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Abstract

The explosion in population genomic data demands ever more complex modes of

analysis, and increasingly these analyses depend on sophisticated simulations. Re-

cent advances in population genetic simulation have made it possible to simulate

large and complex models, but specifying such models for a particular simulation

engine remains a difficult and error-prone task. Computational genetics researchers

currently re-implement simulation models independently, leading to duplication

of effort and the possibility for error. Population genetics, as a field, also lacks

standard benchmarks by which new tools for inference might be measured. Here

we describe a new resource, stdpopsim, that attempts to rectify this situation.

Stdpopsim is a community-driven open source project, which provides easy access

to a standard catalog of published simulation models from a wide range of organ-

isms and supports multiple simulation engine backends. We share some examples

demonstrating how stdpopsim can be used to systematically compare demographic

inference methods, and we encourage an even broader community of developers to

contribute to this growing resource.

Keywords: Population genetics, Simulation, Inference, Reproducibility

Introduction

While population genetics has always used statistical methods to make inferences from

data, the degree of sophistication of the questions, models, data, and computational ap-

proaches used have all increased over the past two decades. Currently there exist myriad

computational methods that can infer the histories of populations (Gutenkunst et al.,

2009; Li and Durbin, 2011; Excoffier et al., 2013; Schiffels and Durbin, 2014; Terhorst

et al., 2017; Ragsdale and Gravel, 2019), the distribution of fitness effects (Boyko et al.,

2008; Kim et al., 2017; Tataru et al., 2017; Fortier et al., 2019; Huang and Siepel, 2019;

Ortega-Del Vecchyo et al., 2019), recombination rates (Chan et al., 2012; Lin et al., 2013;

Adrion et al., 2019; Barroso et al., 2019), and the extent of positive selection in genome

sequence data (Eyre-Walker and Keightley, 2009; Alachiotis et al., 2012; DeGiorgio et al.,

2016; Kern and Schrider, 2018; Sugden et al., 2018). While these methods have increased

our understanding of the impacts of genetic and evolutionary processes, very little has

been done to systematically benchmark the quality of inferences gleaned from computa-

tional population genetics. As large databases of population genetic variation begin to

be used to inform public health procedures, the accuracy and quality of these inferences

is becoming ever more important.

Assessing the accuracy of inference methods for population genetics is challenging in

large part because the “ground-truth” in question generally comes not from direct empir-

ical observations, as the relevant historical processes can rarely be observed, but instead
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from simulations. Population genetic simulations are therefore critically important to the

field, yet there has been no systematic attempt to establish community standards or best

practices for executing them. Instead, the general modus operandi to date has been for

individual groups to validate their own methods using bespoke simulations. Often these

studies focus more on showcasing a novel method than on rigorously comparing it with

competing methods. Moreover, this situation results in a great deal of duplicated effort,

and contributes to decreased reproducibility and transparency across the entire field. It

is also a barrier to entry to the field, because new researchers can struggle with the many

steps involved in implementing a state-of-the-art population genetics simulation, includ-

ing identifying appropriate demographic models from the literature, translating them

into input for a simulator, obtaining appropriate genetic maps, and choosing appropriate

values for key population genetic parameters.

A related issue is that it has been challenging to assess the degree to which modeling

assumptions and choices of data summaries can affect population genetic inferences. Yet

there are clear examples of different methods yielding fundamentally different conclusions.

For example, Markovian coalescent methods applied to human genomes have suggested

large ancient (> 100, 000 years ago) ancestral population sizes and bottlenecks that have

not been detected by other methods based on allele frequency spectra (see Beichman

et al., 2017). These distinct methods differ in how they model, summarize, and optimize

fit to genetic variation data, suggesting that such design choices can greatly affect the

performance of the inference. Furthermore, some methods are likely to perform better

than others under certain scenarios, but researchers lack principled guidelines for selecting

the best method for addressing their particular questions. The need for empirical guidance

will only increase as researchers seek to apply population genetic methods to a growing

collection of non-model taxa.

For these reasons, we have generated a standardized, community-driven resource for

simulating published demographic models from a number of popular study systems. This

resource, which we call stdpopsim, makes running realistic simulations for population

genetic analysis a simple matter of choosing pre-implemented models from a community-

maintained catalog. The stdpopsim catalog currently contains three organisms: humans,

Drosophila melanogaster, and Arabidopsis thaliana. For each organism, the catalog con-

tains details on the physical organization (e.g., chromosome structure) of its genome,

one or more genetic maps, default population-level parameters (mutation rate, genera-

tion time) and one or more published demographic histories. Through either a command

line interface or a simple Python API, users can specify which organism, genetic map,

chromosome, and demographic history they are interested in simulating, and the simula-

tion output from their chosen model is returned. In this way, stdpopsim will lower the

barrier to high-quality simulation for exploratory analyses, enable rigorous evaluation of

population genetic software, and contribute to increased reliability of population genetic
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Species Catalog
Arabidopsis thaliana

Drosophila melanogaster

Homo sapiens

A

Genome

Genetic maps

Models

Out of Africa [YRI, CEU, CHB]
(Gutenkunst et al. 2009)
American admixture
(Browning et al. 2011)

chr1
chrX

DECODE
(Kong et al. 2010)

HapMap II
(1000 Genomes Project 2007) Command Line Interface

$ stdpopsim HomSap 
   --seed 12345 
   --chromosome chr22 
   --genetic-map HapmapII_GRCh37 
   --model OutOfAfrica_3G09 
   --output simulation.trees 10 10 10

  1   import stdpopsim
  2
  3   species = stdpopsim.get_species("HomSap")
  4   contig = species.get_contig(
  5          "chr22", genetic_map="HapMapII_GRCh37")
  6   model = species.get_model("OutOfAfrica_3G09") 
  7   samples = model.get_samples(10)
  8   engine = stdpopsim.get_default_engine()
  9   ts = engine.simulate(model, contig, samples)
10  print("simulated:", ts.num_trees, ts.num_sites)

example.py

B Python API

C

Figure 1: Structure of stdpopsim. (A) The hierarchical organization of the stdpopsim
catalog contains all model simulation information within individual species (expanded
information shown here for H. sapiens only). Each species is associated with a represen-
tation of the physical genome, and one or more genetic maps and demographic models.
Dotted lines indicate that only a subset of these categories is shown. At right we show
example code to specify and simulate models using (B) the python API or (C) the
command line interface.

inferences.

The stdpopsim library has been developed by the PopSim Consortium using a dis-

tributed open source model, with strong procedures in place to continue its growth and

maintain its quality. Importantly, we have rigorous quality control methods to ensure

implemented models are accurate and have documented methods for others to contribute

new modules. We invite new collaborators to join our community. Below we describe the

resource and give examples of how it can be used to benchmark demographic inference

methods.

Results

The stdpopsim library. The first contribution of the PopSim consortium is stdpopsim,

a community-maintained library of empirical genome data and population genetics simu-

lation models. Figure 1 shows a graphical representation of the structure of stdpopsim.

The package centers on a catalog of species (Fig. 1A), initially consisting of humans,

D. melanogaster, and A. thaliana. A species definition consists of two key elements.

Firstly, the library defines some basic information about each species’ genome, including

information about chromosome lengths, average mutation rates, and generation times.
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We also provide access to detailed empirical information such as genetic maps, which

model observed heterogeneity in recombination rate along chromosomes. As such maps

are often large, we do not distribute them directly with the software, but make them

available for download in a standard format. When a simulation using such a map is

requested by the user, stdpopsim will transparently download the map data into a local

cache, where it can be quickly retrieved for subsequent simulations. In the initial version

of stdpopsim we support the HapMapII (International HapMap Consortium et al., 2007)

and deCODE (Kong et al., 2010) genetic maps for humans; the Salomé et al. (2011) map

for A. thaliana; and the Comeron et al. (2012) map for D. melanogaster. Adding futher

maps to the library is trivial. The second key element of a species description within

stdpopsim is a set of carefully curated population genetic model descriptions from the

literature, which allow simulation under specific historical scenarios that have been fit

to present-day patterns of genetic variation. (See the Methods for a description of the

community development and quality-control process for these models.)

Given the genome data and simulation model descriptions defined within the library, it

is then straightforward to run accurate, standardized simulations across a range of organ-

isms. Stdpopsim has a Python API and a user-friendly command line interface, allowing

users with minimal experience direct access to state-of-the-art simulations. Simulations

are output in the “tree sequence” format (Kelleher et al., 2016, 2018, 2019), which contains

complete genealogical information about the simulated samples, is extremely compact,

and can be processed efficiently using the tskit library (Kelleher et al., 2016, 2018).

Currently, stdpopsim uses the msprime coalescent simulator (Kelleher et al., 2016) as

the default simulation engine. We have implemented SLiM (Haller et al., 2019; Haller and

Messer, 2019) as an alternative backend, to allow simulation of processes that cannot be

modeled under the coalescent.

The stdpopsim command line interface, by default, outputs citation information for

the models, genetic maps and simulation engines used in any particular run. We hope that

this will encourage users to appropriately acknowledge the resources used in published

work, and encourage authors publishing demographic models to contribute to our ongoing

community-driven development process. Together with the stdpopsim version number

and the long-term stable identifiers for population models and genetic maps, this citation

information will result in well-documented and reproducible simulation workflows. The

individual tree sequence files produced by stdpopsim also contain complete provenance

information including the command line arguments, operating system environment and

versions of key libraries used.
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Model ID Citation CPU(s) RAM(MB) File(MB)

HomSap (Homo sapiens)

Africa 1T12 Tennessen et al. (2012) 10.2 191.3 23.3

Zigzag 1S14 Schiffels and Durbin (2014) 3.4 103.5 7.9

OutOfAfrica 3G09 Gutenkunst et al. (2009) 11.4 181.6 21.4

OutOfAfrica 2T12 Tennessen et al. (2012) 12.4 200.4 24.7

AncientEurasia 9K19 Kamm et al. (2019) 64.8 303.1 41.2

AmericanAdmixture 4B11 Browning et al. (2018) 10.6 185.0 22.3

OutOfAfricaArchaicAdmixture 5R19 Ragsdale and Gravel (2019) 9.1 182.1 21.7

DroMel (Drosophila melanogaster)

OutOfAfrica 2L06 Li and Stephan (2006) 0.6 66.7 1.6

African3Epoch 1S16 Sheehan and Song (2016) 0.5 58.8 0.2

AraTha (Arabidopsis thaliana)

African2Epoch 1H18 Huber et al. (2018) 379.5 358.2 50.7

African3Epoch 1H18 Huber et al. (2018) 187.1 399.5 58.0

SouthMiddleAtlas 1D17 Durvasula et al. (2017) 141.1 315.8 43.1

Table 1: Initial set of demographic models in the Catalog and simple benchmarks.
For each model we report the CPU time, maximum memory usage and the size of the
output tskit file. In each case we simulate 100 samples drawn from the first popula-
tion, for the shortest chromosome of that species and a constant chromosome-specific
recombination rate. The times reported are for a single run on an Intel i5-7600 CPU.
Computing resources required will vary widely depending on sample sizes, chromosome
length, recombination rates and other factors.

The Species Catalog

The central feature of stdpopsim is the species catalog, a systematic organization of the

key quantitative data needed to simulate a given species. These include a description

of the assembly, information about mutation rate, recombination rate(s), and generation

time in addition to a series of demographic models that are specific to that organism.

The current contents of the stdpopsim catalog are shown in Table 1. These range from

simple, single population histories (e.g., Sheehan and Song, 2016), to complex models

which include population splitting, migration, and archaic admixture (e.g., Ragsdale

and Gravel, 2019). In addition to those models shown, at time or writing the PopSim

Consortium has models in development for Pongo abelii and Escherichia coli.

Currently, Homo sapiens has the largest number of population models in stdpopsim

(see Table 1). These models include: a simplified version of the Tennessen et al. (2012)

model with only the African population specified (expansion from the ancestral pop-

ulation and recent growth; Africa 1T12), the three-population model of Gutenkunst

et al. (2009) which specifies the out-of-Africa bottleneck as well as the subsequent diver-

gence of the European and Asian populations (OutOfAfrica 3G09), the Tennessen et al.

(2012) two-population variant of the Gutenkunst et al. model which does not include
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Asian populations, but more explicitly models recent rapid human population growth

(OutOfAfrica 2T12), the Browning et al. (2018) admixture model for American popu-

lations which specifies ancestral African, European, and Asian population components

(AmericanAdmixture 4B11), a three-population out-of-Africa model from Ragsdale and

Gravel (2019) which includes archaic admixture (OutOfAfricaArchaicAdmixture 5R19),

a complex model of ancient Eurasian admixture from Kamm et al. (2019) (AncientEura-

sia 9K19), and a synthetic model of oscillating population size from Schiffels and Durbin

(2014) (Zigzag 1S14). Together these models contain features believed to have widespread

impacts in real data (e.g., bottlenecks, population growth, admixture) and are therefore

highly pertinent in the context of method development.

Beyond humans we have have implemented two demographic histories for D. melanogaster,

three from A. thaliana, and are currently developing models for P. abelii and E. coli. For

D. melanogaster we have implemented the three-epoch model estimated by Sheehan and

Song (2016) from an African sample (African3Epoch 1S16), as well as the out-of-Africa

divergence and associated bottleneck model of Li and Stephan (2006), which jointly mod-

els African and European populations (OutOfAfrica 2L06). For A. thaliana, we imple-

mented the model in Durvasula et al. (2017) inferred using MSMC. This model includes a

continuous change in population size over time, rather than pre-specified epochs of differ-

ent population sizes (SouthMiddleAtlas 1D17). We have also implemented a two-epoch

and a three-epoch model estimated from African samples of A. thaliana in Huber et al.

(2018) (African2Epoch 1H18 and African3Epoch 1H18). In addition to organism-specific

models, stdpopsim also includes a generic piecewise constant size model and isolation

with migration (IM) model which can be used with any genome and genetic map.

To guarantee reproducibility, we have standardized naming conventions for species,

genetic maps, and demographic models that will enable long term stability of unique

identifiers used throughout stdpopsim, as described in our documentation (https://

stdpopsim.readthedocs.io/en/latest/development.html#naming-conventions).

Use case: comparing methods of demographic inference

As an example of the utility of stdpopsim, we demonstrate how it can be used to eas-

ily and fairly compare popular demographic inference methods. Although we present

comparison of results from several methods, our aim at this stage is not to provide an

exhaustive evaluation or ranking of these methods. Our hope is instead that future work

built upon this resource will enable more detailed exploration of the strengths and weak-

nesses of the numerous inference methods that are available to the population genetics

community (see Discussion).

We start by comparing popular methods for estimating population size histories (N(t))

of single populations and subsequently show simple examples of multi-population infer-
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ence. To reproducibly evaluate and compare the performance of inference methods, we

developed workflows using snakemake (Köster and Rahmann, 2012) that are available

from https://github.com/popsim-consortium/analysis, that allow efficient comput-

ing in multicore or cluster environments.

For single-population population size histories, we compared MSMC (Schiffels and Durbin,

2014), smc++ (Terhorst et al., 2017), and stairway plot (Liu and Fu, 2015) on simu-

lated genomes sampled from a single population, in a number of the demographic models

described above. Our workflow generates R replicates of C chromosomes, producing n

samples in each of a total of R × C simulations for each demographic model. After

simulation, the workflow prepares input files for each inference method by grouping all

chromosomes, for each sample, into a single file. For each of the R simulation replicates,

this step results in an input file for each of the respective inference methods and derived

from the same simulated tree sequences. Each of the inference programs are then run in

parallel, followed by plotting of N(t) estimates from each program.

Figure 2 presents the results from simulations under OutOfAfricaArchaicAdmixture 5R19,

a model of human migration out of Africa that includes archaic admixture (Ragsdale and

Gravel, 2019), along with an empirical genetic map. In each column of this figure we

show N(t) inferred from samples taken from each of the three extant populations in the

model. In each row we show comparisons among the methods (including two sample

sizes for MSMC). Blue lines show estimates from each of three replicate whole genome

simulations. There is no single “true” reference for effective population size because of

model misspecification—the inference methods are fitting a single population model to

data simulated from multiple populations. However, many methods work by matching

coalescence time distributions, and a single-population model with varying population

size can match any coalescence time distribution (in which case coalescence rate is the

inverse of the effective size). For this reason, we used as our “ground-truth” (solid black

lines) not historical census sizes, but rather inverse coalescence rates calculated analyti-

cally in msprime (see Appendix). While there is variation in accuracy among methods,

populations, and individual replicates, the methods are generally accurate for this model

of human history.

Stdpopsim allows us to readily compare relative performance on this benchmark to

that based on a different model of human history. In Figure S1 we show estimates of

N(t) from simulations using the same physical and genetic maps, but from the OutO-

fAfrica 3G09 demographic model that does not include archaic admixture. Again we see

that each of the methods is capturing relevant parts of the population history, although

the accuracy varies across time. In comparing inferences between the models it is in-

teresting to note that N(t) estimates for the CHB and CEU simulated populations are

generally better across methods than estimates from the YRI simulated population.

We can also see how well methods might do at recovering the population history
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Figure 2: Comparing estimates of N(t) in humans. Here we show estimates of
population size over time (N(t)) inferred using 4 different methods: smc++, stairway
plot, and MSMC with n = 2 and n = 8. Data were generated by simulating replicate
human genomes under the OutOfAfricaArchaicAdmixture 5R19 model and using the
HapMapII GRCh37 genetic map (International HapMap Consortium et al., 2007). From
top to bottom we show estimates for each of the three populations in the model (YRI,
CEU, and CHB). In shades of blue we show the estimated N(t) trajectories for each
replicate. As a proxy for the truth, in black we show inverse coalescence rates as calculated
from the true demographic model (see text).
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Figure 3: Comparing estimates of N(t) in Drosophila . Population size over time
(N(t)) estimated from an African population sample. Data were generated by simulating
replicate D. melanogaster genomes under the African3Epoch 1S16 model with the genetic
map of Comeron et al. (2012). In shades of blue we show the estimated N(t) trajectories
for each replicate. As a proxy for the truth, in black we show inverse coalescence rates
as calculated from the true demographic model (see text).

of a constant-sized population, with human genome architecture and genetic map. We

show results of such an experiment in Figure S2. All methods recover population size

within a factor of two of the truth, however SMC-based methods, perhaps due to their

regularization, tend to infer sinusoidal patterns of population size even though no such

change is present.

As most method development for population genetics has been focused on human

data, it is of consequence to ask how such methods might perform in non-human genomes.

Figure 3 shows parameter estimates from the African3Epoch 1S16 model, originally es-

timated from an African sample of D. melanogaster (Sheehan and Song, 2016), and Fig-

ure S3 shows estimates from simulations of A. thaliana under the African2Epoch 1H18

model originally inferred by Huber et al. (2018). In both cases, as with humans, we use

stdpopsim to simulate replicate genomes using an empirically derived genetic map, and

try to infer back parameters of the simulation model. Accuracy is mixed among methods

in this setting and generally worse than what we observe for simulations of the human

genome.

Multi-population demographic models. As stdpopsim implements multi-population

demographic models, we also explored parameter estimation of population divergence pa-

rameters. In particular, we simulated data under multi-population models for humans

and D. melanogaster and then inferred parameters using ∂a∂i, fastsimcoal2, and smc++.

For simplicity, we conducted inference in ∂a∂i and fastsimcoal2 by fitting an isolation

with migration (IM) model with constant population sizes and bi-directional migration

(Hey and Nielsen, 2004). Our motivation for using an IM model was to mimic the ap-
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Figure 4: Parameters estimated using a multi-population human model. Here
we show estimates of N(t) inferred using ∂a∂i, fastsimcoal2, or smc++. (A) Data
were generated by simulating replicate human genomes under the OutOfAfrica 3G09
model and using the HapMapII GRCh37 genetic map inferred in International HapMap
Consortium et al. (2007). (B) For ∂a∂i and fastsimcoal2 we show parameters inferred
by fitting the depicted IM model, which includes population sizes, migration rates, and
a split time between CEU and YRI samples. (C) Population size estimates for each
population (rows) from ∂a∂i, fastsimcoal2, and smc++ (columns). In shades of blue we
show N(t) trajectories estimated from each simulation, and in black census sizes for the
respective population. The population split date, TDIV , is shown at the bottom, with a
common X-axis to the population size panels.
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proach often used on empirical datasets, where a relatively simple model is fit that may

not reflect the true underlying demography. For human models with more than two pop-

ulations (e.g., Gutenkunst et al. (2009)) this means that we are inferring parameters for

a model that does not match the model from which the data were generated (Figures 4A

and B). However, because the inferred models here better match the simulated models

than in the single population case, here we compare our inferred population sizes directly

to the census size of the simulated models (black line in Figure 4C).

In Figure 4C we show estimates of population sizes and divergence time, for each of

the inference methods, using samples drawn from African and European populations sim-

ulated under the OutOfAfrica 3G09 model. Our results highlight many of the strengths

and weaknesses of the different types of methods we used. For instance, the SFS-based

approaches where we fit simple IM models do not capture recent exponential growth

in the CEU population, but do consistently recover the simulated YRI population size

history. Moreover, these approaches allow for estimating migration rates (Figure S7),

also leading to more accurate inference of divergence times. However, these migration

rate estimates are somewhat biased likely due to model misspecification (Figure S7).

By contrast, smc++ is much better at capturing the recent exponential growth in the

CEU population, though the inferred population sizes are generally noisier. In addition,

the assumption of no migration by smc++ leads to divergence time estimates that are

consistently underestimated (Figure 4C).

Again, we can compare between species and look at the performance of these methods

in on a two-population model of D. melanogaster. Figure S4 shows parameter estimates

for simulations drawn from the OutOfAfrica 2L06 model, which includes an ancestral

population in Africa, then a population expansion with a population split and bottleneck

into a European population with no post-divergence migration. Here again, we find that

∂a∂i and fastsimcoal2 infer more consistent histories, but ignore the brief population

bottleneck in Europe. In addition, ∂a∂i and fastsimcoal2 both do reasonably well

at correctly inferring the absence of migration (Figure S6). By contrast, the inferred

demographic parameters from smc++ are more noisy, though in some cases better capture

the short bottleneck in the Europe population.

Although these results do not represent an exhaustive benchmarking, we have high-

lighted some of the strengths and weaknesses of these methods. Future work should

build on these results and undertake more in-depth comparisons under a wider range of

simulated demographic models.

Discussion

Here we have described the first major product from the PopSim Consortium: the

stdpopsim library. We have founded the Consortium with a number of specific goals in
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mind: standardization of simulation within the population genetics community, increased

reproducibility and ease of use of complex simulations, community-based development

and decision making guiding best practices in population genetics, and benchmarking of

inference methods.

The stdpopsim library allows for rigorous standardization of complex population

genetic simulations. Population genetics, as a field, has yet to coalesce around a set of

standards for the crucial task of method evaluation, which in our discipline hinges on

simulation. In contrast, other fields such as structural biology (Moult et al., 1995) and

machine learning (Russakovsky et al., 2015) have a long track record of standardized

method testing. We hope that our efforts represent the beginning of what will prove to

be an equally longstanding and valuable tradition in population genetics.

We have illustrated in this paper how stdpopsim can be used for direct comparisons

of inferential methods on a common set of simulations. Our benchmarking comparisons

have been limited, but nevertheless reveal some informative features. For example, at the

task of estimating N(t) trajectories for simulated human populations, we find that the

sequence-based methods (MSMC and smc++) perform somewhat better overall—at least

for mid-range values of t—than the site frequency spectrum-based method (stairway

plot) (Figures 2 and S1), which tends to over-estimate the sizes of oscillations. By

contrast, stairway plot outperforms the sequence-based methods on simulations of

D. melanogaster or A. thaliana populations, in which linkage disequilibrium is reduced

(Figures 3 & S3). In simulations of two human populations (Figure 4), most methods

do reasonably well at reconstructing the simulated YRI history, but struggle with the

more complex simulated CEU history, in large part because of the restriction of constant

population sizes. An exception is smc++, which does not have the same restrictions on its

inferred history, and as a result does somewhat better with the CEU history but tends

to overfit the YRI history. The results for the two-population D. melanogaster model

(Figure S4) are generally similar.

Altogether, these preliminary experiments highlight the utility of stdpopsim for com-

paring a variety of inference methods on the same footing, under a variety of different

demographic models. In addition, the ability of stdpopsim to generate data with and

without significant features, such as a genetic map or population size change (e.g., Figure

S2), allows investigation of the failure modes of popular methods. Moreover the com-

parison of methods across the various genome organizations, genetic maps, and demo-

graphic histories of different organisms, provides valuable information about how methods

might perform on non-human systems. Finally, comparison of results across methods or

simulation runs provides an estimate of inference uncertainty, analogous to parametric

bootstrapping, especially since different methods are likely vulnerable to model misspec-

ification in different ways.

Stdpopsim is intended to be a fully open, community-developed project. Our imple-
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mentations of genome representations and genetic maps for the some of the most common

study systems in computational genetics—humans, Drosophila, and Arabidopsis (among

others)—are only intended to be a starting point for future development. In addition to

other taxa, we plan to incorporate other common biological processes such as selection,

gene conversion, and mutational heterogeneity. Researchers are invited to contribute to

the resource by adding their organisms and models of choice. The stdpopsim resource

is accompanied by clearly documented standard operating procedures that are intended

to minimize barriers to entry for new developers. In this way, we expect the resource to

expand and adapt to meet the evolving needs of the population genomics community.

Methods

Model quality control

As a consortium we have agreed to a standardized procedure for model inclusion into

stdpopsim that allows for rigorous quality control. Imagine Developer A wants to in-

troduce a new model into stdpopsim. Developer A implements the demographic model

for the relevant organism along with clear documentation of the model parameters and

populations. This model is submitted as a “pull request”, where it is evaluated by a

reviewer and then included as ‘preliminary’, but is not linked to the online documen-

tation nor the command line interface. Developer A submits a quality control (QC)

issue, after which a second developer, Developer B, then independently reimplements

the model from the relevant primary sources and adds an automatic unit test for equal-

ity between the QC implementation and the preliminary production model. If the two

implementations are equivalent, the original model is included in stdpopsim. If not,

we move to an arbitration process whereby A and B first try to work out the details

of what went wrong. If that fails, the original authors of the published model must

be contacted to resolve ambiguities. Further details of our QC process can be found

in our https://stdpopsim.readthedocs.io/en/latest/development.html#developer

documentation.

Workflow for analysis of simulated data

To demonstrate the utility of stdpopsim we created Snakemake workflows (Köster and

Rahmann, 2012) that perform demographic inference on tree sequence output from our

package using a few common software packages. Our choice of Snakemake allows complete

reproducibility of the analyses shown, and all code is available from https://github.

com/popsim-consortium/analysis.

We performed two types of demographic inference. Our first task was to infer ef-

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2019. ; https://doi.org/10.1101/2019.12.20.885129doi: bioRxiv preprint 

https://stdpopsim.readthedocs.io/en/latest/development.html#
https://github.com/popsim-consortium/analysis
https://github.com/popsim-consortium/analysis
https://doi.org/10.1101/2019.12.20.885129
http://creativecommons.org/licenses/by/4.0/


PopSim Consortium stdpopsim

fective population size over time (N(t)). This was done using three software packages:

stairway plot, which uses site frequency spectrum information only (Liu and Fu, 2015);

MSMC (Schiffels and Durbin, 2014), which is based on the sequentially Markovian coales-

cent (SMC), run with two different sample sizes (n = 2, 8); and smc++ (Terhorst et al.,

2017), which combines information from the site frequency spectrum with recombination

information as in SMC-based methods. No attempt was made at trying to optimize the

analysis from any particular software package, as our goal was not to benchmark perfor-

mance of methods but instead show how such benchmarking could be easily done using

the stdpopsim resource. In this spirit we ran each software package as near to default

parameters as possible. For stairway plot we set the parameters “numRuns=1” and

“dimFactor=5000”. For smc++ we used the “estimate” run mode to infer N(t) with all

other parameters set to their default values. For MSMC we used the “–fixedRecombination”

option and used the default number of iterations.

For the single-population task we ran human (HomSap) simulations using a vari-

ety of models (see Table 1): OutOfAfricaArchaicAdmixture 5R19, OutOfAfrica 3G09, a

constant-sized generic model, and a two-epoch generic model where the population size

instantaneously decreased from N = 104 to N = 103 five hundred generations before the

present. Each HomSap simulation was run using the HapmapII GRCh37 genetic map.

For D. melanogaster we estimated N(t) from an African sample simulated under the

DroMel, African3Epoch 1S16 model using the Comeron2012 dm6 map. Finally we ran

simulations of A. thaliana genomes using the AraTha African2Epoch 1H18 model under

the Salome2012 TAIR7 map. For each model, three replicate whole genomes were simu-

lated and the population size estimated from those data. In all cases we set the sample

size of the focal population to N = 50 chromosomes.

Following simulation, low-recombination portions of chromosomes were masked from

the analysis in a manner that reflects the “accessible” subset of sites used in empirical

population genomic studies (e.g., Danecek et al., 2011; Langley et al., 2012). Specifically

we masked all regions of 1 cM or greater in the lowest 5th percentile of the empirical

distribution of recombination, regions which are nearly uniformly absent for empirical

analysis.

Our second task was to explore inference with two-population models using some of

the multi-population demographic models implemented in stdpopsim. For HomSap we

used the OutOfAfrica 3G09 model with the HapmapII GRCh37 genetic map, and for

DroMel we used the OutOfAfrica 2L06 model with the Comeron2012 dm6 map. The

HomSap model is a three population model (Africa, Europe, and Asia) including post-

divergence migration and exponential growth (Figure 4C), whereas the DroMel model

is a two population model (Africa and Europe) with no post-divergence migration and

constant population sizes (Figure S4).

To conduct inference on these models, we applied three commonly used methods:
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∂a∂i (Gutenkunst et al., 2009), fastsimcoal2 (Excoffier et al., 2013), and smc++ (Ter-

horst et al., 2017). As above, these methods were used generally with default settings

and we did not attempt to optimize their performance or fit parameter-rich demographic

models.

For both ∂a∂i and fastsimcoal2, we fit a two population isolation-with-migration

(IM) model with constant population sizes. This IM model contains six parameters: the

ancestral population size, the sizes of each population 1 after the split, the divergence

time, and two migration rate parameters. Importantly, this meant that for both species,

the fitted model did not match the simulated model (Figures 4 and S4). In the HomSap

case, we therefore performed inference solely on the Africa and Europe populations,

meaning that the Asia population functioned as a “ghost” population that was ignored

by our inference. Our motivation for fitting this simple IM model was to mimic the

typical approach of two population inference on empirical data, where the user is not

aware of the ‘true’ underlying demography and the inference model is often misspecified.

To ground-truth our inference approach, we also conducted inference on a generic IM

model that was identical to the model used for inference S5.

From HomSap simulations we took 20 whole genome samples each from the Europe

and Africa populations from each replicate. Runtimes of DroMel simulations were pro-

hibitively slow when simulating whole genomes with the Comeron2012 dm6 map due to

large effective population sizes leading to high effective recombination rates. For this

reason, we present only data from 50 samples of a 3 MB region of chromosome 2R from

simulations under OutOfAfrica 2L06. For the generic IM simulations, we used the Hom-

Sap genome along with the HapmapII GRCh37 genetic map and sampled 20 individuals

from each population.

Following simulation, we output tree sequences and masked low-recombination re-

gions using the same approach described for the single population workflow above. We

converted tree sequences into a two-dimensional site frequency spectrum for all chro-

mosomes in the appropriate format for ∂a∂i and fastsimcoal2. For each simulation

replicate, we performed 10 runs of ∂a∂i and fastsimcoal2 and checked for convergence.

Detailed settings for ∂a∂i and fastsimcoal2 can be found in the Snakefile on our git

repository (https://github.com/popsim-consortium/analysis). Estimates from the

highest log-likelihood (out of 10 runs) for each simulation replicate are shown in Figures

4C and S4C.

For smc++, we converted the tree sequences into VCF format and performed inference

with default settings. Importantly, smc++ assumes no migration post-divergence, deviat-

ing from the simulated model. However, because smc++ allows for continuous population

size changes, it is better equipped to capture many of the more complex aspects of the

simulated demographic models (e.g., exponential growth).

To visualize our results, we plotted the inferred population size trajectories for each
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simulation replicate alongside census population sizes (Figures 4C and S4C). Here, un-

like the single-population workflow, we compare to census size rather than the inverse

coalescence rate as the ‘true’ population size.

Resource availability

The version 0.1 release of stdpopsim is available for download on Github: https://

github.com/popsim-consortium/stdpopsim/releases. Documentation for the project

can be found here: https://stdpopsim.readthedocs.io/en/latest/.
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Figure S1: Comparing estimates of N(t) in humans. Estimates of population size
over time (N(t)) inferred using 4 different methods, smc++, stairway plot, and MSMC

with n = 2 and n = 8. Data were generated by simulating replicate human genomes under
the Gutenkunst et al. (2009) model and using the genetic map inferred in International
HapMap Consortium et al. (2007). From top to bottom we show estimates for each of
the three populations in the model: YRI, CEU, and CHB. In shades of blue we show the
estimated N(t) trajectories for each replicate. In black we show the true population size
history as inferred for the rate of coalescence in the demographic model.
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Figure S2: Comparing estimates of N(t) in humans. Here we show estimates of
population size over time (N(t)) inferred using 4 different methods, smc++, and stairway

plot, MSMC with n = 2 and n = 8. Data were generated by simulating replicate human
genomes under a constant sized population model with N = 104 and using the HapMapII
genetic map (International HapMap Consortium et al., 2007). In black we show the true
population size history of the model.

Figure S3: Comparing estimates of N(t) in A. thaliana . Here we show estimates of
population size over time (N(t)) inferred using 4 different methods, smc++, and stairway

plot, MSMC with n = 2 and n = 8. Data were generated by simulating replicate A. thaliana
genomes under the African2Epoch 1H18 model and using the genetic map of Salomé et al.
(2011). In black we show the true population size history of the model.
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Figure S4: Parameters estimated using a two-population Drosophila model.
Here we show estimates of N(t) inferred using ∂a∂i, fastsimcoal2, or smc++. Data were
generated by simulating replicate Drosophila genomes under the Li and Stephan (2006)
model and using the genetic map inferred in Comeron et al. (2012). See legend of Figure
4 for details. In shades of blue we show the estimated N(t) trajectories for each replicate.
In black we show the true population size history as given by the census size for the
simulated model.
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Figure S5: Parameters estimated from a generic IM model Here we show estimates
of N(t) inferred using ∂a∂i, fastsimcoal2, or smc++. Data were generated by simulating
under a generic IM model with a human genome and International HapMap Consortium
et al. (2007) genetic map. In shades of blue we show the estimated N(t) trajectories for
each replicate. In black we show the true population size history as given by the census
size for the simulated model.
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Figure S6: Migration rate parameters estimated under a two-population
Drosophila model. Here we show inferred migration rates from ∂a∂i and
fastsimcoal2. Data were generated by simulating replicate Drosophila genomes un-
der the Li and Stephan (2006) model and using the genetic map inferred in Comeron
et al. (2012).
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Figure S7: Migration rate estimates for the human Gutenkunst model. Here
we show inferred migration rates from ∂a∂i and fastsimcoal2. Data were generated by
simulating replicate human genomes under the Gutenkunst et al. (2009) model and using
the genetic map inferred in International HapMap Consortium et al. (2007).
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Calculating coalescence rates

We compute the coalescence rate of a collection of samples in a given demographic model

at a particular point back in time as the expected number of coalescences happening at

that time per unit of time and per pair of as-yet-uncoalesced lineages. More concretely,

let p(t) denote the probability that the lineages of a randomly chosen pair of samples have

not yet coalesced t units of time ago, let p(z, t) denote the probability that those lineages

have not yet coalesced and are furthermore both in location z, and let 1/(2Ne(z, t)) be

the rate of coalescence in location z at the time. Then, we compute the mean coalescence

rate as

r(t) =
1

p(t)

∑
z

p(z, t)

2Ne(z, t)
.

This follows because if we have n diploid samples, and hence
(
2n
2

)
lineages, the expected

number of coalescences in location z between times t and t + dt ago(
2n

2

)
p(z, t)

dt

2Ne(z, t)
,

and the expected number of pairs of uncoalesced lineages at that time is(
2n

2

)
p(t).

The expression for r(t) is a ratio of these two quantities; to obtain it we need to compute

p(t) and p(z, t). This is relatively straightforward using the general theory of Markov

chains, and is implemented in msprime.

Note that since these quantities are per pair of lineages, this definition depends on the

locations of the samples. The coalescence rate also has the intuitive interpretation that it

is the average between-lineage coalescence rate, averaged over where uncoalesced lineages

might be. Since the local coalescence rate is the inverse of the population size, 1/r(t) (as

shown for instance in Figure 2) is a weighted harmonic mean of the census sizes of the

different populations present at that time. This is as expected: suppose that we have two

populations, one big and one small, connected by migration. If all our samples are from

the big population, the number of recent coalescences should be small, reflecting the large

population size, while in the long run, the coalescence rate approaches an intermediate

rate. On the other hand, more recent coalescences are expected if all samples are from

the small population, A method that fits a single, time-varying population size to the

data might be expected to find a population size trajectory to match these time-varying

rates of coalescence.

We use the same computations to analytically compute mean coalescence times : since

for any nonnegative random variable T , the mean value is E[T ] =
∫∞
0

P{T > t}dt, we
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can obtain the mean coalescence time as∫ ∞

0

p(t)dt,

where p(t) is defined above.
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