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Abstract

An operon is a functional unit of DNA whose genes are co-transcribed
on polycistronic mRNA, in a co-regulated fashion. Operons are a power-
ful mechanism of introducing functional complexity in bacteria, and are
therefore of interest in microbial genetics, physiology, biochemistry, and evo-
lution. Here we present a Pipeline for Operon Exploration in Metagenomes
or POEM. At the heart of POEM lies the concept of a core operon, a
functional unit enabled by a predicted operon in a metagenome. Using a
series of benchmarks, we show the high accuracy of POEM, and demonstrate
its use on a human gut metagenome sample. We conclude that POEM is a
useful tool for analyzing metagenomes beyond the genomic level, and for
identifying multi-gene functionalities and possible neofunctionalization in
metagenomes. Availability: https://github.com/Rinoahu/POEM_py3k

Background1

It is estimated that 5-50% of bacterial genes reside in operons [6, 44], and the2

characterization and understanding of operons is central to bacterial genomic3

studies. Experimental approaches, chiefly RNA-Seq, are the most reliable way to4

identify operons; however, it is not feasible to perform experiments to characterize5

all operons. Over the years, several computational operon-prediction techniques6

have been developed. Generally, computational operon identification methods7

include three steps: 1. identify genes that are in an operon and, conversely, genes8

that do not participate in an operon; 2. identify features typical of each group;9

3. train a classifier with these features and build a discriminating model.10

Computational operon prediction methods have been developed since the late11

1990’s (For a comprehensive review see: [46]). Näıve Bayes models have been12

used since early 2000’s for predicting operons [3, 10,18]. Another method used13
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microarray data to identify the different expression profiles of adjacent gene14

pairs in operons and outside of operons. The differential expression profiles and15

intergenic distances were used as as features to train a Bayesian classifier [35].16

Comparative genomic methods were also used to identify operons by detecting17

conserved gene clusters across several species [5, 26,31]. Other methods include18

particle swarm optimization [8, 9], and neural networks [39].19

There are several operon databases that include automated and experimental-20

based operon annotation [13,25,29,33,38]. However, a manual curation method is21

not suitable for the rapid growing number of bacterial genomes, few of which are22

experimentally assayed for operons. Furthermore, experimental studies tend to23

use data from model species, and cross-species prediction may not work well [11].24

The challenge of discovering operons is compounded when trying to discover25

operons in metagenomic data. Major additional confounders include the large26

loss of genomic information, short contigs that rarely assemble into a full genome,27

and misassembly that might produce chimeric contigs [45]. At the same time,28

metagenomic data contain rich information that cannot be gleaned from clonal29

cultures; it is therefore necessary to investigate how well we can predict operons30

in metagenomic data. Some work has been done including use of proximity and31

guilt-by-association [41,42].32

While a genome contains the total genetic information of an organism, a33

metagenome is a partial snapshot of a population of genomes. We therefore34

can rarely expect an operon discovery method to provide the entire content of35

operons from metagenomic data. However, predicting whether genes participate36

in an operon, and which functions are carried out by operons, provide valuable37

additional information to the functional annotation of a metagenome. In this38

study we present a method that (1) classifies gene pairs in metagenomes into39

“operonic” and “non-operonic” classes, and (2) provides functional annotations for40

the operons it reconstructs from metagenomic data. We introduce the concept41

of metagenomic core operons. A core operon comprises a set of intra-operonic42
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gene pairs that have orthologs in several species in the metagenome, and are43

concatenated using guilt-by-association. Additionally, we introduce the core44

functions of operons, which identifies which functions in the metagenome are45

executed by operons. Commonly, metagenomic analysis pipelines provide the46

distribution of biological function the metagenome has based on a normalized47

count of functionally-annotated ORFs. Our method, a Pipeline for Operon48

Exploration in Metagenomes or POEM, adds more information as it considers the49

evolutionary conservation of co-transcribed genes in the species constituting the50

microbial community. This additional information is valuable for understanding51

the genetic potential of a microbial community introducing structural information52

in the form of predicted operons.53

Results54

We ran POEM on two different data sets. One includes simulated reads generated55

by ART [15] from 48 genomes of Operon DataBase v2 [29]. The genome species56

used and parameters of ART are shown in Supplementary Table S1. The second57

set is the human microbiome set SRR2155174 downloaded from ENA [21]. As58

a standard of truth for the operons, we used operons from Operon DataBase59

v2 that are supported by literature (henceforth: “true operons”). This dataset60

contains 8,194 genes and 5,621 adjacent genes in 2,589 operons.61

Metagenome Assembly and Gene Prediction62

We used IDBA-UD, MegaHIT, and Velvet [47] to assemble the simulated and63

experimental reads; the results are shown in Table 1. IDBA-UD provided the64

maximal N50 and minimal number of contigs in both datasets. MegaHIT provided65

the largest genome size and the most protein-coding genes.66

Metagenemark found 7,855 genes of the 8,194 true operon genes in the whole67

genomes. In the simulated reads assembly, the number of genes numbers are 5,116,68
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Simulated Reads SRR2155174

Feature\Assembler IDBA-UD Megahit Velvet 51 IDBA-UD Megahit Velvet 51 Assembly

Size (bp) 132,218,137 134,341,573 100,889,182 131,424,989 135,150,882 85,261,552 122,371,235

GC content 49.51% 49.55% 50.73% 48.11% 48.19% 46.96% 48.04%

Number of contigs 48,508 54,274 61,093 87,992 107,718 146,313 55,925

Max contig length 947,260 549,191 569,707 484,034 249,170 106,439 327,893

Min contig length 100 200 101 100 200 101 500

Mean contig length 2,725 2,475 1,651 1,493 1,254 582 2,188

N50 12,732 7,681 9,312 4,306 2,593 906 4,331

N90 984 888 569 478 426 227 754

Protein-coding genes 154,908 162,282 133,298 175,983 190,946 170,100 147,873

Genes from the True Operon Set 5,116 (0.62) 5,078 (0.62) 3,530 (0.43) NA NA NA NA

Table 1. Main features of simulated and real metagenome assembly. Size (bp): size of
assemblies without singleton reads; Genes from the True Operon Set: genes discovered by
the gene calling software, that are found in the True Operon Set (fraction of 8,194 found).

Genome Whole genome IDBA ud Megahit Velvet

Predictor CNN Linear CNN Linear CNN Linear CNN Linear

Precision(%) 89.75 69.84 58.74 54.69 57.61 53.56 46.75 46.80

Recall(%) 89.04 98.73 51.05 55.91 48.84 53.42 37.60 41.31

F1 score(%) 89.39 81.81 55.13 54.62 53.40 52.86 41.68 43.88

Table 2. Evaluation of operonic adjacency prediction on simulated metagenomes. CNN: a
convolutional neural network based classifier; Linear: a linear classifier that is based on the
intergenic distance and strand co-location.

5,078, and 3,530 (out of 8,194) using IDBA, Megahit, and Velvet respectively.69

Operon Prediction and Adjacent Genes Within the Operon70

We tested the operon prediction module’s performance on whole genomes and71

simulated metagenome assembly. The 4,425 operonic and 2,097 non-operonic72

adjacent genes mentioned above were used as a True Positive (TP) set and73

True Negative (TN) set, respectively. The precision, recall, and F1 for predicted74

operonic adjacency are defined in the following equations and the statistical75

results are shown in Table 2.76

Precision =
True Positives

True Positives + False Positives
77

Recall =
True Positives

True Positives + False Negatives
78

F1 = 2 × Precision×Recall

Precision + Recall

However, these results only reflect POEM’s performance on classification of79

operonic and non-operonic adjacency. To further evaluate POEM’s performance80
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Real Operon Whole genome IDBA Megahit Velvet

Classifier CNN Linear CNN Linear CNN Linear CNN Linear

≥0.6 recovery 1,997 (0.77) 1,816 (0.70) 1,232 (0.48) 1,322 (0.51) 1,332 (0.51) 1,377 (0.53) 914 (0.35) 881 (0.34)

Perfect recovery 1,025 (0.40) 469 (0.22) 526 (0.20) 253 (0.10) 470 (0.18) 233 (0.09) 360 (0.14) 160 (0.06)

Table 3. Predicting operons in whole genome and assemblies of simulated metagenomes. ≥
0.6 recovery: ≥ 60% genes in a predicted operon belong to a known operon; Perfect
recovery: both precision and recall equal one. Table shows number of operons recovered, and
(fraction of 2,589)

on full operon prediction, we report on the precision / recall analysis as illustrated81

in Figure 1. The total number of true operons in the simulated metagenome82

was determined to be 2,589. The results are shown in Table 3. POEM’s CNN83

performs much better than the linear baseline method when tasked with a perfect84

recovery of operons. For a 0.6 or better recovery, the CNN and the baseline85

perform similarly. This suggests that high quality longer assemblies, perhaps86

from longer reads, may perform better.87

[Figure 1 about here.]88

Core Functions Facilitated by Predicted Operons in Metagenomic89

Data90

To functionally analyse operons in metagenomes we use core operons, which are91

described in the Background section. Briefly, core operons are weighted-edge92

undirected graphs that capture information about predicted orthologous operons93

or subsets of operons in the metagenome. The nature of the fragmented and94

partial nature of metagenomic data prohibits a clear binning of reads and a full95

assembly into component genomes. Therefore, we may not be able to provide96

an accurate prediction of all genes in the operons or their precise taxonomic97

affiliation. See Methods / Constructing Core Operons and Figure 5 for an98

explanation of how core operons are constructed. To see how well core operons99

capture the function of true operons on our different data sets, we examined the100

overlap of operonic genes with identical functions as shown in Figure 5. The101

results of this analysis is shown in Table 4.102
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To show the utility of our method in discovering core functions facilitated103

by predicted operons, we ran POEM on the metagenome sample SRR2155174,104

containing the human gut microbiome data. Figure 2A shows a core function105

predicted from the SRR2155174 data set. The annotations of the core functions106

indicates that it is related to lipid transport and metabolism. We found several107

predicted operons (Figure 2B-E) from the SRR2155174 data set that match108

the core function. Of the loci in the core operon, only lp 1674 and lp 1675 loci109

in Lactobacillus plantarum WCFS1 (Figure 2E) can be found in the predicted110

operons of Operon DataBase [29]. To find the functions of these predicted111

operonic genes, we examined the functional annotations for these operonic genes112

from GenBank [2]. The functional annotations (Supplementary Table S2) show113

that these operonic genes are likely to be involved in fatty acid biosynthesis. We114

mapped the predicted operonic genes of Lactobacillus plantarum WCFS1 (Figure115

2E) to KEGG database [19] and found most of the genes involved in fatty acid116

biosynthesis (Supplementary Figure S2). These results show these predicted117

operons are likely involved in fatty acid biosynthesis and have a high probability118

of being true operons. Although core operons are involved in the same biological119

pathway, the genes outside the core function (Figure 2B-E) are diverse. The core120

function reflects the conservation of operons across species and is more robust121

and error-tolerant than operons. Core functions may reconstruct the metabolism122

pathways from the incomplete genome assembly data leveraging the conservation123

of genes across species. The ability to use core functions as familiar ground from124

which to explore new conserved proximal genes makes core functions a new and125

powerful tool for discovering novel operon-encoded pathways in metagenomic126

data.127

[Figure 2 about here.]128
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Assembler Number of
core operons

Intersection
with True
Operons

Mean Preci-
sion ± SE

Mean Recall
± SE

Mean F1 ±
SE

True Operon Set

NA 110 NA 0.97 ± 0.12 0.66 ± 0.28 0.75 ± 0.22

Genome

NA 310 36 0.77 ± 0.34 0.60 ± 0.34 0.67 ± 0.28

Simulated Reads

IDBA ud 260 48 0.83 ± 0.31 0.61 ± 0.33 0.71 ± 0.26

Megahit 256 46 0.84 ± 0.31 0.61 ± 0.32 0.71 ± 0.26

Velvet 202 56 0.87 ± 0.30 0.59 ± 0.32 0.71 ± 0.25

SRR2155174

IDBA ud 141 25 0.71 ± 0.36 0.55 ± 0.33 0.65 ± 0.24

Megahit 138 26 0.71 ± 0.37 0.54 ± 0.33 0.66 ± 0.24

Velvet 94 11 0.72 ± 0.39 0.48 ± 0.33 0.65 ± 0.25

Table 4. Comparing core operons discovered by POEM in the simulated metagenome, and
in SRR2155174. See Methods and Figure 5 for details. Intersection with True Operons:
The number of shared core functions between true operons and predicted operons. SE:
standard error.

Discussion129

In this study we introduce POEM, a complete pipeline for predicting operons in130

genomic and metagenomic data. We also introduce the concept of a core operon,131

a functional unit of proximal genes in a metagenome, which is composed of the132

common functions of orthologous operons. POEM’s CNN predicts intra-operonic133

genes with high precision, considerably more so than the baseline method of134

a linear classifier. The recall rate of POEM is lower than that of the linear135

classifier, but that is expected as the linear classifier recovers all proximal genes136

with a distance of ≤ 500 bp. This means that the recall is high, but the number137

of false positives is also high, as indicated by the lower precision when compared138

to the CNN (Table 2, 69.84).139

When recovering operons from metagenomes (Table 2), POEM’s results140

depend heavily upon the choice of gene-calling software and metagenome assembly.141

POEM outperforms the linear baseline method indicating that higher quality142

assemblies and longer reads will lead to a higher overall accuracy in POEM’s143

performance relative to the linear classifier. Furthermore, when recovering full144

operons, POEM’s CNN outperforms the linear classifier. The recovery overall is145

around 39% (1025 out of 2589), but it is considerably higher than that of the146
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linear classifier (469/1,025).147

the chief utility of POEM lies in identifying the functions carried out by the148

predicted operons in a metagenome. To that end, we introduced the core operon,149

identified by counting proximal predicted inter-operonic gene pairs in assembled150

contigs, and concatenating them using guilt-by-association. (Figure 5). The151

most frequent functions in the operons containing a large number of orthologous152

genes will be represented in the core operon. A high overlap in the count of153

functions (as COGs) between the core operons and the true operons indicates154

that while not all genes in an operon can be recovered in a metagenome, the155

basic functionality enabled by core operons can be recovered. The high precision156

and recall values shown in Table 4 indicate the the use of core operons can indeed157

inform us of those functions that are carried out by operons in a metagenome. In158

providing a characterization of core operons and their functions, POEM allows159

the annotation of a metagenome beyond the simple assignment of functions to160

genes, but to incorporate a level of annotation than includes an element of gene161

structure which is crucial in understanding bacterial function.162

In sum, POEM is a novel and highly useful addition to the arsenal of tools163

helping us to better understand the functionality of metagenome, and is dis-164

tinguished by offering a structural view of the metagenome, rather than a165

bag-of-genes-and-functions that most tools offer.166

Methods167

An overview of the POEM pipeline is shown in Fig. 3. The heart of the pipeline168

lie the Operon identification and operon core structure that POEM performs.169

The other steps are performed with third-party tools, and are modular. Below170

we elaborate upon the various stages in the POEM pipeline.171

[Figure 3 about here.]172
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Metagenome Assembly173

POEM uses, as default, the IDBA-UD de-novo assembler, but the user may174

supply an alternative assembler. Short read assemblers are usually based on175

De Bruijn graphs and are sensitive to the sequencing depth, repetitive regions,176

and sequencing errors [24]. For clonal bacteria, this assembly algorithm works177

relatively because it is easy to estimate the sequencing depth and the bacte-178

rial genomes are often compact and have few repetitive regions. However, in179

metagenomes it is hard to estimate the amount of sequence data that are needed180

for good functional coverage, and the genomes from closely related species may181

contain many highly conserved genes which may be interpreted as repetitive182

regions. Although de novo assemblers for metagenomes are still at an early183

stage [40], there are several tools developed for this task including MetaVelvet-SL,184

IDBA-UD,and Megahit [1,22,27,30,32]. In this study we also compare the effect185

these assemblers have on the accuracy of POEM.186

Gene Prediction187

We chose to use an ab-initio method for gene calling, as opposed to calling by188

sequence similarity. First, because ab-initio gene calling is faster in bacterial189

and archaeal genomes, with little accuracy sacrificed: the predicted accuracy190

of some methods can reach 98% [16, 17, 43, 48]. Second, metagenomic data191

contain many genes with no similarity to known genes, so using a homology192

based method may result in a large number of open reading frames (ORFs) that193

are not predicted as such (false negatives). Several gene prediction tools have194

been developed or optimized for metagenomic data, including Glimmer-MG,195

Metagene, Metagenemark, Prokka, Prodigal, and Orphelia [14,17, 20, 28,36, 48].196

POEM uses Metagenemark or Prokka to predict genes. As in the contig assembly197

stage, this part can be modified by the user.198
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Removing ORF Redundancies199

Once ORFs are identified, we remove redundant ORFs with an ID of >98%200

using CD-HIT [12,23]. The assumption is that genes with a very high sequence201

ID were taken from the same species or highly similar strains and are therefore202

redundant information.203

Gene Function Annotation204

While there are many ways to annotate gene function [34], a fast and acceptably205

accurate way to do so typically employs sequence similarity matching against206

a reliable functionally annotated sequence database. Here we used the COG207

database as a reference. POEM uses both BLAST and DIAMOND [4], which208

trades off speed and sensitivity. The functional assignment is done by choosing209

the top hit in COG above the e-value threshold ( Evalue = 10−3).210

Operon Prediction211

At the core of POEM lies a novel method we developed for predicting operons.212

POEM predicts if any given pair of adjacent genes are intra-operonic by classifying213

intergenic regions into intra- or extra-operonic. Thus, the operon prediction214

problem is cast as a binary classification problem.215

POEM’s operon prediction method goes through the following steps. First,216

the intergenic DNA sequences of 4,425 operonic and 2,097 non-operonic adjacent217

genes were extracted from Operon DataBase v2 [29]. The intergenic regions218

are represented as a k-mer-position matrix (KPM, Figure 4). Two-thirds of219

the data were used for training a Convolutional Neural Network (CNN) based220

binary classification model and the remaining 1/3 of the data were used as the221

test set. We used a CNN model from the Keras package (v1.2.0) to train the222

classification model [7]. Since the CNN only accepts a fixed size matrix, we223

convert the KPM to a fixed size matrix by truncating the middle columns or224
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adding all zero columns to the middle of the matrix. Trial-and-error has shown225

that k = 3 produced the best accuracy (Supplementary Figure S1).226

To show the CNN’s utility, we compared its performance to a simple baseline227

predictor. The baseline linear classifier works as follows: if two genes on the same228

strand have an intergenic distance < 500 nt, then their adjacency is classified229

as within the same operon (operonic). A larger distance would classify them as230

non-operonic. The predicted operonic adjacent genes were then connected to231

form a full operon prediction.232

[Figure 4 about here.]233

Identifying Core Operons234

To characterize operons in metagenomes, we introduce the concept of core operons.235

Core operons are weighted-edge undirected graphs that capture information about236

predicted orthologous operons or fractions of operons in the metagenome. Each237

node is a set of orthologous genes that are all annotated by at least one common238

COG term. An edge is drawn between two nodes if they are determined to be239

an intra-operonic pair. The weight of the edge is determined by the frequency240

of the adjacency of the intra-operon adjacent genes. To determine how well a241

core operon captures the real operons in a metagenome, we ran a precision-recall242

analysis using the operons in the simulated database as our standard-of-truth, see243

Figure 5. Here, precision is the number of correctly predicted intra-operonic genes244

(true positives) divided by the number of all predictions (true positive and false245

positive predictions). Recall is the number of correctly predicted intra-operonic246

genes divided by the all real intra-operonic genes. Finally, POEM produces a file247

that can then be used by Cytoscape [37] to visualize the core operons.248

[Figure 5 about here.]249
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Availability of source code and requirements250

The software and related information are listed below:251

Project Name: POEM252

Project Home Page: https://github.com/Rinoahu/POEM_py3k253

Operating System(s): POEM was tested on GNU/Linux distribution254

Ubuntu 16.04 64-bit, but we expect POEM to work on most Unix-like sys-255

tems.256

Programming Language: Python257

Other Requirements: Python 3.7 and Conda258

License: GPLv3259
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Figure 1. Determining precision and recall for a predicted operon.
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Figure 2. Mapping core functions to predicted operons. A: predicted core function
from SRR2155174 data set; B-E: predicted operons in different species. the arrows stand for
the strands of genes, box color is the COG functional classification; gray boxes are functions
outside the core operon. Gene names are above the boxes.
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Figure 3. A flowcart of the POEM pipeline. A: assembly; B: Gene calling; C: similarity
clustering; D: identify intra-operonic genes; E: identify core operons; F: graph-based
visualization
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Figure 4. A. Construction of a k-mer-position matrix, shown with a 2-mer example
(POEM uses 3-mer). Each row is a k-mer and the column number stands for a position in the
sequence. If a specific k-mer appears in the sequence, the corresponding cell of the KPM is set
to 1, otherwise, 0; B. training and building an CNN based classification model from intergenic
of operonic and non-operonic adjacency.
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(A)

(B)

(C)

Figure 5. Identifying Core Operons. A: find orthologous COG-annotated proximal
gene pairs and concatenate them using guilt-by-association. B: The resulting graph shows the
core function (four different COG IDs) C: Find the most similar operon in the dataset of gold
standards and its corresponding GO annotations. In this example, there are 3 true positives
(COG4806, COG1070, and COG0235), 1 false positive (COG2160), and 2 false negatives
(COG2814 & COG3254). Precision is therefore 0.75 and recall is 0.6
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