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Abstract

In HIV epidemics, the structure of the transmission network can be dictated by just a few

individuals. Public health intervention, such as ensuring people living with HIV adhere to

antiretroviral therapy (ART) and are continually virally-suppressed, can help control the

spread of the virus. However, such intervention requires utilizing the limited public health

resource allocations. As a result, the ability to determine which individuals are most

at-risk of transmitting HIV could allow public health officials to focus their limited

resources on these individuals. Molecular epidemiology suggests an approach: prioritizing

people living with HIV based on patterns of transmission inferred from their sampled viral

sequences. In this paper, we introduce ProACT (Prioritization using AnCesTral edge

lengths), a phylogenetic approach for prioritizing individuals living with HIV. ProACT

uses a simple idea: ordering individuals by their terminal branch length in the phylogeny of

their virus. In simulations and also on a dataset of HIV-1 subtype B pol sequences

obtained in San Diego, we show that this simple strategy improves the effectiveness of13
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prioritization compared to state-of-the-art methods that rely on monitoring the growth of14

transmission clusters defined based on genetic distance.15

Key words : HIV, epidemiology, phylogenetics16

17

The transmission of Human Immunodeficiency Virus (HIV) resembles scale-free18

networks (Wertheim et al., 2014), in which the majority of the structure of the network is19

dictated by just a few individuals, a phenomenon likely resulting from the scale-free20

properties of sexual contacts and injection drug use along which HIV is transmitted (Little21

et al., 2014; Schneeberger et al., 2004). As a result, public health intervention may be more22

effective when targeted at people living with HIV (PLWH for short) who are more likely to23

grow the transmission network. However, the best method to target individuals for specific24

interventions remains an open question, and the best strategy will likely depend on the25

specific intervention planned.26

A potential form of intervention aiming to reduce future transmissions is to target27

PLWHs. Antiretroviral therapy (ART) is an effective treatment of HIV that suppresses the28

HIV virus in the majority of cases, stops the progression of the disease, and prevents29

onward transmission to an uninfected sexual partner, provided the PLWH continuously30

adheres to the treatment (Cohen et al., 2011). In most advanced health care systems, ART31

is made available routinely to newly diagnosed patients, but several opportunities for32

further intervention remains available. Most importantly, not every diagnosed person33

initiates ART and not all cases of ART initiation lead to a sustained suppression of the34

virus through time. PLWHs who start ART but fail to sustain it or who are otherwise35

unsuppressed can still infect others. Thus, a possible intervention is to use public health36

resources to help known PLWHs stay on ART and to remain continually suppressed (Poon37

et al., 2016). Such interventions require allocation of clinical staff who would follow up38

with patients to provide them further assistance in adherence sustenance of ART. They39
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PROACT 3

health system can also provide increased testing to these individuals to ensure suppression.40

A second family of interventions involves targeting HIV negative individuals connected to41

high priority PLWHs. The health system can use partner tracing (Gotz et al., 2014) to42

identify the sexual partners of high-priority PLWHs (as best as possible), test these high43

risk individuals, and offer them either treatment (for positives) or prevention through44

PrEP (for negatives). Finally, if the priority status of individuals shows any association45

with specific geographical or demographic groups (beyond known associations), the public46

health system can design strategies for further outreach, testing, and PrEP administration47

for the impacted groups.48

All three types of intervention are costly and cannot be undertaken for every known49

PLWH or groups. If diagnosed people at risk of not being suppressed could be predicted50

accurately, the public health system could focus their limited resources on these51

individuals, Thus, a natural question surfaces: which individuals are most at-risk of52

transmitting HIV? However, predicting tendency for future transmissions is difficult and53

can also be problematic if undertaken primarily based on demographic or behavioral traits.54

Molecular epidemics suggest an alternative method: prioritizing PLWHs for55

intervention solely based on patterns of transmission inferred from HIV sequence56

data (Bbosa et al., 2019; Villandré et al., 2019; Oster et al., 2018; Ragonnet-Cronin et al.,57

2019; Wertheim et al., 2018, 2011, 2014; Smith et al., 2009). The inference of transmission58

networks using phylogenetic or distance-based methods has been the subject of much59

research (e.g. Leitner and Romero-Severson, 2018; Kosakovsky Pond et al., 2018;60

Ragonnet-Cronin et al., 2013; Prosperi et al., 2011). However, in this work, instead of61

being concerned with inferring exact patterns of transmissions, we ask the following62

question: given molecular data from a set of sequenced PLWHs (“samples” for short), who63

should be prioritized for further intervention?64

Prioritizing care based on molecular epidemics has been studied recently. Wertheim65

et al. (2018) present a method for prioritizing samples based on performing transmission66
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clustering (i.e., grouping individuals with low viral genetic distance into transmission67

clusters) and ordering clusters by growth rate. On a large dataset from New York, they68

show that the approach is able to predict individuals who have relatively larger numbers of69

transmission links in the near future. Moshiri et al. (2018) have studied the same question70

in simulations and have shown that monitoring cluster growth can be used for predicting71

future transmissions substantially better than a random guess, whether clusters are defined72

using genetic distances or using phylogenetic methods. Most recently, Balaban et al. (2019)73

showed in simulations that using a cluster-monitoring approach similar to that of74

Wertheim et al. (2018) but defining clusters using a min-cut optimization problem gives a75

small but consistent improvement over defining clusters using genetic distances.76

In this paper, we introduce a new method for ordering samples based on their77

phylogenetic relationships. Instead of relying on clustering individuals and then ordering78

clusters based on their growth, we seek to order individuals without clustering and without79

reliance on parametric models. Instead, we seek to simply exploits patterns in the80

phylogeny, and in particular, in branch lengths.81

Materials and Methods82

ProACT (Prioritization using AnCesTral edge lengths) takes as input the inferred83

phylogenetic relationships between sampled HIV viruses (e.g. from the pol region), rooted84

using an outgroup or clock-based methods (e.g. midpoint or MinVar-root, Mai et al.85

(2017)). ProACT simply orders samples in order of incident branch length of their86

associated virus, and it breaks ties based on incident branch lengths of parent nodes, then87

those of grandparent nodes, etc. We first motivate the approach and then present a formal88

definition of the method.89

We note that ProACT is motivated and tested in a context similar to the present90

day health care systems that enjoy enough resources to provide ART to all (or at least91

most) diagnosed individuals. Thus, each sample can be assumed to be given ART at a time92
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Fig. 1. The effect of new transmissions on incident branch lengths. (a) Individual A transmits to individual B and
C at times at t1 and t2, respectively. (b) Viral samples are obtained from individuals A, B, and C at times tA, tB ,
and tC . The viral phylogeny of samples is constrained by each transmission event’s bottleneck, and the most likely
phylogeny matches the transmission history (Left), but in the less likely deeper coalescence, it may not match
(Right). (c) Moving from the phylogeny observed at time tB to the phylogeny at time tC , the branch length incident
to individual A shortens upon the addition of individual C in the likely event that the coalescence of the lineage
from C with the lineage from A is more recent than its coalescence with the lineage from B (Left), or the branch
length incident to individual A remains constant in the event of a less likely deeper coalescence (Right). Regardless,
the length of the branch incident to individual A never increases. In simulation, we can observe this trend: as time
progresses, the incident branch length of each individual tends to decrease, both in true (Fig. S1) and inferred (d)
phylogenies, and as the number of transmissions from a given individual increases, the distribution of incident edge
length tends to decrease, both in true and inferred phylogenies, labeled “True” and “Est.,” respectively (e).

close to when their HIV is sequenced, but they may fail to be suppressed for the remainder93

of their life. These conditions describe the common practice of care in many advanced and94

(increasingly) developing countries.95

Motivating the Approach96

We start with the observation that, in simulations (described in detail below), when97

a phylogeny is inferred from sequences obtained at a given time point in an epidemic, the98
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more a node transmits, the shorter its incident branch length tends to be (Figs. 1d–e99

and S2). Using the Kendall’s Tau-b test (Kendall, 1938), in a ten-year epidemic simulation100

(details described below), we found a statistically significant anticorrelation between the101

incident branch lengths of individuals sampled within the first 9 years of the epidemic and102

the number of individuals they infected over the final year of the epidemic. This held for103

true (τB = −0.0431, p� 10−10) and inferred (τB = −0.0354, p� 10−10) phylogenetic104

trees. Though not obvious, this observation can be explained by the constraints placed105

upon the viral phylogeny by the transmission history (Fig. 1a–c).106

In the context of HIV epidemiology in many advanced countries, samples are107

typically sequenced upon beginning Antiretroviral Therapy (ART). Let’s assume for108

simplicity that every individual in the given dataset has at some point initiated ART,109

meaning future transmissions by individuals in the dataset must happen only if the source110

stops ART or is otherwise unsuppressed. Given a viral phylogeny containing all known111

samples, if, in the future, individual u in the dataset transmits to individual v, there are112

two possible scenarios regarding the placement of the leaf corresponding to v in the113

existing (true) phylogeny: (1) v is placed on the edge incident to u, so the edge incident to114

u will shorten, or (2) v is not placed on the edge incident to u, so the edge incident to u115

will remain the same length. Although Scenario 2 is possible, Scenario 1 is far more likely116

(Romero-Severson et al., 2016), and note that the terminal branch lengths do not increase117

in either scenario. Thus, as time goes by, the terminal branch can only shorten or stay118

fixed, and it will most often shorten because of new transmissions by the sample associated119

with that terminal branch. This pattern, easily observed in simulations (Fig. 1d), leads to120

shorter branches for samples who have transmitted recently.121

Note that samples who transmit are unsuppressed. The first time they infect others,122

their terminal branch length is likely to decrease, and further transmissions further123

decrease their terminal branch lengths (Fig. 1d). Thus, one expects nodes with smaller124

incident branch length to be more likely to have transmitted since their sampling time.125
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Moreover, they are also likely to transmit in the near future because they are likely not to126

be suppressed. The higher probability of a lack of suppression makes them a good127

candidate for intervention.128

Formal Description129

ProACT takes as input a rooted phylogenetic tree T of viral samples. Let bl(u)130

denote the incident branch length of node u, and assume the incident branch length of the131

root of T is 0. Let a(u) denote the vector of ancestors of node u (including u), where a(u)1132

is u, a(u)2 is the parent of u, a(u)3 is the grandparent of u, etc. Let r(u) denote the length133

of the path from node u to the root of T , i.e., r(u) =
∑

v∈a(u) bl(v). ProACT sorts the134

leaves of T in ascending order of bl(a(u)1), with ties broken by bl(a(u)2), then by bl(a(u)3),135

etc. Note that, for two leaves u and v, |a(u)| may be less than |a(v)|, in which case, for all136

|a(u)| < i 6 |a(v)|, r(u)
|a(u)|−1 (i.e., average branch length along the path from u to the root of137

T ) is compared with bl(a(v)i) instead. If two nodes are equal in all comparisons, if the user138

provides sample times, the earlier sample time is given higher priority; otherwise, ties are139

broken arbitrarily. Because sorting is needed, for a tree with n leaves, assuming branch140

lengths are fairly unique, the ProACT algorithm runs in O(n log n) time. Scalable methods141

exist both for the inferring (e.g. Price et al., 2010; Nguyen et al., 2015) and rooting (e.g.142

Mai et al., 2017) very large trees.143

Results144

We evaluate ProACT on simulated and real data.145

Simulation Results146

In order to test ProACT’s efficacy, we performed a series of simulation experiments147

in which we used FAVITES (Moshiri et al., 2018) to generate a sexual contact network,148

transmission network, viral phylogeny, and viral sequences emulating HIV transmission in149
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Parameter Values

ART Initiation Rate (λ+, year−1) 1, 2, 4
ART Termination Rate (λ−, year−1) 0.12 (0.25x), 0.24 (0.5x),

0.48 (1x), 0.96 (2x), 1.92 (4x)
Expected Degree (Ed) 10, 20, 30

Table 1. Varied HIV simulation parameters. Values for the base model condition are shown in bold.

San Diego from 2005 to 2014 (Material and Methods). We have simulated nine model150

conditions (Table 1) by starting from a base model condition and varying the rate of ART151

initiation (λ+), rate of ART termination (λ−), and the expected degree of the sexual152

network (Ed). We subsequently inferred and rooted a phylogeny of all sequences obtained153

during the first 9 years of the simulation. Then, ProACT was run on the true and inferred154

full trees and subsampled trees.155

To measure the efficacy of a given prioritization, we compute the number of156

infections caused by each individual during the 10th year of the simulation (our outcome157

measure). Then, we measure the cumulative moving average (CMA) of the outcome158

measure by the top samples. The higher the CMA in a prioritization, the higher the159

number of future transmissions from these top individuals, and thus, the higher the160

effectiveness of the prioritization. Moreover, sorting individuals by their outcome measure161

(known to us in simulations) enables us to compute the optimal CMA curve, and the mean162

number of transmissions gives us the expected value of the CMA for a random163

prioritization. Across experimental conditions, the maximum and random expectations164

vary. Thus, to enable proper comparison of effects of prioritization across conditions, we165

also report an adjusted CMA normalizing above the random prioritization and over the166

optimal prioritization (see Materials and Methods). For this Adjusted167

Transmissions/Person metric, 1 indicates the optimal ordering and 0 indicates an ordering168

that is no better than random (a negative value indicates an ordering that is worse than169

random). Finally, we use Kendall’s Tau-b coefficient to measure the correlation between170
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the optimal ordering and the ordering obtained using each method. Kendall’s Tau-b is a171

rank correlation coefficient adjusted for ties (Kendall, 1938) with values ranging between -1172

and 1, with -1 signifying perfect inversion, 1 signifying perfect agreement, and 0 signifying173

the absence of association.174

Default condition— ProACT dramatically increased the performance compared to175

random ordering according to all of our outcome measures (Fig. 2). Focusing on the176

transmissions per person measure, while the population mean was 0.05, the ProACT’s177

CMA was close to 0.15 for the top 1% of prioritized samples and gradually reduced to 0.1178

for the top 10% (Fig. 2a). The top 1000 individuals in the ProACT ordering (3% of the179

population) transmitted 0.12 times (median across our 20 replicates), which was 2.4x180

higher than the median population average (Fig. 2c; see also Fig. S3 for numbers other181

than 1000). As desired, selecting fewer people from the top of ProACT prioritization182

resulted in more transmissions per person (Fig. 2a). Compared to optimal ordering,183

however, the adjusted score both increased and decreased as more individuals were selected184

(Fig. 2b). The adjusted metric shows that while ProACT substantially outperformed185

random ordering, it did not come close to the effectiveness that could be achieved using186

the (hypothetical) perfect ordering. The Kendall’s Tau-b correlation also showed a positive187

correlation between ProACT ordering and optimal ordering; although the correlation188

coefficient is far from perfect (Fig. 2d), the correlations are statistically significant in all189

replicates (p < 10−9; see Fig. S7a).190

Wertheim et al. (2018) have presented a method for prioritizing samples by191

clustering individuals based on viral genetic distance, tracking the size of each cluster over192

time, and prioritizing clusters in descending order of the growth rate. The approach can be193

extended to also order individuals (i.e., individuals belonging to clusters with high growth194

rates are prioritized higher; see Materials and Methods for details). ProACT consistently195

outperformed prioritization using cluster growth (Figs. 2). For example, the top 1000196

individuals according to cluster growth transmitted on average to 0.06 other people, which,197
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Fig. 2. Effectiveness of prioritization on simulated datasets. The simulations were 10 years in length, prioritization
was performed 9 years into the simulation, and the effectiveness of prioritization was computed during the last year
of the simulation using four metrics (a-d). “Cluster Growth” denotes prioritization by inferring transmission
clusters using HIV-TRACE at year 9 of the simulation and sorting clusters in descending order of growth rate since
year 8. All curves were calculated using 20 simulation replicates. (a) Cumulative Moving Average (CMA) of the
number of transmissions per person across the first decile of prioritized samples for the default simulation
parameter set (see Fig. S4 for all model conditions, which show similar patterns.) The horizontal axis depicts the
quantile of highest-prioritized samples (e.g. x = 0.01 denotes the top percentile), and the vertical axis depicts their
average number of transmissions per person. Global average across all individuals (i.e., expectation under random
ordering) is shown in red. The curves labeled with percentages denote subsampled datasets. (b) CMA of adjusted
number of transmissions per person for the default model condition (See Fig. S5 for all model conditions, which
show similar patterns.) For adjusted Transmissions/Person, 1 indicates the optimal ordering and 0 indicates
random ordering. All other settings are similar to part a. (c) Average of the raw number of transmissions per
person for the top 1000 individuals (see Fig. S3 for other counts) in a prioritized list vs. simulation parameter set
(1000 individuals correspond to 1%–6% of all individuals across conditions). The violin plots are across 20
replicates and contain box plots with medians shown as white dots. Red horizontal lines show population mean
(i.e., random prioritization). (d) Kendall Tau-b correlation between the optimal ordering of samples (i.e., based on
their number of transmissions in year 10) and the orderings by the two prioritization methods. See Figure S6 for
subsampled data. Distributions are across 20 replicates and are shown for each simulation condition.
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while higher than the population average, was half the 0.12 transmissions per person198

according to ProACT. Kendall-Tau results similarly indicate that ProACT has better199

correlation with the optimal ordering.200

Impact of simulation parameters— We then tested the impact of three simulation201

parameters, namely the rate of stopping ART, the rate of starting ART, and the node202

degree in the sexual network (Figs. 2cd, S4, and S5).203

As we increased the rate of stopping ART (λ−) (i.e., with lower adherence), the gap204

between ProACT and cluster growth grew. For example, the mean number of205

transmissions per person among the top 1,000 individuals chosen using ProACT and206

cluster growth were respectively 0.169 and 0.076 (a 1.21x improvement) for the condition207

with λ− = 4x (Fig. 2c). This 1.21x improvement briefly increased to 1.26x and208

subsequently gradually decreased to 1.01x, 0.69x, and 0.63x as we reduced the rate or ART209

termination to 2x, 1x, 0.5x, and 0.25x. Kendall-Tau-b correlations show similar patterns210

(Fig. 2d); while almost all replicates of λ− = 4x have p < 10−20, for the 0.25x case, all211

replicates have p > 10−10 and one of the replicates has p > 10−3 (Fig. S7a).212

As we increased the rate of starting ART (λ+) (i.e., with faster diagnoses), as213

expected, the raw number of new infections caused per capita also reduced (Fig. 2c, S4a).214

While ProACT remained effective in finding high priority individuals, its performance215

compared to optimal ordering slightly degraded with higher λ+ (Figs. 2d and S5a). Also,216

the gap between ProACT and cluster growth decreased slightly. When observing the mean217

number of transmissions per person among the top 1,000 individuals chosen by each218

method (Fig. 2c), ProACT gave a 1.01x, 1.03x, and 0.71x improvement over cluster growth219

for λ+ set to 1x, 2x, and 4x, respectively.220

Changing the expected number of sexual contacts per person (Ed), which controls221

the speed of spread, did not have uniform effects (Figs. 2cd). Increasing Ed from 10 to 20222

did not substantially impact the performance of ProACT. However, for Ed = 30, we223

observed a small but noticeable reduction in the performance of ProACT compared to the224

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.20.885202doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885202
http://creativecommons.org/licenses/by-nd/4.0/


12 MOSHIRI, SMITH, MIRARAB

optimal ordering and cluster growth (Figs. 2d and S5d).225

Impact of incomplete sampling— Subsampling the total dataset to include 3/4, 1/2,226

or 1/4 of all samples had only a marginal impact on the performance of ProACT according227

to the CMA metric (Figs. 2ab, S4, S5). Only at 25% sampling level did we observe a small228

reduction in the performance of ProACT compared to the optimal ordering. For example,229

with λ+ = 2x, ProACT’s performance remained quite similar across > 1/2 sampling levels,230

but a reduction in performance was observed for the 1/4 sampling level for both ProACT231

and cluster growth (Fig. S5a).232

According to Kendall’s Tau-b, which measures the entire order not just the top233

individuals, there was a more noticeable degradation in performance due to sampling234

(Fig. S6). In particular, reduced sampling increased the variance across replicate235

simulations (note the wider distributions for reduced sampling in Fig. S6). Moreover,236

statistical significance of the correlations degrades with lower sampling (Fig. S7c–e). With237

1/4 sampling, unlike full sampling, many model conditions include some replicates where238

the ProACT ordering is not significantly better than random according to Kendall’s Tau-b.239

Second order effects— We next asked if prioritization is effective in detecting240

people whose contacts also transmit abundantly. To do so, we explored a new outcome241

measure: the total number of transmissions from all contacts of a sample. Prioritizing242

samples whose contacts are likely to transmit can give public health officials a chance to243

find undiagnosed individuals (likely to transmit) through partner tracing from diagnosed244

individuals and to prioritize PrEP for uninfected individuals.245

Across all model parameters, ProACT ordering outperformed random ordering and246

cluster growth according to the number transmissions per neighbor (Fig. 3). For example,247

contacts of the top 1000 individuals according to ProACT transmitted to 2.23 individuals248

on average (median across replicates), which is more than twice the number of249

transmissions by contacts across all individuals in the network (1.08). Just as with the250
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Fig. 3. Second order effects. (a) CMA of the number of infections from contacts of the top individuals according to
each ordering; other settings similar to Fig. 2a. (b) Similar to part (a) but adjusted for random and optimal
ordering. (c) Number of transmissions from neighbours for the top 1000 individuals in a prioritized list vs.
simulation parameter set. (d) Kendall Tau-b correlation between the number of contacts of each individual and
their ordering by the two prioritization methods. See Figure S10 for subsampled data.

previous outcome measure, advantages of ProACT over random prioritization or cluster251

growth were most pronounced for lower λ+ and higher λ− (Fig. 3c). The Kendall Tau-b252

coefficients for the correlation between ProACT and the optimal ordering were high253

(Fig. S8); in fact, they were higher for the transmissions from contacts compared to254

transmissions from the prioritized person (e.g. median coefficient was 0.084 for contacts255

and 0.033 for the individuals in the default condition). These coefficients were highly256

significant across all models and sampling levels (Fig. S9a). Thus, ProACT was even more257

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.20.885202doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885202
http://creativecommons.org/licenses/by-nd/4.0/


14 MOSHIRI, SMITH, MIRARAB

effective in finding individuals with active contact than it was for finding individuals who258

were not suppressed. These results were largely robust to reduced sampling, showing259

similar patterns of average performance but increased variance across replicates (Fig. S8260

and S9c–e).261

Further interrogating the properties of an individual and their ordering, we262

observed a substantial correlation between the number of contacts of samples in the sexual263

network and their position in the ProACT ordering (Fig. 3d). Thus, while ProACT only264

considers the phylogeny, it was able to prioritize those individuals that had high degrees in265

the sexual contact network (hidden to ProACT). These correlations were strongest for266

networks with high degree and weakest when the rate of diagnosis was very high. Reducing267

sampling did not substantially affect these results (Fig. S10).268

Real San Diego dataset269

We next analyzed a dataset of 926 HIV-1 subtype B pol sequences obtained in San270

Diego between 1996 and 2018. To evaluate ProACT accuracy, we divided the data into271

deciles, with each decile defining two sets: past (sequences up to the decile) and future272

(sequences after the decile). We inferred a phylogeny from the sequences present in the273

past set using FastTree 2 Price et al. (2010), and we used ProACT to order all samples in274

this set. We then evaluated how the outcome measure correlates with the position of each275

individual in the ordering. We quantify the correlation using Kendall’s tau-b, a rank276

correlation coefficient adjusted for ties Kendall (1938). Values range between -1 and 1,277

with -1 signifying perfect inversion, 1 signifying perfect agreement, and 0 signifying the278

absence of association.279

On real datasets, unlike the simulated data, the desired outcome measure, the280

number of new transmissions per person, is not known. Instead, we have to use inferred281

relationships. HIV-TRACE (used in our cluster growth approach) defines a pair of samples282

as “genetically linked” if their sequences are very similar (TN93 distance below 1.5%). We283
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Fig. 4. Kendall’s tau-b test results for ProACT ordering on real data using two score functions: an empirical
smooth step function and a strict step function around 1.5%. The full San Diego dataset was split into two sets (pre
and post) at each decile (shown on the horizontal axis). The individuals in pre were ordered using ProACT and by
cluster growth, and they were given a “score” computed using a score function (see Materials and Methods).
Kendall’s tau-b correlation coefficient was computed for each ordering with respect to the optimal possible ordering
(i.e., sorting in descending order of the score). The null distribution was visualized by randomly shuffling the
individuals in pre, and test p-values are shown in Table 2.

similarly use the TN93 sequence similarity as an outcome measure, but in addition to284

using a fixed threshold, we also use smoother functions (Fig. S11). We measure the number285

of linked individuals using a step function (1 if TN93 distance is below 1.5% and 0286

otherwise) and an empirical smooth step function determined by fitting a mixture of three287

Gaussians to the distribution of pairwise TN93 distances (Material and Methods). We also288

explore an analytical smooth step function (parameterized sigmoid). Note that, when the289

step function is used, our outcome measure (computed for future transmissions) is exactly290

the same as what the cluster growth method uses for prioritizing (albeit, using past data).291

Thus, it is reasonable to expect the step function will favor cluster growth. As we move to292

smoother functions of distance to count genetic links, our measure is expected to become293

less biased in favor of HIV-TRACE.294

Using both ProACT and cluster growth to prioritize individuals results in orderings295

of individuals with positive Kendall’s tau-b correlations to the number of future genetic296

links regardless of the time (i.e., decile) and the function used to count genetic links297

(Fig. 4). These correlations are statistically significant in almost all cases (Table 2 and298

Fig. 4). The correlation coefficient ranges ranges between 0.4 (ProACT; 10% time) and 0.1299

(cluster growth; 20% time) for empirical function, and between 0.6 (cluster growth; 10%300
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Table 2. Kendall’s tau-b test for a null hypothesis that a given prioritization yields a total outcome measure no
better than random. We show p-values for the real San Diego dataset for the first through ninth deciles using two
outcome measure functions. Tests that failed to reject the null hypothesis with (uncorrected) p-value < 0.00138
(corresponding to α = 0.05 with a Bonferroni multiple hypothesis testing correct with n = 36) are marked with †.

Empirical Smooth Step Function (FastTree)
10% 20% 30% 40% 50% 60% 70% 80% 90%

GD+CG †2× 10−3 †2× 10−2 5× 10−6 2× 10−4 5× 10−5 6× 10−7 2× 10−9 2× 10−8 2× 10−11

ProACT 5× 10−8 1× 10−4 6× 10−6 2× 10−7 2× 10−8 2× 10−11 1× 10−11 1× 10−11 1× 10−17

Step Function Around 1.5%
10% 20% 30% 40% 50% 60% 70% 80% 90%

GD+CG 4× 10−12 1× 10−19 3× 10−28 7× 10−25 2× 10−19 8× 10−12 1× 10−17 5× 10−14 2× 10−25

ProACT 1× 10−5 5× 10−8 3× 10−7 2× 10−10 1× 10−6 1× 10−6 1× 10−4 †7× 10−3 4× 10−7

time) and 0.1 (ProACT; 80% time) for the step function.301

The comparison between ProACT and cluster growth depends on the choice of the302

function to count links. When counting the number of links using the step function,303

prioritization by cluster growth consistently outperforms ProACT for all deciles of the304

dataset. These results are not surprising, given that we count HIV-TRACE links both to305

prioritize and to evaluate. However, according to the empirical smooth step function306

learned from the TN93 distances, ProACT outperforms cluster growth in all except one307

time point, where they are tied.308

To further test whether the smoothness of the link-counting function applied to309

TN93 distances is a factor in deciding the relative accuracy of methods, we used a sigmoid310

function to replace the step function while keeping the inflection point at 1.5% (Fig. S11).311

We observed that as the outcome measure function becomes more smooth, ProACT’s312

performance improves with respect to prioritization by cluster growth (Fig. 5, Table S1).313

Based on the more smooth sigmoid function (λ = 5), ProACT outperforms cluster growth314

in all but one case where they are tied. Thus, simply counting distances close to 1.5% as315

partial links leads to evaluations that favor ProACT.316

As time increases, both methods experience seemingly downward trends in their tau317

coefficients, but the null distribution of tau coefficients also tightens (Fig. 4). Thus, both318

methods consistently do significantly better than expected by random chance and there is319
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Fig. 5. Kendall’s tau-b test results for ProACT ordering on real data using the sigmoid score functions with
λ = 100 and λ = 5. The full San Diego dataset was split into two sets (pre and post) at each decile (shown on the
horizontal axis). The individuals in pre were ordered using ProACT and by cluster growth, and they were given a
“score” computed using a score function (see Materials and Methods). Kendall’s tau-b correlation coefficient was
computed for each ordering with respect to the optimal possible ordering (i.e., sorting in descending order of the
score). The null distribution was visualized by randomly shuffling the individuals in pre, and test p-values are
shown in Table S1.

no clear relationship between p-values of individual tool and time (Table 2). However, both320

for the step function and the sigmoid functions, ProACT’s relative performance with321

respect to cluster growth tends to improved over time.322

Discussion323

We start by discussing observed results and then comment on practical implications324

of this paper both for public health and for future research in molecular epidemics.325

Discussion of Results326

In our simulations, ProACT was least effective in conditions with very low rate of327

ART termination, which correspond to very high adherence, or high rates of ART328

initiation. As expected, the total number of new infections originated from samples is low329

when adherence is high (Fig. S4) reducing the opportunity for improving the ordering.330

Thus, ProACT is most beneficial in settings where termination of ART or late diagnosis331

lead to individuals who transmit frequently.332

ProACT was quite robust to impacts of subsampling individuals and only at 1/4333
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sampling did we start to lose accuracy. We remind the reader that a 1/4 sampling does not334

mean that 1/4 of all infected individuals are in the dataset. Rather, it means that 1/4 of335

diagnosed individuals are available to us. Recall that, in our model, diagnosed individuals336

are immediately sequenced and put on ART (which they may or may not sustain). At any337

point in time, a large partition of individuals who are infected are not diagnosed and thus338

not sampled. In other words, the full sampling case should not be misunderstood as339

including undiagnosed people. Rather, lack of full sampling corresponds to a case where340

some samples are known to some clinic but are not included in the study, perhaps due to a341

lack of sequencing or data sharing.342

ProACT far outperformed random ordering. However, we note that, despite the343

strong performance, there is much room left for future improvement: ProACT consistently344

ranges in its outcome measure between 2% to 8% of the theoretical optimal value when345

selecting up to 10% of top-priority samples. Thus, there is great room for improvement in346

identifying high-value individuals. It will be unrealistic to expect that any statistical347

method based solely on sequence data (and perhaps also commonly available metadata,348

e.g. sampling times) will be able to come close to the optimal ordering. Nevertheless, it349

remains likely that methods better than ProACT could in fact be developed. Moreover,350

here, we used ML methods to infer trees and used mutation rate branch lengths. We made351

these choices mostly for computational expediency. However, ProACT algorithm can be352

applied on the potentially more accurate Bayesian estimates of the phylogeny. Also, one353

can attempt to use ProACT after dating the tree. Whether either adjustment results in354

substantial improvements should be studied in the future.355

Implications of Results356

We formalized a useful approach for thinking about the effectiveness of public357

health intervention in molecular epidemics. Instead of focusing on the accuracy of methods358

of reconstructing phylogenetic trees or transmission networks, a question fraught with359
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difficulties, we asked a more practical question. Given molecular epidemic data, can the360

methods, whether phylogenetic or clustering-based, prioritize samples for increased361

attention by public health? Using molecular epidemics for prioritization is, of course, not a362

new idea. For example, Wertheim et al. (2018) presented a method to prioritize samples363

based on the growth rates of their transmission clusters. Vasylyeva et al. (2018) performed364

a phylogeographic analysis to reconstruct HIV movement among different locations in365

Ukraine in order to infer region-level risk prioritization. Much earlier even, Mellors et al.366

(1996) predicted HIV patient prognosis by quantifying HIV RNA in plasma; predicted367

prognosis can subsequently be used as a prioritization rank. However, we hope that our368

formal definition of the problem as a computational question (i.e., prioritization), in369

addition to our extensive simulations and developed metrics of evaluation, will stir further370

work in this area. As stated before, it seems likely that more advanced methods than our371

simple prioritization approach can improve performance beyond ProACT in the future.372

ProACT prioritizes individuals, not clusters. Prioritizing treatment followup or373

partner tracing for individuals based on their perceived risk of future transmission374

promises to be perhaps more effective than targeting clusters. However, such targeted375

approaches also pose ethical questions that have to be considered. For example, we may376

not want the algorithm to be biased towards particular demographic attributes. ProACT377

does not use any metadata in its prioritization, reducing risks of such biases. It simply uses378

the viral phylogeny. Nevertheless, it is possible that factors such as the depth of the379

sampling of a demographic group can in fact change branch length patterns in the380

phylogeny and make ProACT less or more effective for certain demographic groups. These381

broader implications of individual prioritization and impacts of demographics on the382

performance of ProACT should be studied more carefully in future.383

The main practical question is what can be done with a prioritized list of known384

samples. We mentioned that using followups, public health officials can try to ensure385

sustenance of ART for prioritized individuals, and using partner tracing, they can target386
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PrEP and HIV testing to contacts of prioritized individuals. Followups, PrEP, and387

targeted testing are all expensive and can benefit from prioritization. Interestingly, our388

results indicated that ProACT ordering is a function of features of the sexual contact. For389

example, we showed that ProACT orders correlate with the degree of nodes in the sexual390

network. These results are significant given the fact that ProACT is given no direct data391

the sexual network. The fact that ProACT captures (contact) network features means that392

even if a prioritized sample is already on ART (and thus unlikely to transmit), his/her393

sexual contacts can be good targets for interventive care.394

One may wonder whether ordering by branch lengths will result in orderings that395

fail to change with time and reflect the changes in the epidemic. To answer this question,396

on the San Diego PIRC data, we asked how fast the ProACT ordering changes as time397

progresses. To do so, we computed Kendall’s tau-b correlations to the ProACT ordering398

obtained using only the first decile of the dataset (Fig. S12). There was a strong but399

diminishing correlation with the initial ordering. The correlations started at 1 (as400

expected) and gradually decreased in the ninth decile to 0.522. The results show that as401

desired, ProACT orders do in fact change with time, albeit gradually. The gradual change402

implies that certain individuals remain high-priority as time progresses. In practical use,403

ProACT ordering should be combined with clinical knowledge about the status of404

individual patients. For example, high priority individuals according to ProACT can be405

given lower priority if they manage to constantly remain suppressed with multiple406

followups. More broadly, the ProACT ordering should be considered one more tool for407

prioritizing clinical care, but valuable clinical knowledge, not incorporated into the408

algorithm, should also be exploited.409

Finally, a question faced by public health officials is whether the cost of targeting410

diagnosed individuals for followups and partner tracing is worth the reduction in future411

cases. The answer to that question will inevitably depend on who is targeted. For example,412

in our default simulation case, targeting individuals randomly can directly prevent 0.053413
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transmissions per chosen person in the next 12 months, whereas targeting top 1000414

individuals according to ProACT would directly target 0.115 transmissions. Thus,415

prioritization can in fact change the cost-benefit analyses. Moreover, given a prioritization,416

one can use simulations to predict the outcome measure for the top individuals (similar to417

Fig. S5) and use metrics such as quality-adjusted life-year (QALY) to estimate how many418

top individuals should be targeted for the cost to justify the benefits.419

Materials and Methods420

Simulated Datasets421

We use FAVITES to simulate a sexual contact network, transmission network, viral422

phylogeny, and viral sequences emulating HIV transmission in San Diego from 2005 to423

2014 (Moshiri et al., 2018).424

Transmissions are modeled using a compartmental epidemiological model with 5425

states: Susceptible (S), Acute HIV Untreated (AU), Acute HIV Treated (AT), Chronic426

HIV Untreated (CU), and Chronic HIV Treated (CT). Individuals in state S (i.e.,427

uninfected) can only transition to state AU. Each infected state x ∈ {AU,AT,CU,CT}428

defines a “rate of infectiousness” λS,x: given an uninfected individual u in state S who has429

nx sexual partners in state x ∈ {AU,AT,CU,CT}, the transition of u from S to AU is a430

Poisson process with rate λu =
∑

x∈{AU,AT,CU,CT} nxλS,x. To mimic reality, where ART431

significantly reduces the risk of transmission, rates are chosen such that432

λS,AU > λS,CU > λS,AT > λS,CT ≈ 0. At the beginning of the epidemic simulation, all433

initially uninfected individuals are placed in state S, and all initially infected (i.e., “seed”)434

individuals are distributed among the 4 infected states according to their steady-state435

proportions. This model is a simplified version of the model proposed by Granich et al.436

(2009).437

Once the transmissions and sample times are obtained, the viral phylogeny evolves438

inside the transmission tree under a coalescent model of evolution with logistic within-host439
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viral population growth and a bottleneck event at the time of transmission (i.e., initial440

viral population size is 1) (Ratmann et al., 2017). This process produces a separate viral441

phylogeny for each seed individual, so we also need a tree for seed individuals. Each seed442

individual of the epidemic is the root of an independent viral phylogeny, and these trees443

were merged by simulating a seed tree with one leaf per seed node under a444

non-homogeneous Yule model (Le Gat, 2016) with rate function λ(t) = e−t
2

+ 1 scaled to445

have a height of 25 years to match the estimate of the time of the most recent common446

ancestor of HIV in San Diego (Moshiri et al., 2018). A mutation rate was sampled for each447

branch independently from a truncated normal random variable from 0 to infinity with a448

location parameter of 0.0008 and a scale parameter of 0.0005 to scale branch lengths from449

years to expected number of per-site mutations (Moshiri et al., 2018).450

For the most part, we use the base parameters used in Moshiri et al. (2018) that451

sought to model the San Diego HIV epidemic from 2005 to 2014, with the following452

modifications to better capture reality. See Table S2 for the full set of parameters of the453

default condition.454

Sexual contact network— To capture the scale-free nature of the sexual contact455

network, Moshiri et al. (2018) used the Barabàsi–Albert (BA) model (Barabási and Albert,456

1999). In addition to the scale-free property, in HIV sexual networks, we typically observe457

many densely-connected communities Rothenberg et al. (1998), a property the BA model458

fails to directly model. To have control over the number of communities, we simulated459

sexual contact networks such that networks contained 20 BA communities, each with 5,000460

individuals. In the base condition, the expected degree of connection between an individual461

and somebody within their community was chosen to be 10, and the expected degree462

between an individual and somebody outside their community was chosen to be 1. Each463

community was simulated separately using the BA model and connections between464

communities were chosen uniformly at random, akin to the Erdős–Rényi model (Erdos and465

Rényi, 1959). Estimates from the literature put the number of contacts at 3–4 during a466
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single year (Rosenberg et al., 2011). Because our simulated sexual contacts remain static467

over the 10 year simulation period, we explore mean degrees between 10 and 30.468

Epidemic initialization— In Moshiri et al. (2018), at the start of the epidemic, all469

infected individuals were in state AU. Here, instead, we randomly distribute initially470

infected individuals according to expected proportions of the states. To find these471

proportions, we ran simulations in which all seed individuals were in state AU, and we472

observed the proportion of individuals in each state over time, which reached a473

steady-state fairly early in the simulations (Fig. S13).474

Time of sequencing— In Moshiri et al. (2018), viral sequences are obtained from475

individuals exactly at the end time of the 10-year simulation period. In reality, however,476

HIV patients are typically sequenced when they first visit a clinic to receive ART. Thus, it477

is expected that the terminal branch lengths of trees simulated in Moshiri et al. (2018) are478

artificially longer than would be expected. Instead, we sample viral sequences from479

individuals the first time they begin ART (i.e., the first time they enter state AT or CT).480

Our current simulation better captures standards of care in advanced health care systems.481

Simulated data analysis— For each simulated sequence dataset, using FastTree 2482

(Price et al., 2010), a phylogenetic tree was inferred under the GTR+Γ model from the483

sequences obtained in the first 9 years of the simulation. These trees were then484

MinVar-rooted using FastRoot (Mai et al., 2017), and ProACT was run on the resulting485

trees.486

PIRC San Diego Dataset487

To test ProACT on real data, we used a Multiple Sequence Alignment (MSA) of488

926 HIV-1 subtype B pol sequences from San Diego collected by the UC San Diego489

Primary Infection Resource Consortium (PIRC). PIRC is one of the largest longitudinal490
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cohorts of samples in the United States. By design, PIRC strives to include acute491

infections (as much as 40% of recruited individuals are during acute or early stages of492

infection). Access to the data was obtained through a proposal submitted to PIRC.493

A phylogenetic tree was inferred from the MSA under the GTR+Γ model using494

FastTree 2 (Price et al., 2010), and the resulting tree was MinVar-rooted using FastRoot495

(Mai et al., 2017). For each decile, using TreeSwift (Moshiri, 2018), the full tree was496

pruned to only contain samples obtained up to the end of that decile. ProACT was run on497

each of the resulting trees.498

Evaluation Procedure499

Simulated data— To measure the efficacy of a given ProACT selection, because500

the true transmission histories are known in simulation, we simply average the number of501

infections caused by the individuals in the selection in the last year of simulation (i.e, after502

prioritization) to obtain a raw outcome measure.503

Let A = {1, . . . , n} denote the first, . . . , n-th sampled individual in the current time504

step (years 1–9 in our simulations). For each individual i, let c(i) denote the number of505

individuals directly infected by i in the next time step (year 10 in our simulations). Given506

any set of individuals s ⊆ A, let C(s) = 1
|s|
∑

i∈s c(i) denote the average c(i) for all507

individuals i ∈ s.508

Let x = (x1, . . . , xn) denote an ordering of A. The (unadjusted) Cumulative Moving509

Average (CMA) of x up to i is C ({x1, . . . , xi}). Let o = (o1, . . . , on) denote the ordering of510

A in which elements are sorted in descending order of c(i) (i.e., the optimal ordering), with511

ties broken arbitrarily. We defined the adjusted CMA of x up to i as512

C ({x1, . . . , xi})− C(A)

C ({o1, . . . , oi})− C(A)
. (0.1)

We use Equation 0.1 to measure the effectiveness of a selection of the top i individuals513

from each ordering of all individuals. We explore i for 1 to 10% of the total number of514

samples (i.e., |A|
10

).515

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.20.885202doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.20.885202
http://creativecommons.org/licenses/by-nd/4.0/


PROACT 25

Real data— The sequences were sorted in ascending order of sample time and, for516

each decile, they were split at the decile to form two sets: pre and post. A phylogenetic tree517

was inferred from the sequences in pre under the GTR+Γ model using FastTree 2 (Price518

et al., 2010) and MinVar-rooted (Mai et al., 2017). Using the resulting tree, ProACT519

ordered the samples. Then, pairwise distances were computed between each sequence in520

pre and each sequence in post under the Tamura-Nei 93 (TN93) model (Tamura and Nei,521

1993) using the tn93 tool of HIV-TRACE (Kosakovsky Pond et al., 2018).522

A natural function to compute the risk of a given individual u in pre, similar to that523

proposed by Wertheim et al. (2018), is to simply count the number of individuals in post524

who are genetic links to u, i.e.,
∑

v∈post [d(u, v) 6 1.5%]. In other words, the score function525

is simply a step function with value 1 for all distances less than or equal to 1.5% and 0 for526

all other distances. However, the selection of 1.5% as the distance threshold, despite being527

common practice in many HIV transmission clustering analyses, is somewhat arbitrary,528

and a step function exactly at this threshold may be overly strict (e.g. should a pairwise529

distance of 1.51% be ignored?).530

To generalize this notion of scoring links, we utilized three analytical score531

functions. The first is the aforementioned step function f1(d) = [d 6 1.5%]. The second is a532

sigmoid function f2(d) = λ+1
λd/0.15+λ with the choice of λ = 100 and λ = 5 (Fig. S11). The533

third is an empirical scoring function learnt from the data by fitting a mixture model of534

three Gaussian random variables onto the distribution of pairwise TN93 distances535

f3(d) = p1(x)
p1(x)+p2(x)+p3(x)

, where p1(x) is the Probability Density Function (PDF) of the536

Gaussian component with smallest mean and p2(x) and p3(x) are the remaining Gaussian537

components (Fig. S11). Specifically, the three Gaussian fits were parameterized by538

(µ1=0.0191, σ1=0.0103), (µ2=0.0609, σ2=0.0118), and (µ3=0.118, σ3=0.0468), respectively.539

For each of these function, for each decile to define pre and post, we performed a540

Kendall’s tau-b test to compare the prioritization approaches (Kendall, 1938). To generate541

a null distribution in Figure 4, we randomly shuffled the individuals in pre repeatedly; note542
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however that the p-values reported in Table 2 are the theoretical p-values computed by the543

tau-b test, not empirically estimated from our repeated shuffling.544
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