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Abstract34

The explosion in population genomic data demands ever more complex modes of35

analysis, and increasingly these analyses depend on sophisticated simulations. Re-36

cent advances in population genetic simulation have made it possible to simulate37

large and complex models, but specifying such models for a particular simulation38

engine remains a difficult and error-prone task. Computational genetics researchers39

currently re-implement simulation models independently, leading to inconsistency40

and duplication of effort. This situation presents a major barrier to empirical41

researchers seeking to use simulations for power analyses of upcoming studies or42

sanity checks on existing genomic data. Population genetics, as a field, also lacks43

standard benchmarks by which new tools for inference might be measured. Here44

we describe a new resource, stdpopsim, that attempts to rectify this situation.45

Stdpopsim is a community-driven open source project, which provides easy access46

to a growing catalog of published simulation models from a range of organisms47

and supports multiple simulation engine backends. This resource is available as a48

well-documented python library with a simple command-line interface. We share49

some examples demonstrating how stdpopsim can be used to systematically com-50

pare demographic inference methods, and we encourage a broader community of51

developers to contribute to this growing resource.52

Keywords: Population genetics, Simulation, Inference, Reproducibility53

Introduction54

While population genetics has always used statistical methods to make inferences from55

data, the degree of sophistication of the questions, models, data, and computational56

approaches used have all increased over the past two decades. Currently there exist a57

myriad of computational methods that can infer the histories of populations (Gutenkunst58

et al., 2009; Li and Durbin, 2011; Excoffier et al., 2013; Schiffels and Durbin, 2014;59

Terhorst et al., 2017; Ragsdale and Gravel, 2019), the distribution of fitness effects (Boyko60

et al., 2008; Kim et al., 2017; Tataru et al., 2017; Fortier et al., 2019; Huang and Siepel,61

2019; Ortega-Del Vecchyo et al., 2019), recombination rates (McVean et al., 2004; Chan62

et al., 2012; Lin et al., 2013; Adrion et al., 2020; Barroso et al., 2019), and the extent63

of positive selection in genome sequence data (Kim and Stephan, 2002; Eyre-Walker64

and Keightley, 2009; Alachiotis et al., 2012; Garud et al., 2015; DeGiorgio et al., 2016;65

Kern and Schrider, 2018; Sugden et al., 2018). While these methods have undoubtedly66

increased our understanding of genetic and evolutionary processes, very little has been67

done to systematically benchmark the quality of these inferences or their robustness to68

deviations from their underlying assumptions. As large databases of population genetic69

variation begin to be used to inform public health procedures, the accuracy and quality70

of these inferences is becoming ever more important.71
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Assessing the accuracy of inference methods for population genetics is challenging in72

large part because the “ground-truth” in question generally comes not from direct empir-73

ical observations, as the relevant historical processes can rarely be observed, but instead74

from simulations. Population genetic simulations are therefore critically important to75

the field, yet there has been no systematic attempt to establish community standards76

or best practices for executing them. Instead, the general modus operandi to date has77

been for individual groups to validate their own methods using simulations coded from78

scratch. Often these simulations are more useful to showcase a novel method than to rig-79

orously compare it with competing methods. Moreover, this situation results in a great80

deal of duplicated effort, and contributes to decreased reproducibility and transparency81

across the entire field. It is also a barrier to entry to the field, because new researchers82

can struggle with the many steps involved in implementing a state-of-the-art population83

genetics simulation, including identifying appropriate demographic models from the lit-84

erature, translating them into input for a simulator, and choosing appropriate values for85

key population genetic parameters, such as the mutation and recombination rates.86

A related issue is that it has been challenging to assess the degree to which model-87

ing assumptions and choices of data summaries can affect population genetic inferences.88

Standardized simulations would enable these questions to be systematically examined.89

Importantly, there are clear examples of different methods yielding fundamentally differ-90

ent conclusions. For example, Markovian coalescent methods applied to human genomes91

have suggested large ancient (> 100, 000 years ago) ancestral population sizes and bot-92

tlenecks that have not been detected by other methods based on allele frequency spectra93

(see Beichman et al., 2017). These distinct methods differ in how they model, summarize,94

and optimize fit to genetic variation data, suggesting that such design choices can greatly95

affect the performance of the inference. Furthermore, some methods are likely to perform96

better than others under certain scenarios, but researchers lack principled guidelines for97

selecting the best method for addressing their particular questions. The need for guidance98

from simulated data will only increase as researchers seek to apply population genetic99

methods to a growing collection of non-model taxa.100

For these reasons, we have generated a standardized, community-driven resource for101

simulating published demographic models from a number of popular study systems. This102

resource, which we call stdpopsim, makes running realistic simulations for population103

genetic analysis a simple matter of choosing pre-implemented models from a community-104

maintained catalog. The stdpopsim catalog currently contains six species: humans,105

Pongo abelii, Canis familiaris, Drosophila melanogaster, Arabidopsis thaliana, and Es-106

cherichia coli. For each species, the catalog contains curated information on our cur-107

rent understanding of the physical organization of its genome, inferred genetic maps,108

population-level parameters (e.g., mutation rate and generation time estimates), and109

published demographic models. These models and parameters are meant to represent110
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Species Catalog
Arabidopsis thaliana

Drosophila melanogaster

Homo sapiens

A

Genome

Genetic maps

Models

Out-of-Africa [YRI, CEU, CHB]
(Gutenkunst et al. 2009)
American admixture
(Browning et al. 2011)

chr1
chrX

deCODE
(Kong et al. 2010)

HapMap II
(1000 Genomes Project 2007) Command Line Interface

$ stdpopsim 
   --engine msprime
   HomSap 
   --seed 12345 
   --chromosome chr22 
   --genetic-map HapMapII_GRCh37 
   --demographic-model OutOfAfrica_3G09 
   --output simulation.trees 10 10 10

  1   import stdpopsim
  2
  3   species = stdpopsim.get_species("HomSap")
  4   contig = species.get_contig(
  5          "chr22", genetic_map="HapMapII_GRCh37")
  6   model = species.get_demographic_model(
  7    "OutOfAfrica_3G09") 
  8   samples = model.get_samples(10)
  9   engine = stdpopsim.get_engine("msprime")
10   ts = engine.simulate(model, contig, samples)
11   print("simulated:", ts.num_trees, ts.num_sites)

example.py

B Python API

C

Figure 1: Structure of stdpopsim. (A) The hierarchical organization of the stdpopsim
catalog contains all model simulation information within individual species (expanded
information shown here for H. sapiens only). Each species is associated with a represen-
tation of the physical genome, and one or more genetic maps and demographic models.
Dotted lines indicate that only a subset of these categories is shown. At right we show
example code to specify and simulate models using (B) the python API or (C) the
command line interface.

the field’s current understanding, and we intend for this resource to evolve as new results111

become available, and other existing models are added to stdpopsim by the community.112

We have implemented both a command line interface and a simple Python API that can113

be used to simulate genomic data from a choice of organism, genetic map, chromosome,114

and demographic history. In this way, stdpopsim will lower the barrier to high-quality115

simulation for exploratory analyses, enable rigorous evaluation of population genetic soft-116

ware, and contribute to increased reliability of population genetic inferences.117

The stdpopsim library has been developed by the PopSim Consortium using a dis-118

tributed open source model, with strong procedures in place to continue its growth and119

maintain quality. Importantly, we developed rigorous quality control methods to ensure120

that we have correctly implemented the models as described in their original publication121

and provided documented methods for others to contribute new models. We invite new122

collaborators to join our community: those interested should visit our developer documen-123

tation at https://stdpopsim.readthedocs.io/en/latest/development.html. Below124

we describe the resource and give examples of how it can be used to benchmark demo-125

graphic inference methods.126
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Results127

The stdpopsim library is a community-maintained collection of empirical genome data128

and population genetics simulation models, illustrated in Figure 1. The package cen-129

ters on a catalog of genomic information and demographic models for a growing list of130

species (Fig. 1A), and software resources to facilitate efficient simulations (Fig. 1B-C).131

Given the genome data and simulation model descriptions defined within the library, it is132

straightforward to run standardized simulations across a range of organisms. Stdpopsim133

has a Python API and a user-friendly command line interface, allowing users with min-134

imal experience direct access to state-of-the-art simulations. Simulations are output in135

the “succinct tree sequence” format (Kelleher et al., 2016, 2018, 2019), which contains136

complete genealogical information about the simulated samples, is extremely compact,137

and can be processed efficiently using the tskit library (Kelleher et al., 2016, 2018). The138

tree sequence format could also be converted to other formats (e.g., VCF) by the user if139

desired.140

The species catalog141

The central feature of stdpopsim is the species catalog, a systematic organization of the142

key quantitative data needed to simulate a given species. Data are currently available143

for humans, P. abelii, C. familiaris, D. melanogaster, A. thaliana, and E. coli. A species144

definition consists of two key elements. Firstly, the library defines some basic information145

about our current understanding of each species’ genome, including information about146

chromosome lengths, average mutation rate estimates, and generation times. We also147

provide access to detailed empirical information such as inferred genetic maps, which148

model observed heterogeneity in recombination rate along chromosomes. Such maps are149

often large, so we do not distribute them directly with the software, but make them150

available for download in a standard format. When a simulation using such a map is151

requested by the user, stdpopsim will transparently download the map data into a local152

cache, where it can be quickly retrieved for subsequent simulations. In the initial version153

of stdpopsim we support the HapMapII (International HapMap Consortium et al., 2007)154

and deCODE (Kong et al., 2010) genetic maps for humans; the Nater et al. (2017)155

maps for P. abelii ; the Campbell et al. (2016) map for C. familiaris ; the Salomé et al.156

(2011) map for A. thaliana; and the Comeron et al. (2012) map for D. melanogaster.157

Adding further maps to the library is straightforward. The second key element of a158

species description within stdpopsim is a set of carefully curated population genetic159

model descriptions from the literature, which allow simulation under specific historical160

scenarios that have been fit to present-day patterns of genetic variation (See the Methods161

for a description of the community development and quality-control process for these162

models.)163
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Model ID Citation CPU(s) RAM(MB) File(MB)

HomSap (Homo sapiens)

Africa 1T12 Tennessen et al. (2012) 10.4 193.3 23.3

Zigzag 1S14 Schiffels and Durbin (2014) 3.4 105.0 7.9

AshkSub 7G19 Gladstein and Hammer (2019) 15.7 215.3 26.4

OutOfAfrica 3G09 Gutenkunst et al. (2009) 10.9 181.3 21.1

OutOfAfrica 2T12 Tennessen et al. (2012) 11.3 198.0 24.1

AncientEurasia 9K19 Kamm et al. (2019) 69.4 304.1 41.2

AmericanAdmixture 4B11 Browning et al. (2018) 11.1 187.3 22.3

PapuansOutOfAfrica 10J19 Jacobs et al. (2019) 234.7 526.3 77.8

OutOfAfricaArchaicAdmixture 5R19 Ragsdale and Gravel (2019) 9.6 184.5 21.7

DroMel (Drosophila melanogaster)

OutOfAfrica 2L06 Li and Stephan (2006) 0.6 68.7 1.6

African3Epoch 1S16 Sheehan and Song (2016) 0.5 60.9 0.2

AraTha (Arabidopsis thaliana)

African2Epoch 1H18 Huber et al. (2018) 434.1 359.2 50.7

African3Epoch 1H18 Huber et al. (2018) 208.6 400.6 58.0

SouthMiddleAtlas 1D17 Durvasula et al. (2017) 159.6 315.4 43.1

PonAbe (Pongo abelii)

TwoSpecies 2L11 Locke et al. (2011) 7.4 170.5 14.7

Table 1: Initial set of demographic models in the catalog and summary of computing
resources needed for simulation. For each model, we report the CPU time, maximum
memory usage and the size of the output tskit file, as simulated using the msprime

simulation engine (version 0.7.4). In each case, we simulate 100 samples drawn from the
first population, for the shortest chromosome of that species and a constant chromosome-
specific recombination rate. The times reported are for a single run on an Intel i5-
7600K CPU. Computing resources required will vary widely depending on sample sizes,
chromosome length, recombination rates and other factors.

The current demographic models in the stdpopsim catalog are shown in Table 1.164

Homo sapiens currently has the richest selection of population models. These include: a165

simplified version of the Tennessen et al. (2012) model with only the African population166

specified (expansion from the ancestral population and recent growth; Africa 1T12); the167

three-population model of Gutenkunst et al. (2009), which specifies the out-of-Africa168

bottleneck as well as the subsequent divergence of the European and Asian popula-169

tions (OutOfAfrica 3G09); the Tennessen et al. (2012) two-population variant of the170

Gutenkunst et al. model, which does not include Asian populations but more explic-171

itly models recent rapid human population growth in Europe (OutOfAfrica 2T12); the172

Browning et al. (2018) admixture model for American populations, which specifies ances-173

tral African, European, and Asian population components (AmericanAdmixture 4B11);174

a three-population out-of-Africa model from Ragsdale and Gravel (2019), which includes175

archaic admixture (OutOfAfricaArchaicAdmixture 5R19); a complex model of ancient176
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Eurasian admixture from Kamm et al. (2019) (AncientEurasia 9K19); and a synthetic177

model of oscillating population size from Schiffels and Durbin (2014) (Zigzag 1S14).178

For D. melanogaster, we have implemented the three-epoch model estimated by Shee-179

han and Song (2016) from an African sample (African3Epoch 1S16), as well as the out-180

of-Africa divergence and associated bottleneck model of Li and Stephan (2006), which181

jointly models African and European populations (OutOfAfrica 2L06). For A. thaliana,182

we implemented the model in Durvasula et al. (2017) inferred using MSMC. This model in-183

cludes a continuous change in population size over time, rather than pre-specified epochs184

of different population sizes (SouthMiddleAtlas 1D17). We have also implemented a two-185

epoch and a three-epoch model estimated from African samples of A. thaliana in Huber186

et al. (2018) (African2Epoch 1H18 and African3Epoch 1H18).187

In addition to organism-specific models, stdpopsim also includes a generic piecewise188

constant size model and isolation with migration (IM) model which can be used with any189

genome and genetic map. Together these models contain many features believed to affect190

observed patterns of polymorphism (e.g., bottlenecks, population growth, admixture) and191

therefore provide useful benchmarks for method development.192

To guarantee reproducibility, we have standardized naming conventions for species,193

genetic maps, and demographic models that will enable long-term stability of unique194

identifiers used throughout stdpopsim, as described in our documentation (https://195

stdpopsim.readthedocs.io/en/latest/development.html#naming-conventions).196

Simulation engines197

Currently, stdpopsim uses the msprime coalescent simulator (Kelleher et al., 2016) as198

the default simulation engine. Coalescent simulations, while highly efficient, are limited199

in their ability to model continuous geography or complex selection scenarios, such as200

recurrent sweeps and background selection. For these reasons, we have also implemented201

the forward-time simulator, SLiM (Haller et al., 2019; Haller and Messer, 2019), as an202

alternative backend engine to stdpopsim, allowing for the simulation of processes that203

cannot be modeled under the coalescent. However, as forward-time simulators explicitly204

model all individuals in a population, simulating large population sizes can be highly205

demanding of computational resources. One common practice used to address this chal-206

lenge is to simulate a smaller population, but to rescale resulting times, mutation rates,207

recombination rates, and selection coefficients so that the intensity of mutation, recom-208

bination, and allele frequency change due to selection per unit time remains the same209

(see the SLiM manual and Uricchio and Hernandez, 2014). Our implementation of the210

SLiM backend allows easy use of this rescaling through a single “scaling factor” argument.211

Such down-scaled simulations are not completely equivalent to simulating all individuals212

in the population, and may lead to subtle differences, especially in the presence of selec-213
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tion. However, since many sequence-based measures of population diversity remain nearly214

unchanged when rescaling in this fashion, this practice is effective for many purposes and215

widely employed.216

We validated our implementation of the SLiM engine by comparing estimates of several217

population genetic summary statistics for neutral simulations generated by both SLiM and218

msprime. Examples of this validation for the AncientEurasia 9K19 model (Kamm et al.,219

2019) are shown in Figures S1 and S2. For this model, down-scaling factors of up to 10220

produce patterns of both diversity and linkage disequilibrium that are indistinguishable221

from those observed under the coalescent (i.e., msprime). Scaling down by a factor of222

50 does appear to modify the distribution of these sequence statistics. Interestingly, the223

apparent difference between distributions is somewhat larger when simulating using a224

uniform recombination rate (Figure S2), likely due to the lower variation in the values225

of these statistics. Importantly, both comparisons validate the equivalence of SLiM and226

msprime when no down-scaling is applied. The results are also optimistic about the227

rescaling strategy to reduce computational burden, but the possible effects are not well-228

understood, so results relying on rescaled simulations should be carefully validated.229

Documentation and reproducibility230

The stdpopsim command-line interface, by default, outputs citation information for the231

models, genetic maps, and simulation engines used in any particular run. We hope that232

this feature will encourage users to appropriately acknowledge the resources used in pub-233

lished work, and encourage authors publishing demographic models to contribute to our234

ongoing community-driven development process. Together with the stdpopsim version235

number and the long-term stable identifiers for population models and genetic maps, this236

citation information will result in well-documented and reproducible simulation work-237

flows. The individual tree sequence files produced by stdpopsim also contain complete238

provenance information including the command line arguments, operating system envi-239

ronment and versions of key libraries used.240

Use case: comparing methods of demographic inference241

As an example of the utility of stdpopsim, we demonstrate how it can be easily used242

to perform a fair comparison of popular demographic inference methods. Although we243

present comparison of results from several methods, our aim at this stage is not to provide244

an exhaustive evaluation or ranking of these methods. Our hope is instead to demon-245

strate how stdpopsim will facilitate more detailed future explorations of the strengths246

and weaknesses of the numerous inference methods that are available to the population247

genetics community (see Discussion).248

We start by comparing popular methods for estimating population size histories of249
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single populations and subsequently show simple examples of multi-population infer-250

ence. To reproducibly evaluate and compare the performance of inference methods,251

we developed workflows using snakemake (Köster and Rahmann, 2012), available from252

https://github.com/popsim-consortium/analysis, that allow efficient computing in253

multicore or cluster environments. Our workflow generates R replicates of C chromo-254

somes, producing n population samples in each of a total of R × C simulations for each255

demographic model. After simulation, the workflow prepares input files for each inference256

method by grouping all n × R × C simulated chromosomes into a single file. Each file257

is then converted into an input file appropriate for each inference method (such that all258

inference methods run on the same simulation replicates). Each of the inference pro-259

grams are then run in parallel, and finally, estimates of population size history from each260

program are plotted.261

Single-population demographic models.262

For single-population demographic models, we compared MSMC (Schiffels and Durbin,263

2014), smc++ (Terhorst et al., 2017), and stairway plot (Liu and Fu, 2015) on sim-264

ulated genomes sampled from a single population, under several of the demographic265

models described above. However, these experiments raise the question of what to use266

as the “true” population sizes in the case of multi-population models with migration.267

In particular, a simple single-population model that is fit to data simulated under a268

multi-population model, is not expected to recover the actual simulated population sizes269

because of model misspecification. Instead, we argue that the best one may expect in such270

a scenario is to infer a model that accurately reflects the coalescence time distribution of271

the simulated model. Under a multi-population model, the coalescence time distribution272

is influenced by migration between the target population and populations not analyzed273

in inference, as well as by the ancestral effective population sizes. The inverse coalescence274

rate is commonly interpreted as the effective population size, since these are equal in a275

single-population model with random mating. We thus analytically computed inverse276

coalescence rates in msprime for each simulated model, and used them as benchmarks277

for the “true” effective population sizes. See the Appendix for a precise definition and278

description of the inverse coalescence rate computation.279

Figure 2 presents the results from simulations under OutOfAfricaArchaicAdmixture 5R19,280

a model of human migration out of Africa that includes archaic admixture (Ragsdale and281

Gravel, 2019), along with an empirical genetic map. In each column of this figure we282

show the inferred population size history (denoted N(t)) from samples taken from each283

of the three extant populations in the model. In each row we show comparisons among284

the methods (including two sample sizes for MSMC). Blue lines show estimates from each285

of three replicate whole genome simulations, and black lines indicate the “true” values286
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Figure 2: Comparing estimates of N(t) in humans. Here we show estimates of
population size over time (N(t)) inferred using 4 different methods: smc++, stairway
plot, and MSMC with n = 2 and n = 8 samples. Data were generated by simulating
replicate human genomes under the OutOfAfricaArchaicAdmixture 5R19 model (Rags-
dale and Gravel, 2019) and using the HapMapII GRCh37 genetic map (International
HapMap Consortium et al., 2007). From top to bottom we show estimates for each of
the three populations in the model (YRI, CEU, and CHB). In shades of blue we show the
estimated N(t) trajectories for each of three replicates. As a proxy for the “truth”, in
black we show inverse coalescence rates as calculated from the demographic model used
for simulation (see text).
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Figure 3: Comparing estimates of N(t) in Drosophila . Population size over time
(N(t)) estimated from an African population sample. Data were generated by simulating
replicate D. melanogaster genomes under the African3Epoch 1S16 model (Sheehan and
Song, 2016) with the genetic map of Comeron et al. (2012). In shades of blue we show
the estimated N(t) trajectories for each replicate. As a proxy for the “truth”, in black
we show inverse coalescence rates as calculated from the demographic model used for
simulation (see text).

depicted by the inverse coalescence rates (although in this specific model the inverse287

coalescence rates are very close to the simulated population sizes; Figure S3). While288

there is variation in accuracy among methods, populations, and individual replicates, the289

methods generally produce a good estimate of the true effective population sizes of the290

simulations, with inferred values mostly within a factor of two of the truth, and most291

methods inferring a bottleneck at approximately the correct time.292

Using stdpopsim, we can readily compare performance on this benchmark to that293

based on a different model of human history. In Figure S4 we show estimates of N(t) from294

simulations using the same physical and genetic maps, but from the OutOfAfrica 3G09295

demographic model that does not include archaic admixture. Again we see that each of296

the methods is capturing relevant parts of the population history, although the accuracy297

varies across time. In comparing inferences between the models it is interesting to note298

that N(t) estimates for the CHB and CEU simulated populations are generally better299

across methods than estimates from the YRI simulated population.300

We can also see how well methods might do at recovering the population history301

of a constant-sized population, with human genome architecture and genetic map. We302

show results of such an experiment in Figure S5. All methods recover population size303

within a factor of two of the simulated values, however SMC-based methods tend to infer304

sinusoidal patterns of population size even though no such change is present.305

As most method development for population genetics has been focused on human306

data, it is important to ask how such methods might perform in non-human genomes.307

Figure 3 shows parameter estimates from the African3Epoch 1S16 model, originally es-308
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timated from an African sample of D. melanogaster (Sheehan and Song, 2016), and Fig-309

ure S6 shows estimates from simulations of A. thaliana under the African2Epoch 1H18310

model originally inferred by Huber et al. (2018). In both cases, as with humans, we use311

stdpopsim to simulate replicate genomes using an empirically-derived genetic map, and312

try to infer back parameters of the simulation model. Accuracy is mixed among meth-313

ods when doing inference on simulated data from these D. melanogaster and A. thaliana314

models, and generally worse than what we observe for simulations of the human genome.315

Multi-population demographic models.316

As stdpopsim implements multi-population demographic models, we also explored pa-317

rameter estimation of population divergence parameters. In particular, we simulated data318

under multi-population models for humans and D. melanogaster and then inferred pa-319

rameters using ∂a∂i, fastsimcoal2, and smc++. For simplicity, we conducted inference in320

∂a∂i and fastsimcoal2 by fitting an isolation with migration (IM) model with constant321

population sizes and bi-directional migration (Hey and Nielsen, 2004). Our motivation322

for fitting this simple IM model was to mimic the typical approach of two population323

inference on empirical data, where the user is not aware of the ‘true’ underlying demog-324

raphy and the inference model is often misspecified. For human models with more than325

two populations (e.g., Gutenkunst et al., 2009) this limitation means that users are in-326

ferring parameters for a model that does not match the model from which the data were327

generated (Figures 4A and B). However, since the model used for inference also allows328

gene flow between populations, we directly compare estimated effective population sizes329

to the values used in simulations (black line in Figure 4C) and not the inverse coalescence330

rates.331

In Figure 4C we show estimates of population sizes and divergence time, for each of332

the inference methods, using samples drawn from African and European populations sim-333

ulated under the OutOfAfrica 3G09 model. Our results highlight many of the strengths334

and weaknesses of the different methods. For instance, the SFS-based approaches with335

simple IM models do not capture recent exponential growth in the CEU population, but336

do consistently recover the simulated YRI population size history. Moreover, these ap-337

proaches allow migration rates to be estimated (Figure S7), and lead to more accurate338

inferences of divergence times. However, these migration rate estimates are somewhat339

biased. In contrast, smc++ is much better at capturing the recent exponential growth in340

the CEU population, though it consistently underestimates divergence times because it341

assumes no migration between populations (Figure 4C).342

Again, we can extend this analysis to other taxa and examine the performance of343

these methods for a two-population model of D. melanogaster. Figure S8 shows inference344

results using data simulated under the OutOfAfrica 2L06 model. This model includes345
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Figure 4: Parameters estimated using a multi-population human model. Here
we show estimates of N(t) inferred using ∂a∂i, fastsimcoal2, and smc++. (A) Data
were generated by simulating replicate human genomes under the OutOfAfrica 3G09
model and using the HapMapII GRCh37 genetic map inferred in International HapMap
Consortium et al. (2007). (B) For ∂a∂i and fastsimcoal2 we show parameters inferred
by fitting the depicted IM model, which includes population sizes, migration rates, and
a split time between CEU and YRI samples. (C) Population size estimates for each
population (rows) from ∂a∂i, fastsimcoal2, and smc++ (columns). In shades of blue we
show N(t) trajectories estimated from each simulation, and in black simulated population
sizes for the respective population. The population split time, TDIV , is shown at the
bottom (simulated value in black and inferred values in blue), with a common x-axis to
the population size panels.
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an ancestral population in Africa from which a European population splits off follow-346

ing a bottleneck, with no post-divergence gene flow between the African and European347

population (Figure S8A). Here again, we find that ∂a∂i and fastsimcoal2 infer more348

consistent histories, but they do not detect the brief bottleneck in Europe, due to the349

inference model not allowing for population size changes after the population split. In350

addition, ∂a∂i and fastsimcoal2 both do reasonably well at correctly inferring the ab-351

sence of migration (Figure S9). In contrast, the inferred demographic parameters from352

smc++ are more noisy, though in some cases better capture the short bottleneck in the353

European population.354

Although these results do not represent an exhaustive benchmarking, we have begun355

to highlight some of the strengths and weaknesses of these methods. Future work should356

build on these results and undertake more in-depth comparisons under a wider range of357

simulated demographic models.358

Discussion359

Here we have described the first major product from the PopSim Consortium: the360

stdpopsim library. We have founded the Consortium with a number of specific goals in361

mind: standardization of simulation within the population genetics community, increased362

reproducibility and ease of use of complex simulations, community-based development363

and decision making guiding best practices in population genetics, and benchmarking of364

inference methods.365

The stdpopsim library allows for rigorous standardization of complex population366

genetic simulations. Population genetics, as a field, has yet to coalesce around a set of367

standards for the crucial task of method evaluation, which in our discipline hinges on368

simulation. In contrast, other fields such as structural biology (Moult et al., 1995) and369

machine learning (Russakovsky et al., 2015) have a long track record of standardized370

method testing. We hope that our efforts represent the beginning of what will prove to371

be an equally longstanding and valuable tradition in population genetics.372

Besides being a resource for developers of computational methods, we aim for stdpopsim373

to be a resource for empirical researchers using genomic data. For instance, stdpopsim374

could be used in power analyses to determine adequate sample sizes, or in sanity checks375

to see if observed data (e.g., levels of divergence or the allele frequency spectrum) are376

roughly consistent with the hypothesized scenario. Currently, many studies would benefit377

from such simulation-based checks. However, there are major barriers to implementation,378

since individual research groups must reimplement complex, previously published demo-379

graphic models, a task made especially daunting by additional layers of realism (e.g.,380

recombination maps).381
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Benchmarking population size inference. We have illustrated in this paper how382

stdpopsim can be used for direct comparisons of inferential methods on a common set383

of simulations. Our benchmarking comparisons have been limited, but nevertheless re-384

veal some informative features. For example, at the task of estimating population size385

histories for simulated human populations, we find that the sequence-based methods386

(MSMC and smc++) perform somewhat better overall—at least for moderate times in the387

past—than the site frequency spectrum-based method (stairway plot), which tends to388

over-estimate the sizes of oscillations (Figures 2 and S4). In contrast, stairway plot out-389

performs the sequence-based methods on simulations of D. melanogaster or A. thaliana390

populations, in which linkage disequilibrium is reduced (Figures 3 and S6). In simula-391

tions of two human populations (Figure 4), ∂a∂i and fastsimcoal2 do reasonably well at392

reconstructing the simulated YRI history and estimating divergence times, but struggle393

with the more complex simulated CEU history, in large part because the methods assume394

constant population sizes. On the other hand, smc++ does not have the same restrictions395

on its inferred history, and as a result does much better with the CEU history but tends396

to underestimate divergence times due to the assumption of no migration. The results397

for the two-population D. melanogaster model (Figure S8) are generally similar. In these398

comparisons, fastsimcoal2 and ∂a∂i perform almost identically, which is expected be-399

cause they fit the same models to the same summaries of the data, differing only in how400

they calculate model expectations and optimize parameters.401

All methods for inferring demographic history have strengths and weaknesses (as402

recently reviewed by Beichman et al., 2018). We compared inferences from simulated403

whole genome data, but many factors affect choice of methodology. Markovian coales-404

cent methods (MSMC and smc++) require long contiguous stretches of sequence data. In405

contrast, frequency spectrum methods (stairway plot, ∂a∂i, and fastsimcoal2) can406

use reduced-representation sequencing data, such as RADseq (Andrews et al., 2016).407

∂a∂i and fastsimcoal2 require a pre-specified parametric model, unlike MSMC, smc++,408

and stairway plot. Using a parametric approach yields less noisy results, but a model409

that is too simple may not capture important demographic events (Figures 4 and S8),410

and other forms of model misspecification may also produce undesirable behavior. From411

a software engineering perspective, methods also differ in their ease of installation and412

use. We hope our workflows will assist in the application of all the methods we have413

considered.414

Altogether, these preliminary experiments highlight the utility of stdpopsim for com-415

paring a variety of inference methods on the same footing, under a variety of different416

demographic models. In addition, the ability of stdpopsim to generate data with and417

without significant features, such as a genetic map or population-size changes (e.g., Figure418

S5), allows investigation of the failure modes of popular methods. Moreover the compari-419

son of methods across the various genome organizations, genetic maps, and demographic420
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histories of different organisms, provides valuable information about how methods might421

perform on non-human systems. Finally, comparison of results across methods or simu-422

lation runs provides an estimate of inference uncertainty, analogous to parametric boot-423

strapping, especially when different methods are vulnerable to model misspecification in424

different ways.425

Next steps. Stdpopsim is intended to be a fully open, community-developed project.426

Our implementations of genome representations and genetic maps for the some of the427

most common study systems in computational genetics—humans, Drosophila, and Ara-428

bidopsis (among others)—are only intended to be a starting point for future development.429

Researchers are invited to contribute to the resource by adding their organisms and mod-430

els of choice. The stdpopsim resource is accompanied by clearly documented standard431

operating procedures that are intended to minimize barriers to entry for new developers.432

In this way, we expect the resource to expand and adapt to meet the evolving needs of433

the population genomics community.434

One of our goals is to engage research communities studying other taxa, so as to435

expand the resource to many more species. Although we have included demographic436

models and recombination maps, there are many biological processes that we do not437

model. Some of the additions that we are enthusiastic to add are: selection (including438

distributions of fitness effects, maps of functional elements, both single and recurrent439

hitchhiking events, and selection on polygenic traits), gene conversion, mutation models440

(rate heterogeneity), more realistic demography (overlapping generations, separate sexes,441

mortality/fecundity schedules), geographic population structure, and downstream aspects442

of data quality (genotyping and mapping error). Moreover, an in-depth investigation into443

the effects of population-size rescaling under many of the above scenarios is warranted,444

given our preliminary findings using neutral simulations (Figures S1 and S2). Some other445

important processes are more challenging to model with current simulation software, such446

as structural variation, changing recombination maps over time, transposable elements,447

and context-dependent mutation.448

We wish to emphasize that although the included demographic histories are some of449

the most widely used models for our current set of species, we anticipate the set of avail-450

able models to expand as new methods and new modeling frameworks are developed. For451

instance, the current models all describe a small set of discrete, randomly mating popula-452

tions, which are likely good approximations for deep-time population history, but may be453

less useful for methods describing dynamics of contemporary populations. Stdpopsim’s454

framework is sufficiently general that more realistic population models will be easily in-455

corporated, as they are published. Additional aspects of the framework, such as genome456

builds, will also continue to change as improvements are made to our understanding of457

genome structure.458
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Methods459

Model quality control460

As a consortium we have agreed to a standardized procedure for model inclusion into461

stdpopsim that allows for rigorous quality control. Imagine Developer A wants to in-462

troduce a new model into stdpopsim. Developer A implements the demographic model463

for the relevant organism along with clear documentation of the model parameters and464

populations. This model is submitted as a “pull request”, where it is evaluated by a465

reviewer and then included as ‘preliminary’, but is not linked to the online documen-466

tation nor the command line interface. Developer A submits a quality control (QC)467

issue, after which a second developer, Developer B (perhaps found by requesting review468

from the broader Consortium), then independently reimplements the model from the469

relevant primary sources and adds an automatic unit test for equality between the QC470

implementation and the preliminary production model. If the two implementations are471

equivalent, the original model is included in stdpopsim. If not, we move to an arbitration472

process whereby A and B first try to work out the details of what went wrong. If that473

fails, the original authors of the published model must be contacted to resolve ambigu-474

ities. Further details of our QC process can be found in our developer documentation475

(https://stdpopsim.readthedocs.io/en/latest/development.html).476

The possibility for error and the importance of careful qualty control was illustrated477

very clearly during our own development process: while carrying out the final revisions of478

this paper, we noticed that the OutOfAfrica 3G09 model (Gutenkunst et al., 2009) had479

not gone through our QC process. The subsequent QC revealed that our implementation480

was in fact slightly wrong—migration rates had not been set to zero to the European481

population in the most ancient time period when there should have only been a single482

population. This error was propagated from the msprime documentation, where the483

model was presented as an illustrative example. A number of studies have been published484

using copies of this erroneous example code.485

Workflow for analysis of simulated data486

To demonstrate the utility of stdpopsim we created Snakemake workflows (Köster and487

Rahmann, 2012) that perform demographic inference on tree sequence output from our488

package using a few common software packages (see Figure S10 for an example workflow).489

Our choice of Snakemake allows complete reproducibility of the analyses shown, and all490

code is available from https://github.com/popsim-consortium/analysis.491

We performed two types of demographic inference. Our first task was to infer effective492

population size over time (denoted N(t)). This was done using three software packages:493

stairway plot, which uses site frequency spectrum information only (Liu and Fu, 2015);494

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2020. ; https://doi.org/10.1101/2019.12.20.885129doi: bioRxiv preprint 

https://stdpopsim.readthedocs.io/en/latest/development.html
https://github.com/popsim-consortium/analysis
https://doi.org/10.1101/2019.12.20.885129
http://creativecommons.org/licenses/by/4.0/


PopSim Consortium stdpopsim

MSMC (Schiffels and Durbin, 2014), which is based on the sequentially Markovian coales-495

cent (SMC), run with two different sample sizes (n = 2, 8); and smc++ (Terhorst et al.,496

2017), which combines information from the site frequency spectrum with recombina-497

tion information as in SMC-based methods. No attempt was made at trying to optimize498

the analysis from any particular software package, as our goal was not to benchmark499

performance of methods but instead show how such benchmarking could be easily done500

using the stdpopsim resource. In this spirit we ran each software package as near to de-501

fault parameters as possible. For stairway plot we set the parameters numRuns=1 and502

dimFactor=5000. For smc++ we used the “estimate” run mode to infer N(t) with all other503

parameters set to their default values. For MSMC we used the --fixedRecombination op-504

tion and used the default number of iterations.505

For the single-population task we ran human (HomSap) simulations using a variety506

of models (see Table 1): OutOfAfricaArchaicAdmixture 5R19, OutOfAfrica 3G09, and507

a constant-sized generic model. Each simulation used the HapmapII GRCh37 genetic508

map. For D. melanogaster we estimated N(t) from an African sample simulated under509

the DroMel, African3Epoch 1S16 model using the Comeron2012 dm6 map. Finally, we510

ran simulations of A. thaliana genomes using the AraTha African2Epoch 1H18 model511

under the Salome2012 TAIR7 map. For each model, three replicate whole genomes were512

simulated and the population size estimated from those data. In all cases we set the513

sample size of the focal population to N = 50 chromosomes.514

Following simulation, low-recombination portions of chromosomes were masked from515

the analysis in a manner that reflects the “accessible” subset of sites used in empirical516

population genomic studies (e.g., Danecek et al., 2011; Langley et al., 2012). Specifically517

we masked all regions of 1 cM or greater in the lowest 5th percentile of the empirical518

distribution of recombination, regions which are nearly uniformly absent for empirical519

analysis. This approach to masking was chosen to prevent marginal trees with low or no520

recombination from biasing the comparisons of demographic inference methods. It should521

be noted that masking is not implemented within stdpopsim proper; tree sequences522

generated by stdpopsim are always raw and unmasked. This allows users the flexibility523

to implement masking approaches that are specific to their needs for downstream analysis.524

Our second task was to explore inference with two-population models using some of525

the multi-population demographic models implemented in stdpopsim. For HomSap we526

used the OutOfAfrica 3G09 model with the HapmapII GRCh37 genetic map, and for527

DroMel we used the OutOfAfrica 2L06 model with the Comeron2012 dm6 map. The528

HomSap model is a three population model (Africa, Europe, and Asia) including post-529

divergence migration and exponential growth (Figure 4C), whereas the DroMel model530

is a two population model (Africa and Europe) with no post-divergence migration and531

constant population sizes (Figure S8).532

To conduct inference on these models, we applied three commonly used methods:533
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∂a∂i (Gutenkunst et al., 2009), fastsimcoal2 (Excoffier et al., 2013), and smc++ (Ter-534

horst et al., 2017). As above, these methods were used generally with default settings535

and we did not attempt to optimize their performance or fit parameter-rich demographic536

models.537

For both ∂a∂i and fastsimcoal2, we fit a two population isolation-with-migration538

(IM) model with constant population sizes. This IM model contains six parameters: the539

ancestral population size, the sizes of each population after the split, the divergence time,540

and two migration rate parameters. Importantly, this meant that for both species, the541

fitted model did not match the simulated model (Figures 4 and S8). In the HomSap case,542

we therefore performed inference solely on the Africa and Europe populations, meaning543

that the Asia population functioned as a “ghost” population that was ignored by our544

inference. To validate our inference approach, we also conducted inference on a generic545

IM model that was identical to the model used for inference (Figure S11).546

From HomSap simulations we took 20 whole genome samples each from the Europe547

and Africa populations from each replicate. Runtimes of DroMel simulations were pro-548

hibitively slow when simulating whole genomes with the Comeron2012 dm6 map due to549

large effective population sizes leading to high effective recombination rates. For this550

reason, we present only data from 50 samples of a 3 MB region of chromosome 2R from551

simulations under OutOfAfrica 2L06. For the generic IM simulations, we used the Hom-552

Sap genome along with the HapmapII GRCh37 genetic map and sampled 20 individuals553

from each population.554

Following simulation, we output tree sequences and masked low-recombination re-555

gions using the same approach described for the single population workflow above. We556

converted tree sequences into a two-dimensional site frequency spectrum for all chro-557

mosomes in the appropriate format for ∂a∂i and fastsimcoal2. For each simulation558

replicate, we performed 10 runs of ∂a∂i and fastsimcoal2, checking to ensure that each559

method reached convergence.560

Detailed settings for ∂a∂i and fastsimcoal2 can be found in the Snakefile on our git561

repository (https://github.com/popsim-consortium/analysis). Estimates from the562

highest log-likelihood (out of 10 runs) for each simulation replicate are shown in Figures563

4C and S8C.564

For smc++, we converted the tree sequences into VCF format and performed inference565

with default settings. Importantly, smc++ assumes no migration post-divergence, deviat-566

ing from the simulated model. However, because smc++ allows for continuous population567

size changes, it is better equipped to capture many of the more complex aspects of the568

simulated demographic models (e.g., exponential growth).569

To visualize our results, we plotted the inferred population size trajectories for each570

simulation replicate alongside the simulated population sizes (Figures 4C and S8C). Here,571

unlike the single-population workflow, we compare our inferred population sizes only to572
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the simulated population sizes and not the inverse coalescence rates.573

Resource availability574

The stdpopsim package is available for download on the Python Package Index: https:575

//pypi.org/project/stdpopsim/. Documentation for the project can be found here:576

https://stdpopsim.readthedocs.io/en/latest/.577

Acknowledgments578

We thank the Probabilistic Modeling in Genomics conference organizers for making this579

collaboration possible, and the Simons Center for Quantitative Biology at Cold Spring580

Harbor Laboratory for sponsoring the first workshop. Early on in the project we were en-581

couraged by many people including Patrick Phillips, Richard Durbin, Dmitri Petrov, and582

Sohini Ramachandran. In addition we would like to thank NESCENT and Matt Hahn,583

Victoria Sork, and Michael Whitlock for organizing a 2014 catalysis meeting in which584

many of the goals of this effort were first laid out. CCK and KEL were funded under NIH585

Award R35GM119856. JRA and ADK were funded under NIH Award R01GM117241.586

TJS and RNG were funded under NIH Award R01GM127348. ALG and DRS were funded587

under NIH award R00HG008696. ND and AS were supported in part by NIH Awards588

R01HG010346 and R35GM127070. FR and GG were supported by a Villum Young In-589

vestigator award (project no. 00025300). DODV is funded by a UC MEXUS-CONACYT590

Collaborative Grant and a DGAPA-PAPIIT grant (PAPIIT-IA200620). JK is supported591

by the Robertson Foundation.592

References593

Jeffrey R Adrion, Jared G Galloway, and Andrew D Kern. Predicting the landscape of594

recombination using deep learning. Molecular Biology and Evolution, 02 2020. ISSN595

0737-4038. doi: 10.1093/molbev/msaa038. URL https://doi.org/10.1093/molbev/596

msaa038. msaa038.597

Nikolaos Alachiotis, Alexandros Stamatakis, and Pavlos Pavlidis. OmegaPlus: a scalable598

tool for rapid detection of selective sweeps in whole-genome datasets. Bioinformatics,599

28(17):2274–2275, 2012.600

Kimberly R Andrews, Jeffrey M Good, Michael R Miller, Gordon Luikart, and Paul A601

Hohenlohe. Harnessing the power of RADseq for ecological and evolutionary genomics.602

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2020. ; https://doi.org/10.1101/2019.12.20.885129doi: bioRxiv preprint 

https://pypi.org/project/stdpopsim/
https://pypi.org/project/stdpopsim/
https://pypi.org/project/stdpopsim/
https://stdpopsim.readthedocs.io/en/latest/
https://doi.org/10.1093/molbev/msaa038
https://doi.org/10.1093/molbev/msaa038
https://doi.org/10.1093/molbev/msaa038
https://doi.org/10.1101/2019.12.20.885129
http://creativecommons.org/licenses/by/4.0/


PopSim Consortium stdpopsim

Nat. Rev. Genet., 17(2):81–92, 2016. ISSN 1471-0064. doi: 10.1038/nrg.2015.28. URL603

https://doi.org/10.1038/nrg.2015.28.604
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Figure S1: Validating the SLiM engine backend under a genetic map. Here we
validate our integration of the SLiM (Haller et al., 2019; Haller and Messer, 2019) engine
backend. We show quantile-quantile plots between SLiM and msprime engines for three
population genetic summary statistics: r 2, Tajima’s π, and Tajima’s D. Additionally,
we show runtimes for generating each simulation replicate. Data were generated by
simulating 100 replicates of human chromosome 22 under the AncientEurasia 9K19 model
(Kamm et al., 2019) using the HapMapII GRCh37 genetic map (International HapMap
Consortium et al., 2007). 12 samples were drawn from each population (excluding basal
Eurasians). From top to bottom we show results using three scaling factors for the
population sizes: Q=1, Q=10, and Q=50. Kolmogorov-Smirnov 2-sample test statistics
(D) and p-values are shown, testing the null hypothesis that the quantiles were drawn
from the same continuous distribution.
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Figure S2: Validating the SLiM engine backend under uniform recombination.
Here we validate our integration of the SLiM (Haller et al., 2019; Haller and Messer, 2019)
engine backend. We show quantile-quantile plots between SLiM and msprime engines for
three population genetic summary statistics: r 2, Tajima’s π, and Tajima’s D. Addition-
ally, we show runtimes for generating each simulation replicate. Data were generated by
simulating 100 replicates of human chromosome 22 under the AncientEurasia 9K19 model
(Kamm et al., 2019) using a uniform rate of recombination across the chromosome. 12
samples were drawn from each population (excluding basal Eurasians). From top to bot-
tom we show results using three scaling factors for the population sizes: Q=1, Q=10, and
Q=50. Kolmogorov-Smirnov 2-sample test statistics (D) and p-values are shown, testing
the null hypothesis that the quantiles were drawn from the same continuous distribution.
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Figure S3: Comparing simulated population sizes and inverse coalescence rates
in humans. Data are shown from human genomes under the OutOfAfricaArchaicAdmix-
ture 5R19 model (Ragsdale and Gravel, 2019) and using the HapMapII GRCh37 genetic
map (International HapMap Consortium et al., 2007). From left to right we show sizes
for each of the three populations in the model: YRI, CEU, and CHB. We plot the sim-
ulated sizes for each population in black, and in red we plot inverse coalescence rates as
calculated from the demographic model used for simulation (see text). In this specific
model, these two measures are near identical, but in other models with higher migration
rates we expect to see a larger departure between the two.
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Figure S4: Comparing estimates of N(t) in humans. Estimates of population size
over time (N(t)) inferred using 4 different methods, smc++, stairway plot, and MSMC

with n = 2 and n = 8. Data were generated by simulating replicate human genomes under
the OutOfAfrica 3G09 model (Gutenkunst et al., 2009) and using the HapMapII GRCh37
genetic map (International HapMap Consortium et al., 2007). From top to bottom we
show estimates for each of the three populations in the model: YRI, CEU, and CHB. In
shades of blue we show the estimated N(t) trajectories for each replicate. As a proxy for
the “truth”, in black we show inverse coalescence rates as calculated from the demographic
model used for simulation (see text).
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Figure S5: Comparing estimates of N(t) in humans. Here we show estimates of
population size over time (N(t)) inferred using 4 different methods, smc++, and stairway

plot, and MSMC with n = 2 and n = 8. Data were generated by simulating replicate
human genomes under a constant sized population model with N = 104 and using the
HapMapII GRCh37 genetic map (International HapMap Consortium et al., 2007). As a
proxy for the “truth”, in black we show inverse coalescence rates as calculated from the
demographic model used for simulation (see text).
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Figure S6: Comparing estimates of N(t) in A. thaliana . Here we show estimates of
population size over time (N(t)) inferred using 4 different methods, smc++, and stairway

plot, and MSMC with n = 2 and n = 8. Data were generated by simulating replicate
A. thaliana genomes under the African2Epoch 1H18 model (Durvasula et al., 2017) and
using the SalomeAveraged TAIR7 genetic map (Salomé et al., 2011). As a proxy for the
“truth”, in black we show inverse coalescence rates as calculated from the demographic
model used for simulation (see text).
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Figure S7: Migration rate estimates for the human Gutenkunst model. Here
we show inferred migration rates from ∂a∂i and fastsimcoal2. Data were generated by
simulating replicate human genomes under the Gutenkunst et al. (2009) model and using
the genetic map inferred in International HapMap Consortium et al. (2007). Directional
migration from Europe to Africa is represented as MIG AF EU and migration from
Africa to Europe is represented as MIG EU AF . Note that the x-axis coordinates are
arbitrary.
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Figure S8: Parameters estimated using a two-population Drosophila model.
Here we show estimates of N(t) inferred using ∂a∂i, fastsimcoal2, and smc++. Data
were generated by simulating replicate Drosophila genomes under the Li and Stephan
(2006) model and using the genetic map inferred in Comeron et al. (2012). See legend of
Figure 4 for details. In shades of blue we show the estimated N(t) trajectories for each
replicate. In black we show the simulated population sizes.
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Figure S9: Migration rate parameters estimated under a two-population
Drosophila model. Here we show inferred migration rates from ∂a∂i and
fastsimcoal2. Data were generated by simulating replicate Drosophila genomes under
the Li and Stephan (2006) model and using the genetic map inferred in Comeron et al.
(2012). Directional migration from Europe to Africa is represented as MIG AF EU and
migration from Africa to Europe is represented as MIG EU AF . Note that the x-axis
coordinates are arbitrary.
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Figure S10: Workflow for our N(t) inference methods comparison. Here we show
single replicate for two chromosomes, chr22 and chrX, simulated under the HomSap
OutOfAfrica 3G09 demographic model, with a HapmapII GRCh37 genetic map. Note
that the data used as input by all inference methods smc++, MSMC, and stairway plot,
come from the same set of simulations.
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Figure S11: Parameters estimated from a generic IM model Here we show esti-
mates of N(t) inferred using ∂a∂i, fastsimcoal2, and smc++. Data were generated by
simulating under a generic IM model with a human genome and International HapMap
Consortium et al. (2007) genetic map. In shades of blue we show the estimated N(t)
trajectories for each replicate. In black we show the simulated population sizes.
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Appendix: Calculating coalescence rates787

In population genetics, the “effective population size” of a population model with constant788

(census) size is often defined to be the number of diploids in a Wright-Fisher population789

that would have the same coalescence rate (or, equivalently, genetic drift) as the popu-790

lation in question (reviewed in Crow and Denniston, 1988). One reason the concept is791

useful is because theory predicts that genetic data from distinct populations with the792

same effective population size will look similar in many ways: for instance, their mean793

coalescence times will be the same. Conversely, this implies that effective population size794

should be easier to infer from genomic data than aspects of population demography that795

do not affect effective population size. An analogous observation holds for populations796

of changing size, if we define the “coalescence rate” of a given demographic model at a797

particular point back in time to be the rate of coalescence of remaining lineages and de-798

fine the “coalescence effective size” at that time, denoted Ne(t), so that the coalescence799

rate at time t in the past is 1/(2Ne(t)). With these definitions, any two models with800

the same effective population size trajectory (Ne(t)) will have the same distribution of801

coalescence times. For this reason, we might guess that if we apply an inference method802

that assumes a Wright-Fisher population with changing size through time to a different803

population model, the inferred demographic history will match the “effective population804

size history” defined in this way. These observations and the following calculations are805

standard in coalescent theory (see e.g., Wakeley, 2005), but they are provided here for806

completeness.807

We compute the coalescence rate of a collection of samples in a given demographic

model at a particular point back in time as the expected number of coalescences happening

at that time per unit of time and per pair of as-yet-uncoalesced lineages. More concretely,

let p(t) denote the probability that the lineages of a randomly chosen pair of samples have

not yet coalesced t units of time ago, let p(z, t) denote the probability that those lineages

have not yet coalesced and are furthermore both in location z, and let Ne(z, t) be the

(effective) diploid population size in location z at the time, so that 1/(2Ne(z, t)) is the

rate of coalescence there. Then, we compute the mean coalescence rate as

r(t) =
1

p(t)

∑
z

p(z, t)

2Ne(z, t)
.

This follows because if we have m diploid samples, and hence
(
2m
2

)
lineages, the expected

number of coalescences in location z between times t and t+ dt ago is(
2m

2

)
p(z, t)

dt

2Ne(z, t)
,
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and the expected number of pairs of uncoalesced lineages at that time is(
2m

2

)
p(t).

The expression for r(t) is a ratio of these two quantities; to obtain it we need to compute808

p(t) and p(z, t). This is relatively straightforward using the general theory of Markov809

chains (e.g,. Kemeny et al., 2012), and is implemented in msprime.810

Note that since these quantities are per pair of lineages, this definition depends on the811

locations of the samples. The coalescence rate also has the intuitive interpretation that it812

is the average between-lineage coalescence rate, averaged over where uncoalesced lineages813

might be. Since the local coalescence rate is the inverse of the population size, 1/r(t) (as814

shown for instance in Figure 2) is a weighted harmonic mean of the census sizes of the815

different populations present at that time. This is as expected: suppose that we have two816

populations, one big and one small, connected by migration. If all our samples are from817

the big population, the number of recent coalescences should be small, reflecting the large818

population size, while in the long run, the coalescence rate approaches an intermediate819

rate. On the other hand, more recent coalescences are expected if all samples are from820

the small population, A method that fits a single, time-varying population size to the821

data might be expected to find a population size trajectory to match these time-varying822

rates of coalescence.823

We use the same computations to analytically compute mean coalescence times : since

for any nonnegative random variable T , the mean value is E[T ] =
∫∞
0

P{T > t}dt, we

can obtain the mean coalescence time as∫ ∞

0

p(t)dt,

where p(t) is defined above.824

The coalescence rate trajectories can be computed from a model in msprime using825

the coalescence rate trajectory method of the Demography Debugger class, which826

can be obtained from a stdpopsim model using the model.get demography debugger()827

method.828
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