) are adopting WGBS as the method of choice to survey DNA 30

methylation in large population samples or in collections of cell lines and tissue types, either in 31
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bulk or at the single-cell level [1,2]. Such surveys can easily generate hundreds or even thou- 32

sands of WGBS datasets in a single study. A broad array of software solutions for the down- 33

stream analysis of bulk and single-cell WGBS data have been developed in recent years. These 34

include tools for data normalization such as RnBeads [3], SWAN [4], ChAMP [5], detection 35

of differentially methylated regions (DMRs) e.g. Methylkit [6], DMRcaller [7], Methylpy [8], 36

metilene [9], imputation of methylomes from bulk WGBS data e.g. METHimpute [10], as 37

well as imputation of single-cell methylomes e.g. Melissa [11], deepCpG [12] and dropouts in 38

single-cell data e.g. SCRABBLE [13]. 39

However, these downstream analysis tools are dependent on the output of a number of 40

data pre-processing steps, such as quality control e.g. FastQC [14], QualiMap [15], NGS 41

QC toolkit [16], de-multiplexing of sequence reads, adapter trimming e.g Trimmomatic [17], 42

TrimGalore [18], Cutadapt [19], alignment of reads to a reference genome and generation 43

of methylation calls e.g. BSseeker2 [20], BSseeker3 [21], Bismark [22], BSMap [23], bwa- 44

meth [24], BRAT-nova [25], BiSpark [26], WALT [27], segemehl [28]. From a computational 45

standpoint, data pre-processing is by far the most time-consuming step in the entire bulk or 46

single-cell WGBS analysis workflow(Fig.1). In an effort to help streamline the pre-processing 47

of WGBS data several pipelines have been published in recent years. These include nf- 48

core/methylseq [29], gemBS [30], Bicycle [31] and Methylpy, some of which are currently 49

employed by several epigenetic consortia. gemBS, Bicycle and Methylpy integrate data pre- 50

processing and analysis steps using their own custom trimming and/or alignment tools (see 51

Table 3). By contrast, nf-core/methylseq implements well-established NGS tools, such as 52

TrimGalore for read trimming and Bismark and bwa-meth/MethylDackel [24] for alignment. 53

The nf-core framework is built using Nextflow [32], and aims to provide reproducible pipeline 54

templates that can be easily adapted by both developers as well as experimentalists. Despite 55

these efforts, the installation and execution of these pipelines is not trivial and often require 56

substantial bioinformatic support. Moreover, managing the run times of these pipelines for 57

large numbers of WGBS datasets (i.e. in the order of hundreds or thousands) relies on 58

substantial manual input, such as launching of parallel jobs on a compute cluster and collecting 59

output files from temporary folders. 60

In an attempt to address these issues, we have developed MethylStar, a fast, stable and 61

flexible pre-processing pipeline for WGBS data. MethylStar integrates well-established NGS 62
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tools for read trimming, alignment and methylation state calling in a highly parallelized envi- 63

ronment, manages computational resources and performs automatic error detection. Methyl- 64

Star offers easy installation through a dockerized container with all preloaded dependencies 65

and also features a user-friendly interface designed for experts/non-experts. Application of 66

MethylStar to WGBS from Human, maize and Arabidopsis shows that it outperforms existing 67

pre-processing pipelines in terms of speed and memory requirements. 68

Implementation 69

Core pipeline NGS components 70

In its current implementation, MethylStar integrates processing of raw fastq reads for both 71

single- and paired-end data with options for adapter trimming, quality control (fastQC) and 72

removal of PCR duplicates (Bismark software suite). Read alignment and cytosine con- 73

text extraction is performed with the Bismark software suite. Alignments can be performed 74

for WGBS and Post Bisulfite Adapter tagging (PBAT) approaches for single-cell libraries. 75

Bismark was chosen because it features one of the most sensitive aligners, resulting in com- 76

paratively high mapping efficiency, low mapping bias and good genomic coverage [33, 34]. 77

Finally, cytosine-level methylation calls are (optionally) obtained with METHimpute, a Hid- 78

den Markov Model for inferring the methylation status/level of individual cytosines, even in 79

the presence of low sequencing depth and/or missing data. All the different data process- 80

ing steps have been optimized for speed and performance (see below), and can run on local 81

machines as well as on larger compute nodes. 82

Pipeline architecture, optimization of parallel processes and memory usage 83

The pipeline architecture comprises three main layers (Fig.1). The first layer is the interactive 84

command-line user interface implemented in Python to simplify the process of configuring 85

software settings and running MethylStar. Easy navigation through this interface allows non- 86

experts to run large batches of samples without having to type commands at the terminal. The 87

second layer consists of shell scripts, which handle low-level processes, efficiently coordinates 88

the major software components and manages computational resources. The final layer is 89
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implemented in R, and is used to call METHimpute and to generate output files that are 90

compatible with a number of publicly available DMR-callers such as Methylkit, DMRcaller 91

and bigWig files for visualization in Genome Browsers such as JBrowse [35]. All outputs are 92

provided in standard data formats for downstream analysis. 93

All components/steps of the pipeline including adapter trimming, read alignment, removal 94

of PCR duplicates and generation of cytosine calls have been parallelized using GNU Paral- 95

lel [36] (Fig.1). The user can either set the number of parallel jobs manually for each pipeline 96

component, or can opt to use the inbuilt parallel option. The inbuilt parallel implementation 97

is available under the ”Quick Run” option, which detects the number of parallel processes/jobs 98

automatically for each pipeline component based on available system cores/threads and mem- 99

ory, thus allowing the user to run the entire steps of the pipeline in one go. In the parallel 100

implementation of the Bismark alignment step, we include the genome size (in base pairs) as 101

an additional factor while optimizing computational resources. For example, while running 102

paired-end reads from A. thaliana with a genome size of ∼135 Mb on a system with 88 cores 103

and 386 GB RAM we optimally set the number of jobs to 4. This setting allocates (4 jobs 104

× 8 files/threads) =32 threads to Bowtie2 and (4 jobs × 8 files/threads × 2) =64 threads to 105

the bismark alignment tool (default no. of threads fixed to 8 in the internal bismark parallel 106

argument). In this way, the maximum number of threads never exceeds the total number of 107

available cores, which in turn allows other jobs such as file compression, I/O operations to be 108

performed simultaneously. 109

Under the ”Quick Run” option we have parallelized R processes such as the extraction 110

of methylation calls from BAM files (post PCR duplicates removal) by bypassing the Bis- 111

mark methylation extractor step and by passing these calls directly onto METHimpute for 112

imputation of missing cytosines (Fig.1). In the parallelization of R processes we allocate even 113

fewer number of threads (=3 threads in our system with 88 cores and 386 GB RAM), as these 114

processes (in our case extracting and sorting bam files) are resource hungry and tend to load 115

all its objects into memory. This allows for faster processing times and efficient management 116

of resources without crashing the entire parallel process. In addition, we have introduced 117

checkpoints for each individual component of the pipeline so that a job can be resumed easily 118

in the unlikely case of system failure or any kind of user interruption. 119
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Running MethylStar 120

The user can choose to run each pipeline component individually, and customize software 121

settings at each step by editing the configuration file which is available as an option through 122

the interactive command-line user interface. The user interface displays the available options 123

as a list, and users can execute specific pipeline steps by simply typing the index of their 124

choice. Some of the key configuration parameters include setting file paths to input and 125

output data, as well as options for handling large batches of samples, conversions to required 126

file formats and deletion of auxiliary files that were generated during intermediate analysis 127

steps. Our interactive user interface aids in the fast execution of complex commands and will 128

be particularly effective for users who are less familiar with command line scripting. As an 129

alternative, MethylStar also features a ”Quick Run option”, which allows the user to run all 130

pipeline steps in one go using default configuration settings (Fig.1). 131

Installation and documentation 132

MethylStar can be easily installed via a Docker image. This includes all the softwares, libraries 133

and packages within the container, and thus solves any dependency issues. Advanced users 134

can edit the existing docker container and build their own image. 135

Detailed description about installation and running the pipeline is available at https: 136

//github.com/jlab-code/MethylStar 137

Results and Discussion 138

Benchmarking of speed 139

To demonstrate MethylStar’s performance we analyzed bulk WGBS data from a selection 140

of 200 A. thaliana ecotypes (paired-end, 295GB, ∼8.63× depth, 85.66% genome coverage, 141

GSE54292), 75 maize strains (paired-end, 209GB, ∼0.36× depth, ∼22.12% genome coverage, 142

GSE39232) and 88 Human H1 cell lines (single-end, 82GB, ∼0.12× depth, ∼10.62% genome 143

coverage, GSM429321). MethylStar was compared with Methylpy, nf-core/methylseq and 144

gemBS. All pipelines were run with default parameters on a computing cluster with a total 145

of 88 cores (CPU 2.2 GHz with 378 GB RAM). Speed performance was assessed for a series 146
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of batch sizes (A. thaliana: 50, 100, 150, 200 samples; human H1 cell line: 22, 44, 66, 88 147

samples; maize: 15, 30, 45, 60, 75 samples) and was restricted to a fixed number of jobs 148

(=32), see Fig. 2A-C. Although gemBS achieved the fastest processing times for the A. 149

thaliana samples, MethylStar clearly outperformed the other pipelines when applied to the 150

more complex genomes of maize and human, which are computationally more expansive and 151

resource-demanding (Fig. 2B-C). For instance, for 88 human WGBS samples (82GB of data), 152

MethylStar showed a 75.61% reduction in processing time relative to gemBS, the second 153

fastest pipeline (909 mins vs. 3727 mins). Extrapolating from these numbers, we expect that 154

for 1000 human WGBS samples, MethylStar could save about ∼22.24 days of run time (4× 155

faster). To show that MethylStar can also be applied to single-cell WGBS data, we analyzed 156

DNA methylation of 200 single cells from human early embryo tissue (paired-end, 845GB, 157

∼0.38× depth, ∼9.97% genome coverage, GSE81233) split into batches of 100 and 200, see 158

Fig. 2D. MethylStar’s processing times increased linearly with batch size (i.e. number of 159

cells). For 200 cells, MethylStar required only 4227 mins, thus making it an efficient analysis 160

solution for deep single-cell WGBS experiments. 161

Memory usage statistics 162

Along with benchmarking of speed, we also evaluated the performance of the MethylStar, 163

gemBS, nf-core/methylseq and Methylpy pipelines in terms of system memory utilization us- 164

ing the MemoryProfiler [37] python module (Fig. 2E). We assessed the CPU time versus 165

peak/max memory of all the 4 pipelines (default settings) on a computing cluster (specifi- 166

cations above). For 10 random samples from the above A. thaliana benchmarking dataset 167

(paired-end, 16GB, GSE54292) MethylStar and Methylpy showed the best balance between 168

peak memory usage (∼12000 MB and ∼15000 MB, respectively) and total run time (∼100 169

mins and 167 mins, respectively). In contast, nf-core/Methylseq and GemBS exhibited strong 170

trade-offs between memory usage and speed, with nf-core/Methylseq showing the lowest peak 171

memory usage (∼700 MB) but the longest CPU time (∼697 mins), and GemBS the highest 172

peak memory usage (∼21000 MB) but the shortest run time (∼42 mins) (Fig. 2E). Further- 173

more, we inspected the time taken by each individual component of MethylStar. Bismark 174

alignment was the most time consuming step of the pipeline but required the lowest peak 175
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memory usage (∼1100MB) of all the steps, indicating that our parallel implementation of 176

the Bismark alignment step can be very effective in handling large numbers of read align- 177

ments with low memory requirements (Fig. 2F). We further benchmarked memory usage 178

using 10 random samples from the above maize dataset (paired-end, 23GB, GSE39232). For 179

this analysis, we focused on gemBS and MethylStar due to their shorter processing times for 180

these datasets as compared to nf-core/Methylseq and Methylpy. For these maize dataset, 181

gemBS’s peak memory usage was ∼110000 MB as compared to ∼81000 MB for MethylStar 182

(∼1.3 times less memory) with a total run time of 667 mins and 421 mins, respectively. Taken 183

together, these benchmarking results clearly show that MethylStar exhibits favorable perfor- 184

mance in terms of processing time and memory, and that it is therefore an efficient solution 185

for the pre-processing of large numbers of samples even on a computing cluster with limited 186

resources. 187

Conclusion 188

MethylStar is a fast, stable and flexible pipeline for the high-throughput analysis of bulk or 189

single-cell WGBS data. Its easy installation and user-friendly interface should make it a useful 190

resource for the wider epigenomics community. 191
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Figure 1. Basic workflow of MethylStar showing the pipeline architecture. The left
panel shows a standard BS-Seq workflow and on the right are the different components
of the MethylStar pipeline integrated as 3 different layers viz. Python, Shell and R. All
steps of the pipeline have been parallelized using GNU parallel. MethylStar offers the
option for ”Quick run” (indicated in red) which runs all steps sequentially in one go or
each component can be executed separately. MethylStar incorporates all pre-processing
steps of a standard BS-Seq workflow and generates standard outputs that can be used
for input into several downstream analysis tools.
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Figure 2. Performance of MethylStar as compared with other BS-Seq analysis pipelines
viz. Methylpy, nf-core/methylseq and gemBS in (A) A. thaliana (B) maize (C) H1 cell
line and (D) scBS-Seq samples. CPU processing time taken by METHimpute was not
included in the current benchmarking process as there is no equivalent method in the
other pipelines to compare with. Because of the very long run times observed for the
A. thaliana data, Methylpy and Methylseq were no longer considered for benchmarking
of speed in maize and H1 cell line samples. All pipelines were run using 32 jobs. (E)
Peak memory usage as a function of time for 10 random A. thaliana samples. (F) Time
taken by each component of MethylStar. X-axis shows the individual components of
MethylStar and on the y-axis is the time in mins. The size of the dot indicates the
peak memory usage by each component.
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Figure 3. Table showing different features of MethylStar as compared to other BS-seq
pipelines

14/14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2019.12.20.884536doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.884536
http://creativecommons.org/licenses/by-nd/4.0/

